
Administrators Guide
Copyright (c) 2015-2022 The OpenNMS Group, Inc.

OpenNMS Meridian 2020.1.26, Last updated 2022-08-09 15:54:25 UTC

Table of Contents
1. About This Guide . 1

1.1. Audience . 1

1.2. Related Documentation. 1

1.3. Typographical Conventions . 1

1.4. Need Help? . 2

2. Data Choices. 3

3. User Management . 4

3.1. Users. 4

3.2. Security Roles. 5

3.3. Web UI Pre-Authentication. 8

3.3.1. Enabling Pre-Authentication . 8

3.3.2. Configuring Pre-Authentication . 8

4. Enabling pre-authorization . 9

5. Administrative Webinterface . 10

5.1. Surveillance View. 10

5.1.1. Default Surveillance View Configuration . 10

5.1.2. Configuring Surveillance Views . 11

5.1.3. Categorizing Nodes. 12

5.1.4. Creating Views for Users and Groups . 12

5.2. Dashboard . 13

5.2.1. Components . 13

5.2.2. Advanced configuration . 16

5.3. Grafana Dashboard Box . 23

5.4. Operator Board . 25

5.4.1. Configuration . 26

5.4.2. Dashlets . 28

5.4.3. Boosting Dashlet . 32

5.4.4. Criteria Builder . 32

5.5. JMX Configuration Generator . 34

5.5.1. Web based utility . 34

5.5.2. CLI based utility. 37

5.6. Heatmap . 43

5.7. Trend . 45

6. Service Assurance . 49

6.1. Pollerd Configuration . 50

6.1.1. Meta-Data-DSL . 52

6.2. Critical Service . 53

6.3. Downtime Model . 54

6.4. Path Outages . 55

6.5. Poller Packages . 57

6.5.1. Response Time Configuration . 58

6.5.2. Overlapping Services . 58

6.5.3. Service Patterns. 60

6.5.4. Test Services on manually . 61

6.5.5. Test filters on Karaf Shell . 63

6.6. Service monitors . 64

6.6.1. Common Configuration Parameters. 65

6.6.2. Using Placeholders in Parameters . 65

6.6.3. ActiveMQMonitor . 66

6.6.4. AvailabilityMonitor . 67

6.6.5. BgpSessionMonitor. 68

6.6.6. BSFMonitor. 71

6.6.7. CiscoIpSlaMonitor. 78

6.6.8. CiscoPingMibMonitor . 80

6.6.9. CitrixMonitor . 85

6.6.10. DhcpMonitor . 86

6.6.11. DiskUsageMonitor . 89

6.6.12. DnsMonitor . 91

6.6.13. DNSResolutionMonitor . 93

6.6.14. FtpMonitor . 96

6.6.15. HostResourceSwRunMonitor. 98

6.6.16. HttpMonitor . 99

6.6.17. HttpPostMonitor . 104

6.6.18. HttpsMonitor . 106

6.6.19. IcmpMonitor . 107

6.6.20. ImapMonitor . 108

6.6.21. ImapsMonitor . 110

6.6.22. JCifsMonitor . 110

6.6.23. JDBCMonitor . 113

6.6.24. JDBCStoredProcedureMonitor. 114

6.6.25. JDBCQueryMonitor. 116

6.6.26. JmxMonitor . 119

6.6.27. JolokiaBeanMonitor . 121

6.6.28. LdapMonitor . 123

6.6.29. LdapsMonitor . 124

6.6.30. MemcachedMonitor. 125

6.6.31. NetScalerGroupHealthMonitor . 127

6.6.32. NrpeMonitor . 128

6.6.33. NtpMonitor. 130

6.6.34. OmsaStorageMonitor. 130

6.6.35. OpenManageChassisMonitor. 133

6.6.36. PageSequenceMonitor. 134

6.6.37. PercMonitor . 143

6.6.38. Pop3Monitor . 144

6.6.39. PrTableMonitor. 145

6.6.40. RadiusAuthMonitor . 146

6.6.41. SmbMonitor . 148

6.6.42. SmtpMonitor . 149

6.6.43. SnmpMonitor. 150

6.6.44. SshMonitor . 159

6.6.45. SSLCertMonitor. 160

6.6.46. StrafePingMonitor . 163

6.6.47. TcpMonitor. 166

6.6.48. SystemExecuteMonitor . 167

6.6.49. VmwareCimMonitor . 170

6.6.50. VmwareMonitor . 171

6.6.51. WebMonitor . 173

6.6.52. Win32ServiceMonitor . 174

6.6.53. WsManMonitor . 175

6.6.54. XmpMonitor. 176

7. Performance Management . 178

7.1. Configuring Collectd . 179

7.1.1. Setting the Thread Pool . 179

7.1.2. Configuring Collector Packages. 179

7.1.3. Guidelines for Collector Packages. 182

7.2. Configuring Collectors. 183

7.2.1. SnmpCollector . 183

7.2.2. JmxCollector. 185

7.2.3. HttpCollector . 189

7.2.4. JdbcCollector . 190

7.2.5. NSClientCollector . 192

7.2.6. PrometheusCollector . 193

7.2.7. TcaCollector . 195

7.2.8. VmwareCimCollector. 196

7.2.9. VmwareCollector . 196

7.2.10. WmiCollector. 197

7.2.11. WsManCollector . 197

7.2.12. XmlCollector . 204

7.2.13. XmpCollector . 206

7.3. Resource Types . 207

7.4. SNMP Property Extenders . 210

7.4.1. Cisco CBQoS Property Extender . 212

7.4.2. Enum Lookup Property Extender. 212

7.4.3. Index Split Property Extender . 214

7.4.4. Regex Property Extender . 215

7.4.5. Pointer-Like Index Property Extender . 217

7.4.6. SNMP Interface Property Extender . 221

7.5. Administration and Troubleshooting . 224

7.5.1. Collectd Administration . 224

7.5.2. Shell Commands . 224

8. Thresholding . 230

8.1. How Thresholding Works in OpenNMS Meridian . 230

8.2. What Triggers a Thresholding Event?. 230

8.3. Basic Walk-through – Thresholding. 231

8.3.1. Determine You are Collecting Metric . 231

8.3.2. Create a Threshold . 231

8.3.3. Testing the Threshold . 233

8.3.4. Creating a Threshold for CPU Usage . 233

8.3.5. Determining the Datasource . 234

8.3.6. Create a Threshold Group. 235

8.3.7. Create a Notification on a Threshold Event . 236

8.4. Thresholding Service. 236

8.4.1. Distributed Thresholding with Sentinel . 237

8.5. Shell Commands . 237

9. Events . 239

9.1. Anatomy of an Event . 239

9.2. Sources of Events . 239

9.2.1. SNMP Traps . 240

9.2.2. Syslog Messages. 240

9.2.3. ReST . 242

9.2.4. XML-TCP . 242

9.2.5. Receiving IBM Tivoli Event Integration Facility Events . 243

9.2.6. TL1 Autonomous Messages . 244

9.2.7. Sink. 244

9.3. The Event Bus . 244

9.3.1. Associate an Event to a given node . 244

9.4. Event Configuration. 244

9.4.1. The eventd-configuration.xml file . 245

9.4.2. The eventconf.xml file and its tributaries . 245

9.4.3. Reloading the event configuration . 250

9.5. Debugging . 250

9.5.1. Karaf Shell . 250

10. Alarms . 252

10.1. Single Alarm Tracking Problem States . 252

10.2. Alarm Service Daemon . 253

10.3. Configuring Alarms . 254

10.4. Alarm Notes . 258

10.5. Alarm Sounds . 259

10.6. Flashing Unacknowledged Alarms . 260

10.7. Configuring Alarm Sounds and Flashing . 260

10.8. Alarm History . 261

10.8.1. Requirements . 262

10.8.2. Setup . 262

10.8.3. Alarm indexing . 262

10.8.4. Options . 263

11. Notifications . 265

11.1. Introduction. 265

11.2. Getting Started . 265

11.2.1. Enabling Notifications. 265

11.2.2. Configuring Destination Paths. 265

11.2.3. Configuring Event Notifications . 266

11.3. Concepts . 266

11.3.1. Events and UEIs . 267

11.3.2. Users, Groups, and On-Call Roles . 267

11.3.3. Duty Schedules . 268

11.3.4. Destination Paths . 268

11.3.5. Notification Commands . 269

11.4. Bonus Notification Methods . 270

11.4.1. Mattermost. 270

11.4.2. Slack Notifications . 272

12. Provisioning . 274

12.1. Introduction. 274

12.2. Concepts . 274

12.2.1. Terminology. 275

12.2.2. Addressing Scalability . 276

12.3. Getting Started . 279

12.3.1. Provisioning the SNMP Configuration. 279

12.3.2. Automatic Discovery . 281

12.3.3. Enhanced Directed Discovery . 282

12.4. Import Handlers . 284

12.4.1. Generic Handler . 284

12.4.2. File Handler . 285

12.4.3. HTTP Handler . 285

12.4.4. DNS Handler . 285

12.5. Provisioning Examples . 287

12.5.1. Basic Provisioning . 288

12.5.2. Advanced Provisioning Example . 293

12.6. Adapters . 304

12.6.1. DDNS Adapter . 305

12.6.2. RANCID Adapter . 305

12.7. Meta-Data assigned to Nodes. 305

12.7.1. User defined contexts . 305

12.8. Integrating with Provisiond. 305

12.8.1. Provisioning Groups of Nodes. 306

12.8.2. Example . 306

12.9. Provisioning Single Nodes (Quick Add Node) . 308

12.10. Fine Grained Provisioning Using provision.pl. 308

12.10.1. Create a new requisition . 309

12.11. Yet Other API Examples . 310

12.12. SNMP Profiles . 311

12.13. Auto Discovery with Detectors . 313

12.14. Service Detectors . 314

12.14.1. Meta-Data-DSL . 315

12.14.2. HTTP Detector . 315

12.14.3. HTTPS Detector . 316

12.14.4. SNMP Detector . 316

12.14.5. WS-Man Detector . 318

12.14.6. WS-Man WQL Detector . 320

12.14.7. Reverse-DNS-Lookup Detector . 322

13. Business Service Monitoring. 324

13.1. Business Service Hierarchy . 325

13.2. Operational status . 326

13.3. Root Cause and Impact Analysis. 327

13.4. Simulation Mode . 329

13.5. Share View . 330

13.6. Change Icons . 331

13.7. Business Service Definition . 331

13.8. Edges . 332

13.8.1. Child Services . 333

13.8.2. IP Services . 333

13.8.3. Custom Reduction Key. 334

13.8.4. Application. 334

13.9. Map Functions . 334

13.10. Reduce Functions. 335

13.11. Business Service Daemon . 337

14. Topology Map . 339

14.1. Properties. 339

14.2. Edge Status. 339

14.2.1. Linkd Topology Provider . 339

14.3. Icons . 339

14.3.1. Icon resolution . 341

14.3.2. Change existing icon mappings. 341

14.3.3. Add new icons . 341

15. Asset Topology Provider. 344

15.1. Overview . 344

15.2. Asset layers . 346

15.3. Node filtering . 347

15.4. Configuration . 348

15.5. Creating Asset Based Topologies From Karaf Consol . 349

15.6. Creating Asset Based Topologies Using OpenNMS Meridian events. 351

15.7. Viewing the topology. 352

15.8. Additional notes . 352

16. Database Reports . 353

16.1. Overview . 353

16.2. Modify existing reports. 353

16.3. Add a custom report . 354

16.4. Usage of Jaspersoft Studio . 354

16.4.1. Connect to the OpenNMS Meridian Database . 355

16.4.2. Use Measurements Datasource and Helpers . 355

16.5. Accessing Performance Data . 356

16.5.1. Fields . 357

16.5.2. Parameters . 357

16.6. Disable Scheduler. 358

16.7. Helper methods . 358

16.7.1. Usage of the node source descriptor . 360

16.7.2. Usage of the interface descriptor . 361

16.7.3. Use HTTPS . 362

16.8. Limitations. 362

16.9. Creating PDF Reports from Grafana Dashboards Using OpenNMS Meridian 362

16.9.1. Before You Begin. 363

16.9.2. Configure the Grafana Endpoint. 363

16.9.3. Creating a PDF of a Grafana Dashboard . 364

17. Enhanced Linkd . 365

17.1. Enlinkd Daemon. 365

17.2. Layer 2 Link Discovery . 367

17.2.1. LLDP Discovery. 368

17.2.2. CDP Discovery . 371

17.2.3. Transparent Bridge Discovery. 374

17.3. Layer 3 Link Discovery . 380

17.3.1. OSPF Discovery . 381

17.3.2. IS-IS Discovery. 383

18. OpenTracing . 385

18.1. Introduction. 385

18.1.1. Enabling Tracing on OpenNMS Meridian . 385

18.1.2. Enabling Tracing on Minion. 385

18.1.3. Enabling Tracing on Sentinel . 385

19. Operation . 387

19.1. HTTPS / SSL . 387

19.1.1. Standalone HTTPS with Jetty . 387

19.1.2. OpenNMS Meridian as HTTPS client . 387

19.1.3. Differences between Java Trust Store and Java Key Store . 389

19.1.4. Debugging / Properties . 389

19.2. Request Logging . 390

19.3. Geocoder Service . 391

19.3.1. Google . 391

19.3.2. Mapquest . 392

19.3.3. Nominatim . 392

19.4. newts-repository-converter: Rrd/Jrb to Newts migration utility . 393

19.4.1. Migration . 393

19.4.2. Usage . 394

19.4.3. Example 1: convert Rrd-based data with storeByGroup enabled. 395

19.4.4. Example 2: convert JRobin-based data with storeByGroup disabled 395

19.5. Configuration Tester . 395

19.6. Newts. 396

19.6.1. Configuration. 396

19.6.2. Cassandra Monitoring . 399

19.6.3. Newts Monitoring. 403

19.7. Timeseries Integration Layer . 406

19.7.1. Configuration. 406

19.8. Daemon Configuration Files . 409

19.8.1. Eventd . 409

19.8.2. Notifd. 410

19.8.3. Pollerd . 410

19.8.4. Syslogd. 411

19.8.5. Trapd . 411

20. System Properties . 412

20.1. Configuring system proxies . 412

21. Ticketing. 414

21.1. JIRA Ticketing Plugin. 414

21.1.1. Setup . 414

21.1.2. Jira Commands . 415

21.1.3. Custom fields . 416

21.1.4. Troubleshooting . 420

21.2. Remedy Ticketing Plugin . 420

21.2.1. Remedy Product Overview. 420

21.2.2. Supported Remedy Product Versions . 420

21.2.3. Setup . 420

21.3. TSRM Ticketing Plugin . 423

21.3.1. Setup . 423

21.3.2. Mapping OpenNMS Ticket with TSRM Incident . 424

22. Enabling RMI . 425

22.1. Enabling RMI. 425

22.2. Enabling SSL . 426

22.3. Connecting to RMI over SSL. 426

23. Minion . 428

23.1. Using JMS . 428

23.1.1. Tuning the ActiveMQ broker . 428

23.1.2. Monitoring the ActiveMQ broker using the Karaf shell . 428

23.1.3. Authentication and authorization with ActiveMQ . 428

23.1.4. Multi-tenancy with OpenNMS Meridian and ActiveMQ . 429

23.1.5. Tuning the RPC client in OpenNMS . 429

23.1.6. Diagnosing RPC failures . 429

23.2. Using AWS SQS . 430

23.2.1. OpenNMS Meridian Configuration . 430

23.2.2. Minion Configuration . 432

23.2.3. SQS Configuration Settings. 432

23.2.4. Managing Multiple Environments . 434

23.2.5. AWS Credentials . 435

23.2.6. Limitations . 435

23.3. Using Off-heap Storage for Sink Messages . 436

23.3.1. Configuring Off-heap Storage . 436

23.4. Installing JDBC drivers in Minion . 437

23.5. Time to Live (TTL) for RPCs . 437

23.5.1. TTLs in Pollerd & Collectd . 438

23.5.2. TTLs for the SNMP Collector . 438

23.5.3. TTLs for the other SNMP communication . 438

23.5.4. TTLs for Provisiond Detectors . 438

23.5.5. Global TTL . 438

23.5.6. Using meta-data for TTLs . 438

24. Sentinel. 440

24.1. Limitations. 440

24.2. Installation. 440

24.3. Clean Start . 440

24.4. Configuration . 440

24.4.1. Configure the datasource . 440

24.4.2. Configure the controller . 441

24.4.3. Configure Connectivity . 441

24.4.4. Available features. 442

24.4.5. Auto install . 442

24.4.6. Auto Start . 443

24.4.7. Health Check / Troubleshooting . 444

24.5. Flow Processing . 444

24.5.1. Configure Sentinel . 444

24.5.2. Configure Minion . 445

24.5.3. Configure OpenNMS . 445

24.5.4. Auto configure flow processing for Sentinel . 445

24.6. Persisting Collection Sets to Newts. 449

24.6.1. Adapters . 449

24.6.2. Configure Newts . 451

25. Special Cases and Workarounds . 453

25.1. Overriding SNMP Client Behavior . 453

26. IFTTT Integration. 455

26.1. IFTTT Configuration . 455

26.2. OpenNMS Configuration. 458

26.3. Example . 458

27. DNS Resolver. 460

27.1. Modules that use DNS Resolution. 460

27.2. Configuring DNS Resolution . 460

27.3. Configuring Circuit Breaker . 460

27.4. Configuring Bulkhead . 461

28. Telemetry Daemon . 462

28.1. Listeners and Parsers . 462

28.2. Adapters . 462

28.2.1. Working with Minions. 463

28.3. Queues . 463

28.3.1. Configuring Queues . 463

28.4. Push Sensor Data through Minion . 464

28.5. Reverse hostname resolution . 464

28.6. Listener Reference . 465

28.6.1. TCP Listener . 465

28.6.2. UDP Listener . 465

28.7. Protocol Reference. 466

28.7.1. BGP Monitoring Protocol . 466

28.7.2. IPFIX . 470

28.7.3. Junos Telemetry Interface . 472

28.7.4. NetFlow v5 . 475

28.7.5. NetFlow v9 . 476

28.7.6. Cisco NX-OS Telemetry . 477

28.7.7. sFlow . 479

28.7.8. Graphite Telemetry . 480

29. Elasticsearch Integration . 484

29.1. Configuration . 484

29.2. Credentials . 486

29.3. Features . 486

29.3.1. Feature Matrix. 486

29.3.2. Event Forwarder. 486

29.3.3. Flow Support . 492

29.3.4. Situation Feedback . 492

29.3.5. Alarm History . 493

30. Flow Support. 494

30.1. Introduction. 494

30.1.1. How it works . 494

30.2. Setup . 494

30.2.1. Configuration Elasticsearch persistence. 494

30.2.2. Enabling a protocol . 495

30.2.3. Linking to OpenNMS Helm in the Web UI . 496

30.2.4. Node cache configuration (Optional). 497

30.2.5. Classification Exporter Filter cache configuration (Optional). 497

30.2.6. Configure Kafka forwarder . 498

30.3. Classification Engine . 498

30.3.1. Rule definition. 499

30.3.2. Omnidirectional Rules. 500

30.3.3. Rule Groups . 500

30.3.4. Order of evaluation . 500

30.3.5. Verification. 500

30.3.6. Example . 501

30.4. Aggregation . 502

31. Kafka Producer. 503

31.1. Overview . 503

31.1.1. Events . 503

31.1.2. Alarms . 503

31.1.3. Nodes . 503

31.1.4. Topologies. 504

31.1.5. Metrics. 504

31.2. Enabling the Kafka Producer . 504

31.3. Configuring the Kafka Producer. 505

31.3.1. Configuring Filtering . 506

31.3.2. Enabling Metric Forwarding . 507

31.3.3. Configuring Topic Names . 507

31.4. Shell Commands . 508

31.4.1. opennms:kafka-list-alarms. 508

31.4.2. kafka-producer:sync-alarms . 508

31.4.3. opennms:kafka-evaluate-filter . 508

32. Alarm Correlation . 510

32.1. Situation Feedback. 510

32.1.1. Introduction. 510

32.1.2. Installation . 510

32.1.3. Requirements . 510

33. Meta-Data. 511

33.1. Contexts . 511

33.1.1. Node context . 511

33.1.2. Interface context. 512

33.1.3. Service context . 512

33.2. Adding Metadata through the Web UI . 512

33.3. The Metadata DSL . 513

33.3.1. Testing an expression . 514

33.3.2. Uses . 514

34. OpenNMS Meridian Administration . 515

34.1. Shutdown . 515

34.2. Restart . 517

Chapter 1. About This Guide
Welcome to the OpenNMS Meridian Administrators Guide. This documentation provides
information and procedures on setup, configuration, and use of the OpenNMS Meridian platform.
Using a task-based approach, chapters appear in a recommended order for working with OpenNMS
Meridian:

1. Opt in or out of usage statistics collection (requirement during first login).

2. Setup the admin user.

3. Create users and security roles.

4. Provision your system.

1.1. Audience
This guide is suitable for administrative users and those who will use OpenNMS Meridian to
monitor their network.

1.2. Related Documentation
Installation Guide: how to install OpenNMS Meridian

Developers Guide: information and procedures on developing for the OpenNMS Meridian project

OpenNMS 101: a series of video training tutorials that build on each other to get you up and
running with OpenNMS Meridian

OpenNMS 102: a series of stand-alone video tutorials on OpenNMS features

OpenNMS Helm: a guide to OpenNMS Helm, an application for creating flexible dashboards to
interact with data stored by OpenNMS

Architecture for Learning Enabled Correlation (ALEC): guide to this framework for logically
grouping related faults (alarms) into higher level objects (situations) with OpenNMS.

1.3. Typographical Conventions
This guide uses the following typographical conventions:

Convention Meaning

bold Indicates UI elements to click or select in a procedure, and the names of
UI elements like dialogs or icons.

italics Introduces a defined or special word. Also used for the titles of
publications.

1

#ga-data-choices
#ga-admin-user-setup
#ga-users-intro
#ga-provisioning-introduction
https://vault.opennms.com/docs/opennms/releases/latest/guide-install/guide-install.html
https://vault.opennms.com/docs/opennms/releases/latest/guide-development/guide-development.html
https://www.youtube.com/playlist?list=PLsXgBGH3nG7iZSlssmZB3xWsAJlst2j2z
https://www.youtube.com/watch?v=aoiSjNvDC7E&list=PLsXgBGH3nG7h6zy2hENGRJbs0BYQaqBu4
https://vault.opennms.com/docs/helm/branches/master/helm/latest/welcome/index.html#
https://alec.opennms.com/alec/2.0.0-snapshot/

code Anything you must type or enter, and the names for code-related
elements (classes, methods, commands).

1.4. Need Help?
• join the OpenNMS Discussion chat

• join our community on Discourse

• contact sales@opennms.com to purchase customer support

2

https://chat.opennms.com/opennms/channels/opennms-discussion
https://opennms.discourse.group/latest
mailto:sales@opennms.com
https://www.opennms.com/support/

Chapter 2. Data Choices
The first time a user with the Admin role logs into the system, a prompt appears for permission to
allow the Data Choices module to collect and publish anonymous usage statistics to
https://stats.opennms.org.

The OpenNMS Group uses this information to help determine product usage, and improve the
OpenNMS Meridian software.

Click Show me what is being sent to see what information is being collected. Statisitcs collection
and publication happen only once an admin user opts-in.

When enabled, the following anonymous statistics are collected and published on system startup
and every 24 hours after:

• System ID (a randomly generated UUID)

• OpenNMS Meridian Release

• OpenNMS Meridian Version

• OS Architecture

• OS Name

• OS Version

• Number of alarms in the alarms table

• Number of events in the events table

• Number of IP interfaces in the ipinterface table

• Number of nodes in the node table

• Number of nodes, grouped by System OID

You can enable or disable usage statistics collection at any time by choosing
admin>Configure OpenNMS>Additional Tools>Data Choices and choosing Opt-
in or Opt-out in the UI.

3

https://stats.opennms.org

Chapter 3. User Management
Users are entities with login accounts in the OpenNMS Meridian system. Ideally each user
corresponds to a person. An OpenNMS Meridian User represents an actor which may be granted
permissions in the system by associating Security Roles. OpenNMS Meridian stores by default User
information and credentials in a local embedded file based storage. Credentials and user details,
e.g. contact information, descriptions or Security Roles can be managed through the Admin Section
in the Web User Interface.

Beside local Users, external authentication services including LDAP / LDAPS, RADIUS, and SSO can
be configured. Configuration specifics for these services are outside the scope of this section.

The following paragraphs describe how to manage the embedded User and Security Roles in
OpenNMS Meridian.

3.1. Users
Managing Users is done through the Web User Interface and requires to login as a User with
administrative permissions. By default the admin user is used to initially create and modify Users.
The User, Password and other detail descriptions are persisted in users.xml file. It is not required to
restart OpenNMS Meridian when User attributes are changed.

In case administrative tasks should be delegated to an User the Security Role named ROLE_ADMIN
can be assigned.

Don’t delete the admin and rtc user. The RTC user is used for the communication of
the Real-Time Console on the start page to calculate the node and service
availability.

 Change the default admin password to a secure password.

How to set a new password for any user

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Users

4. Click the Modify icon next to an existing User and select Reset Password

5. Set a new Password, Confirm Password and click OK

6. Click Finish to persist and apply the changes

How users can change their own password

1. Login with user name and old password

2. Choose Change Password from the user specific main navigation which is named as your login
user name

4

https://wiki.opennms.org/wiki/Spring_Security_and_LDAP
https://wiki.opennms.org/wiki/Spring_Security_and_Radius
https://wiki.opennms.org/wiki/Single_Sign_On

3. Select Change Password

4. Identify yourself with the old password and set the new password and confirm

5. Click Submit

6. Logout and login with your new password

How to create or modify user

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Users

4. Use Add new user and type in a login name as User ID and a Password with confirmation or
click Modify next to an existing User

5. Optional: Fill in detailed User Information to provide more context information around the new
user in the system

6. Optional: Assign Security Roles to give or remove permissions in the system

7. Optional: Provide Notification Information which are used in Notification targets to send
messages to the User

8. Optional: Set a schedule when a User should receive Notifications

9. Click Finish to persist and apply the changes

Please note that angle brackets (<>), single (') and double quotation marks ("), and
the ampersand symbol (&) are not allowed to be used in the user ID.

By default a new User has the Security Role similar to ROLE_USER assigned.
Acknowledgment and working with Alarms and Notifications is possible. The
Configure OpenNMS administration menu is not available.

How to delete existing user

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Users

4. Use the trash bin icon next to the User to delete

5. Confirm delete request with OK

3.2. Security Roles
A Security Roles is a set of permissions and can be assigned to an User. They regulate access to the
Web User Interface and the ReST API to exchange monitoring and inventory information. In case of
a distributed installation, the Remote Poller instances interact with OpenNMS Meridian and require
specific permissions which are defined in the Security Role ROLE_REMOTING. The following

5

Security Roles are available:

Table 1. Functions and existing system roles in OpenNMS Meridian

Security Role
Name

Description

anyone In case the opennms-webapp-remoting package is installed, any user can download
the Java Webstart installation package for the remote poller from
http://opennms.server:8980/opennms-remoting/webstart/app.jnlp.

ROLE_ANONYMO
US

Allows HTTP OPTIONS request to show allowed HTTP methods on a ReST
resources and the login and logout page of the Web User Interface.

ROLE_ADMIN Permissions to create, read, update and delete in the Web User Interface and
the ReST API.

ROLE_ASSET_EDI
TOR

Permissions to just update the asset records from nodes.

ROLE_DASHBOA
RD

Allow users to just have access to the Dashboard.

ROLE_DELEGATE Allows actions (such as acknowledging an alarm) to be performed on behalf of
another user.

ROLE_JMX Allows retrieving JMX metrics but does not allow executing MBeans of the
OpenNMS Meridian JVM, even if they just return simple values.

ROLE_MOBILE Allow user to use OpenNMS COMPASS mobile application to acknowledge
Alarms and Notifications via the ReST API.

ROLE_PROVISIO
N

Allow user to use the Provisioning System and configure SNMP in OpenNMS
Meridian to access management information from devices.

ROLE_READONL
Y

Limited to just read information in the Web User Interface and are no
possibility to change Alarm states or Notifications.

ROLE_REMOTIN
G

Permissions to allow access from a Remote Poller instance to exchange
monitoring information.

ROLE_REST Allow users interact with the whole ReST API of OpenNMS Meridian

ROLE_RTC Exchange information with the OpenNMS Meridian Real-Time Console for
availability calculations.

ROLE_USER Default permissions of a new created user to interact with the Web User
Interface which allow to escalate and acknowledge Alarms and Notifications.

How to manage Security Roles for Users:

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

6

http://opennms.server:8980/opennms-remoting/webstart/app.jnlp

3. Choose Configure Users, Groups and On-Call roles and select Configure Users

4. Modify an existing User by clicking the modify icon next to the User

5. Select the Role from Available Roles in the Security Roles section

6. Use Add and Remove to assign or remove the Security Role from the User

7. Click Finish to persist and apply the Changes

8. Logout and Login to apply the new Security Role settings

How to add custom roles

• Create a file called $OPENNMS_HOME/etc/security-roles.properties.

• Add a property called roles, and for its value, a comma separated list of the custom roles, for
example:

roles=operator,stage

• After following the procedure to associate the security roles with users, the new custom roles
will be available as shown on the following image:

:imagesdir: ../../images

7

3.3. Web UI Pre-Authentication
It is possible to configure OpenNMS Meridian to run behind a proxy that provides authentication,
and then pass the pre-authenticated user to the OpenNMS Meridian webapp using a header.

The pre-authentication configuration is defined in $OPENNMS_HOME/jetty-webapps/opennms/WEB-

INF/spring-security.d/header-preauth.xml. This file is automatically included in the Spring Security
context, but is not enabled by default.

DO NOT configure OpenNMS Meridian in this manner unless you are certain the
web UI is only accessible to the proxy and not to end-users. Otherwise, malicious
attackers can craft queries that include the pre-authentication header and get full
control of the web UI and ReST APIs.

3.3.1. Enabling Pre-Authentication

Edit the header-preauth.xml file, and set the enabled property:

<beans:property name="enabled" value="true" />

3.3.2. Configuring Pre-Authentication

There are a number of other properties that can be set to change the behavior of the pre-
authentication plugin.

Property Description Default

enabled Whether the pre-authentication plugin is active. false

failOnError If true, disallow login if the header is not set or
the user does not exist. If false, fall through to
other mechanisms (basic auth, form login, and
so on.)

false

userHeader The HTTP header that will specify the user to
authenticate as.

X-Remote-User

credentialsHea
der

A comma-separated list of credentials to
associate with the principal. If specified, the
header must be set for authentication to be
successful.

n/a

authoritiesHea
der

The HTTP header that will contain a comma-
separated list of authorities (roles) the user will
have.

n/a

8

Chapter 4. Enabling pre-authorization
Modify jetty-webapps/opennms/WEB-INF/applicationContext-spring-security.xml, and set:

<beans:bean id="preauthAuthProvider" class=
"org.springframework.security.web.authentication.preauth.PreAuthenticatedAuthenticatio
nProvider">
 <beans:property name="preAuthenticatedUserDetailsService">
 <beans:bean id="preAuthUserDetailsService" class=
"org.springframework.security.web.authentication.preauth.PreAuthenticatedGrantedAuthor
itiesUserDetailsService"/>
 </beans:property>
</beans:bean>

You can then try testing with:

curl -H "X-Remote-User: myuser" -H "X-Remote-Role: ROLE_USER,ROLE_REST"
http://localhost:8980/opennms/rest/whoami

9

Chapter 5. Administrative Webinterface

5.1. Surveillance View
When networks are larger and contain devices of different priority, it becomes interesting to show
at a glance how the "whole system" is working. The surveillance view aims to do that. By using
categories, you can define a matrix which allows to aggregate monitoring results. Imagine you have
10 servers with 10 internet connections and some 5 PCs with DSL lines:

Server
s

Internet
Connections

Super important 1 of 10 0 of 10

Slightly important 0 of 10 0 of 10

Vanity 4 of 10 0 of 10

The whole idea is to give somebody at a glance a hint on where the trouble is. The matrix-type of
display allows a significantly higher aggregation than the simple list. In addition, the surveillance
view shows nodes rather than services - an important tidbit of information when you look at
categories. At a glance, you want to know how many of my servers have an issue rather than how
many services in this category have an issue.

Figure 1. Example of a configured Surveillance View

The visual indication for outages in the surveillance view cells is defined as the following:

• No services down: green as normal

• One (1) service down: yellow as warning

• More than one (1) services down: red as critical

This Surveillance View model also builds the foundation of the Dashboard View.

5.1.1. Default Surveillance View Configuration

Surveillance Views are defined in the surveillance-views.xml file. This file resides in the OpenNMS
Meridian etc directory.

This file can be modified in a text editor and is reread every time the Surveillance
View page is loaded. Thus, changes to this file do not require OpenNMS Meridian to
be restarted.

10

The default configuration looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<surveillance-view-configuration
 xmlns:this="http://www.opennms.org/xsd/config/surveillance-views"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opennms.org/xsd/config/surveillance-views
http://www.opennms.org/xsd/config/surveillance-views.xsd"
 default-view="default" >
 <views >
 <view name="default" refresh-seconds="300" >
 <rows>
 <row-def label="Routers" >
 <category name="Routers"/>
 </row-def>
 <row-def label="Switches" >
 <category name="Switches" />
 </row-def>
 <row-def label="Servers" >
 <category name="Servers" />
 </row-def>
 </rows>
 <columns>
 <column-def label="PROD" >
 <category name="Production" />
 </column-def>
 <column-def label="TEST" >
 <category name="Test" />
 </column-def>
 <column-def label="DEV" >
 <category name="Development" />
 </column-def>
 </columns>
 </view>
 </views>
</surveillance-view-configuration>

Please note, that the old report-category attribute is deprecated and is no longer
supported.

5.1.2. Configuring Surveillance Views

The Surveillance View configuration can also be modified using the Surveillance View Configurations
editor on the OpenNMS Meridian Admin page.

11

Figure 2. The Surveillance View Configurations UI

This page gives an overview of the configured Surveillance Views and allows the user to edit,
remove or even preview the defined Surveillance View. Furthermore, the default Surveillance View
can be selected using the checkbox in the DEFAULT column.

When editing a Surveillance View the user has to define the view’s title and the time in seconds
between successive refreshes. On the left side of this dialog the defined rows, on the right side the
defined columns are listed. Beside adding new entries an user can modify or delete existing entries.
Furthermore, the position of an entry can be modified using the up/down buttons.

Figure 3. Editing a Surveillance View

Editing row or column definitions require to choose an unique label for this entry and at least one
OpenNMS Meridian category. When finished you can hit the Save button to persist your modified
configuration or Cancel to close this dialog.

5.1.3. Categorizing Nodes

In order to categorize nodes in the Surveillance View, choose a node and click Edit beside
Surveillance Category Memberships. Recalling from your Surveillance View, choose two categories
that represent a column and a row, for example, Servers and Test, then click Add.

5.1.4. Creating Views for Users and Groups

You can use user and group names for Surveillance Views. When the Surveillance View page is
invoked the following criteria selects the proper Surveillance View to be displayed. The first

12

matching item wins:

1. Surveillance View name equal to the user name they used when logging into OpenNMS
Meridian.

2. Surveillance View name equal to the user’s assigned OpenNMS Meridian group name

3. Surveillance View name equal to the default-view attribute in the surveillance-views.xml
configuration file.

5.2. Dashboard
In Network Operation Centers NOC an overview about issues in the network is important and often
described as Dashboards. Large networks have people (Operator) with different responsibilities
and the Dashboard should show only information for a given monitoring context. Network or
Server operator have a need to customize or filter information on the Dashboard. A Dashboard as
an At-a-glance overview is also often used to give an entry point for more detailed diagnosis
through the information provided by the monitoring system. The Surveillance View allows to reduce
the visible information by selecting rows, columns and cells to quickly limit the amount of
information to navigate through.

5.2.1. Components

The Dashboard is built with five components:

• Surveillance View: Allows to model a monitoring context for the Dashboard.

• Alarms: Shows unacknowledged Alarms which should be escalated by an Operator.

• Notifications: Shows outstanding and unacknowledged notifications sent to Engineers.

• Node Status: Shows all ongoing network Outages.

• Resource Graph Viewer: Shows performance time series reports for performance diagnosis.

The following screenshot shows a configured Dashboard and which information are displayed in
the components.

13

Figure 4. Dashboard with configured surveillance view and current outage

The following section describe the information shown in each component. All other components
display information based on the Surveillance View.

Surveillance View

The Surveillance View has multiple functions.

• Allows to model the monitoring context and shows service and node Outages in compact matrix
view.

• Allows to limit the number of information in the Dashboard by selecting rows, columns and
cells.

You can select columns, rows, single cells and of course all entries in a Surveillance View. Please
refer to the Surveillance View Section for details on how to configure Surveillance Views.

Figure 5. The Surveillance View forms the basis for the Dashboard page.

Alarms

The Alarms component gives an overview about all unacknowledged Alarms with a severity higher
than Normal(1). Acknowledged Alarms will be removed from the responsibility of the Operator. The
following information are shown in:

14

Figure 6. Information displayed in the Alarms component

1. Node: Node label of the node the Alarm is associated

2. Severity: Severity of the Alarm

3. UEI: Shows the UEI of the Alarm

4. Count: Number of Alarms deduplicated by the reduction key of the Alarm

5. Last Time: Time for the last occurrence of the Alarm

6. Log Msg: The log message from the Event which is the source for this Alarm. It is specified in the
event configuration file in <logmsg />

The Alarms component shows the most recent Alarms and allows the user to scroll through the last
100 Alarms.

Notifications

To inform people on a duty schedule notifications are used and force action to fix or reconfigure
systems immediately. In OpenNMS Meridian it is possible to acknowledge notifications to see who is
working on a specific issue. The Dashboard should show outstanding notifications in the NOC to
provide an overview and give the possibility for intervention.

Figure 7. Information displayed in the Notifications component

1. Node: Label of the monitored node the notification is associated with

2. Service: Name of the service the notification is associated with

3. Message: Message of the notification

4. Sent Time: Time when the notification was sent

5. Responder: User name who acknowledged the notification

6. Response Time: Time when the user acknowledged the notification

The Notifications component shows the most recent unacknowledged notifications and allows the
user to scroll through the last 100 Notifications.

15

Node Status

An acknowledged Alarm doesn’t mean necessarily the outage is solved. To give an overview
information about ongoing Outages in the network, the Dashboard shows an outage list in the Node
Status component.

Figure 8. Information displayed in the Node Status component

1. Node: Label of the monitored node with ongoing outages.

2. Current Outages: Number of services on the node with outages and total number of monitored
services, e.g. with the natural meaning of "3 of 3 services are affected".

3. 24 Hour Availability: Availability of all services provided by the node calculated by the last 24
hours.

Resource Graph Viewer

To give a quick entry point diagnose performance issues a Resource Graph Viewer allows to
navigate to time series data reports which are filtered in the context of the Surveillance View.

Figure 9. Show time series based performance with the Resource Graph Viewer

It allows to navigate sequentially through resource graphs provided by nodes filtered by the
Surveillance View context and selection and shows one graph report at a time.

5.2.2. Advanced configuration

The Surveillance View component allows to model multiple views for different monitoring contexts.
It gives the possibility to create special view as example for network operators or server operators.
The Dashboard shows only one configured Surveillance View. To give different users the possibility
using their Surveillance View fitting there requirements it is possible to map a logged in user to a
given Surveillance View used in the Dashboard.

The selected nodes from the Surveillance View are also aware of User Restriction Filter. If you have
a group of users, which should see just a subset of nodes the Surveillance View will filter nodes
which are not related to the assigned user group.

16

http://www.opennms.org/wiki/User_Restriction_Filters

The Dashboard is designed to focus, and therefore also restrict, a user’s view to devices of their
interest. To do this, a new role was added that can be assigned to a user that restricts them to
viewing only the Dashboard if that is intended.

Using the Dashboard role

The following example illustrates how this Dashboard role can be used. For instance the user
drv4doe is assigned the dashboard role. So, when logging in as drv4doe, the user is taking directly to
the Dashboard page and is presented with a custom Dashboard based on the drv4doe Surveillance
View definition.

Step 1: Create an user

The following example assigns a Dashboard to the user "drv4doe" (a router and switch jockey) and
restricts the user for navigation to any other link in the OpenNMS Meridian WebUI.

Figure 10. Creating the user drv4doe using the OpenNMS Meridian WebUI

Step 2: Change Security Roles

Now, add the ROLE_PROVISION role to the user through the WebUI or by manually editing the
users.xml file in the /opt/opennms/etc directory for the user drv4doe.

17

Figure 11. Adding dashboard role to the user drv4doe using the OpenNMS Meridian WebUI

<user>
 <user-id>drv4doe</user-id>
 <full-name>Dashboard User</full-name>
 <password
salt="true">6FOip6hgZsUwDhdzdPUVV5UhkSxdbZTlq8M5LXWG5586eDPa7BFizirjXEfV/srK</password
>
 <role>ROLE_DASHBOARD</role>
</user>

Step 3: Define Surveillance View

Edit the $OPENNMS_HOME/etc/surveilliance-view.xml file to add a definition for the user drv4doe,
which you created in step 1.

18

<?xml version="1.0" encoding="UTF-8"?>
<surveillance-view-configuration
 xmlns:this="http://www.opennms.org/xsd/config/surveillance-views"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opennms.org/xsd/config/surveillance-views
http://www.opennms.org/xsd/config/surveillance-views.xsd"
 default-view="default" >
 <views >
 <view name="drv4doe" refresh-seconds="300" >
 <rows>
 <row-def label="Servers" >
 <category name="Servers"/>
 </row-def>
 </rows>
 <columns>
 <column-def label="PROD" >
 <category name="Production" />
 </column-def>
 <column-def label="TEST" >
 <category name="Test" />
 </column-def>
 </columns>
 </view>
 <!-- default view here -->
 <view name="default" refresh-seconds="300" >
 <rows>
 <row-def label="Routers" >
 <category name="Routers"/>
 </row-def>
 <row-def label="Switches" >
 <category name="Switches" />
 </row-def>
 <row-def label="Servers" >
 <category name="Servers" />
 </row-def>
 </rows>
 <columns>
 <column-def label="PROD" >
 <category name="Production" />
 </column-def>
 <column-def label="TEST" >
 <category name="Test" />
 </column-def>
 <column-def label="DEV" >
 <category name="Development" />
 </column-def>
 </columns>
 </view>
 </views>
</surveillance-view-configuration>

19

This configuration and proper assignment of node categories will produce a default Dashboard for
all users, other than drv4doe.

You can hide the upper navigation on any page by specifying ?quiet=true; adding
it to the end of the OpenNMS Meridian URL. This is very handy when using the
dashboard on a large monitor or tv screen for office wide viewing.

However, when logging in as drv4doe, the user is taking directly to the Dashboard page and is
presented with a Dashboard based on the custom Surveillance View definition.

The drv4doe user is not allowed to navigate to URLs other than the dashboard.jsp
URL. Doing so will result in an Access Denied error.

Anonymous dashboards

You can modify the configuration files for the security framework to give you access to one or more
dashboards without logging in. At the end you’ll be able to point a browser at a special URL
like <code>http://…&#
8203;/opennms/dashboard1</code> or <code>http://…​/opennms/
dashboard2</code> and see a dashboard without any authentication. First, configure
surveillance views and create dashboard users as above. For example, make two dashboards and
two users called <code>dashboard1</code> and <code>dashboard2</code>. Test that you can log in
as each of the new users and see the correct dashboard. Now create some aliases you can use to
distinguish between dashboards. In <code>/opt/opennms/jetty-webapps/opennms/WEB-INF</code>,
edit <code>web.xml</code>. Just before the first <code><servlet-mapping></code> tag, add the
following servlet entries:

 <servlet>
 <servlet-name>dashboard1</servlet-name>
 <jsp-file>/dashboard.jsp</jsp-file>
 </servlet>

 <servlet>
 <servlet-name>dashboard2</servlet-name>
 <jsp-file>/dashboard.jsp</jsp-file>
 </servlet>

Just before the first <error-page> tag, add the following servlet-mapping entries:

20

 <servlet-mapping>
 <servlet-name>dashboard1</servlet-name>
 <url-pattern>/dashboard1</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>dashboard2</servlet-name>
 <url-pattern>/dashboard2</url-pattern>
 </servlet-mapping>

After the last <filter-mapping> tag, add the following filter-mapping entries:

 <filter-mapping>
 <filter-name>AddRefreshHeader-120</filter-name>
 <url-pattern>/dashboard.jsp</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>AddRefreshHeader-120</filter-name>
 <url-pattern>/dashboard1</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>AddRefreshHeader-120</filter-name>
 <url-pattern>/dashboard2</url-pattern>
 </filter-mapping>

Next edit applicationContext-acegi-security.xml to enable anonymous authentication for the
/dashboard1 and /dashboard2 aliases. Near the top of the file, find <bean id="filterChainProxy" …>.
Below the entry for /rss.jsp*, add an entry for each of the dashboard aliases:

21

 <bean id="filterChainProxy" class="org.acegisecurity.util.FilterChainProxy">
 <property name="filterInvocationDefinitionSource">
 <value>
 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON
 PATTERN_TYPE_APACHE_ANT

/rss.jsp*=httpSessionContextIntegrationFilter,logoutFilter,authenticationProcessingFil
ter,basicProcessingFilter,securityContextHolderAwareRequestFilter,anonymousProcessingF
ilter,basicExceptionTranslationFilter,filterInvocationInterceptor

/dashboard1*=httpSessionContextIntegrationFilter,logoutFilter,securityContextHolderAwa
reRequestFilter,dash1AnonymousProcessingFilter,filterInvocationInterceptor

/dashboard2*=httpSessionContextIntegrationFilter,logoutFilter,securityContextHolderAwa
reRequestFilter,dash2AnonymousProcessingFilter,filterInvocationInterceptor

/**=httpSessionContextIntegrationFilter,logoutFilter,authenticationProcessingFilter,ba
sicProcessingFilter,securityContextHolderAwareRequestFilter,anonymousProcessingFilter,
exceptionTranslationFilter,filterInvocationInterceptor

...

About halfway through the file, look for <bean id="filterInvocationInterceptor" …>. Below the
entry for /dashboard.jsp, add an entry for each of the aliases:

 <bean id="filterInvocationInterceptor" class=
"org.acegisecurity.intercept.web.FilterSecurityInterceptor">

...

 /frontpage.htm=ROLE_USER,ROLE_DASHBOARD
 /dashboard.jsp=ROLE_USER,ROLE_DASHBOARD
 /dashboard1=ROLE_USER,ROLE_DASHBOARD
 /dashboard2=ROLE_USER,ROLE_DASHBOARD
 /gwt.js=ROLE_USER,ROLE_DASHBOARD

...

Finally, near the bottom of the page, add a new instance of AnonymousProcessingFilter for each alias.

22

 <!-- Set the anonymous username to dashboard1 so the dashboard page
 can match it to a surveillance view of the same name. -->
 <bean id="dash1AnonymousProcessingFilter" class=
"org.acegisecurity.providers.anonymous.AnonymousProcessingFilter">
 <property name="key"><value>foobar</value></property>
 <property name="userAttribute"><value>dashboard1,ROLE_DASHBOARD</value></property>
 </bean>

 <bean id="dash2AnonymousProcessingFilter" class=
"org.acegisecurity.providers.anonymous.AnonymousProcessingFilter">
 <property name="key"><value>foobar</value></property>
 <property name="userAttribute"><value>dashboard2,ROLE_DASHBOARD</value></property>
 </bean>

Restart OpenNMS Meridian and you should bring up a dashboard at <code>http://…​/opennms/
dashboard1</code> without logging in.

There’s no way to switch dashboards without closing the browser (or deleting the
JSESSIONID session cookie).

If you accidentally click a link that requires full user privileges (e.g. Node List),
you’ll be given a login form. Once you get to the login form, there’s no going back
to the dashboard without restarting the browser. If this problem bothers you, you
can set ROLE_USER in addition to ROLE_DASHBOARD in your userAttribute property.
However this will give full user access to anonymous browsers.

5.3. Grafana Dashboard Box
Grafana provides an API key which gives access for 3rd party application like OpenNMS Meridian.
The Grafana Dashboard Box on the start page shows dashboards related to OpenNMS Meridian. To
filter relevant dashboards, you can use a tag for dashboards and make them accessible. If no tag is
provided all dashboards from Grafana will be shown.

The feature is by default deactivated and is configured through opennms.properties. Please note that
this feature works with the Grafana API v2.5.0.

Quick access to Grafana dashboards from the OpenNMS Meridian start page

23

http://grafana.org/

Table 2. Grafana Dashboard configuration properties

Name Type Description Defau
lt

org.opennms.grafanaBox.s
how

Boole
an

This setting controls whether a grafana box showing the
available dashboards is placed on the landing page. The
two valid options for this are true or false.

false

org.opennms.grafanaBox.h
ostname

Strin
g

If the box is enabled you also need to specify hostname of
the Grafana server

localh
ost

org.opennms.grafanaBox.p
ort

Integ
er

The port of the Grafana server ReST API 3000

org.opennms.grafanaBox.b
asePath

Strin
g

The Grafana base path to be used

org.opennms.grafanaBox.a
piKey

Strin
g

The API key is needed for the ReST calls to work

org.opennms.grafanaBox.t
ag

Strin
g

When a tag is specified only dashboards with this given
tag will be displayed. When no tag is given all dashboards
will be displayed

org.opennms.grafanaBox.p
rotocol

Strin
g

The protocol for the ReST call can also be specified http

org.opennms.grafanaBox.c
onnectionTimeout

Integ
er

Timeout in milliseconds for getting information from the
Grafana server

500

org.opennms.grafanaBox.s
oTimeout

Integ
er

Socket timeout 500

org.opennms.grafanaBox.d
ashboardLimit

Integ
er

Maximum number of entries to be displayed (0 for
unlimited)

0

24

If you have Grafana behind a proxy it is important the
org.opennms.grafanaBox.hostname is reachable. This host name is used to generate
links to the Grafana dashboards.

The process to generate an Grafana API Key can be found in the HTTP API documentation. Copy the
API Key to opennms.properties as org.opennms.grafanaBox.apiKey.

5.4. Operator Board
In a network operation center (NOC) the Ops Board can be used to visualize monitoring
information. The monitoring information for various use-cases are arranged in configurable
Dashlets. To address different user groups it is possible to create multiple Ops Boards.

There are two visualisation components to display Dashlets:

• Ops Panel: Shows multiple Dashlets on one screen, e.g. on a NOC operators workstation

• Ops Board: Shows one Dashlet at a time in rotation, e.g. for a screen wall in a NOC

Figure 12. Concept of Dashlets displayed in Ops Panel

25

http://docs.grafana.org/reference/http_api/#create-api-token

Figure 13. Concept to show Dashlets in rotation on the Ops Board

5.4.1. Configuration

To create and configure Ops Boards administration permissions are required. The configuration
section is in admin area of OpenNMS Meridian and named Ops Board Config Web Ui.

26

Figure 14. Navigation to the Ops Board configuration

Create or modify Ops Boards is described in the following screenshot.

Figure 15. Adding a Dashlet to an existing Ops Board

1. Create a new Ops Board to organize and arrange different Dashlets

2. The name to identify the Ops Board

3. Add a Dashlet to show OpenNMS Meridian monitoring information

27

4. Show a preview of the whole Ops Board

5. List of available Dashlets

6. Priority for this Dashlet in Ops Board rotation, lower priority means it will be displayed more
often

7. Duration in seconds for this Dashlet in the Ops Board rotation

8. Change Priority if the Dashlet is in alert state, this is optional and maybe not available in all
Dashlets

9. Change Duration if the Dashlet is in alert state, it is optional and maybe not available in all
Dashlets

10. Configuration properties for this Dashlet

11. Remove this Dashlet from the Ops Board

12. Order Dashlets for the rotation on the Ops Board and the tile view in the Ops Panel

13. Show a preview for the whole Ops Board

The configured Ops Board can be used by navigating in the main menu to Dashboard → Ops Board.

Figure 16. Navigation to use the Ops Board

5.4.2. Dashlets

Visualization of information is implemented in Dashlets. The different Dashlets are described in
this section with all available configuration parameter.

To allow filter information the Dashlet can be configured with a generic Criteria Builder.

Alarm Details

This Alarm-Details Dashlet shows a table with alarms and some detailed information.

28

Table 3. Information of the alarms

Field Description

Alarm ID OpenNMS Meridian ID for the alarm

Severity Alarm severity (Cleared, Indeterminate, Normal, Warning, Minor, Major, Critical)

Node label Node label of the node where the alarm occurred

Alarm count Alarm count based on reduction key for deduplication

Last Event Time Last time the alarm occurred

Log Message Reason and detailed log message of the alarm

The Alarm Details Dashlet can be configured with the following parameters.

Boost support Boosted Severity

Configuration Criteria Builder

Alarms

This Alarms Dashlet shows a table with a short alarm description.

Table 4. Information of the alarm

Field Description

Time Absolute time since the alarm appeared

Node label Node label of the node where the alarm occurred

UEI OpenNMS Meridian Unique Event Identifier for this alarm

The Alarms Dashlet can be configured with the following parameters.

Boost support Boosted Severity

Configuration Criteria Builder

Charts

This Dashlet displays an existing Chart.

Boost support false

Chart Name of the existing chart to display

Maximize Width Rescale the image to fill display width

Maximize Height Rescale the image to fill display height

29

http://www.opennms.org/wiki/Chart-configuration.xml

Grafana

This Dashlet shows a Grafana Dashboard for a given time range. The Grafana Dashboard Box
configuration defined in the opennms.properties file is used to access the Grafana instance.

Boost support false

title Title of the Grafana dashboard to be displayed

uri URI to the Grafana Dashboard to be displayed

from Start of time range

to End of time range

Image

This Dashlet displays an image by a given URL.

Boost support false

imageUrl URL with the location of the image to show in this Dashlet

maximizeHeight Rescale the image to fill display width

maximizeWidth Rescale the image to fill display height

KSC

This Dashlet shows an existing KSC report. The view is exact the same as the KSC report is build
regarding order, columns and time spans.

Boost support false

KSC-Report Name of the KSC report to show in this Dashlet

Map

This Dashlet displays the geographical map.

Boost
support

false

search Predefined search for a subset of nodes shown in the geographical map in this
Dashlet

RRD

This Dashlet shows one or multiple RRD graphs. It is possible to arrange and order the RRD graphs
in multiple columns and rows. All RRD graphs are normalized with a given width and height.

Boost support false

30

http://www.opennms.org/wiki/KSC_Reports
http://www.opennms.org/wiki/Geographical_Maps
http://www.opennms.org/wiki/Geographical_Maps#Searching

Columns Number of columns within the Dashlet

Rows Number of rows with the Dashlet

KSC Report Import RRD graphs from an existing KSC report and re-arrange them.

Graph Width Generic width for all RRD graphs in this Dashlet

Graph Height Generic height for all RRD graphs in this Dashlet

Timeframe value Number of the given Timeframe type

Timeframe type Minute, Hour, Day, Week, Month and Year for all RRD graphs

RTC

This Dashlet shows the configured SLA categories from the OpenNMS Meridian start page.

Boost support false

- -

Summary

This Dashlet shows a trend of incoming alarms in given time frame.

Boost support Boosted Severity

timeslot Time slot in seconds to evaluate the trend for alarms by severity and UEI.

Surveillance

This Dashlet shows a given Surveillance View.

Boost support false

viewName Name of the configured Surveillance View

Topology

This Dashlet shows a Topology Map. The Topology Map can be configured with the following
parameter.

Boost support false

focusNodes Which node(s) is in focus for the topology

provider Which topology should be displayed, e.g. Linkd, VMware

szl Set the zoom level for the topology

31

http://www.opennms.org/wiki/Surveillance_View_%28af%29
http://www.opennms.org/wiki/Topology_Maps

URL

This Dashlet shows the content of a web page or other web application, e.g. other monitoring
systems by a given URL.

Boost support false

password Optional password if a basic authentication is required

url URL to the web application or web page

username Optional username if a basic authentication is required

5.4.3. Boosting Dashlet

The behavior to boost a Dashlet describes the behavior of a Dashlet showing critical monitoring
information. It can raise the priority in the Ops Board rotation to indicate a problem. This behavior
can be configured with the configuration parameter Boost Priority and Boost Duration. These to
configuration parameter effect the behavior on the Ops Board in rotation.

• Boost Priority: Absolute priority of the Dashlet with critical monitoring information.

• Boost Duration: Absolute duration in seconds of the Dashlet with critical monitoring
information.

5.4.4. Criteria Builder

The Criteria Builder is a generic component to filter information of a Dashlet. Some Dashlets use this
component to filter the shown information on a Dashlet for certain use case. It is possible to
combine multiple Criteria to display just a subset of information in a given Dashlet.

Table 5. Generic Criteria Builder configuration possibilities

Restrict
ion

Property Value
1

Value
2

Description

Asc - - - ascending order

Desc - - - descending order

Between database
attribute

String String Subset of data between value 1 and value 2

Contains database
attribute

String - Select all data which contains a given text string in a given
database attribute

Distinct database
attribute

- - Select a single instance

Eq database
attribute

String - Select data where attribute equals (==) a given text string

32

Restrict
ion

Property Value
1

Value
2

Description

Ge database
attribute

String - Select data where attribute is greater equals than (>=) a
given text value

Gt database
attribute

String - Select data where attribute is greater than (>) a given text
value

Ilike database
attribute

String - unknown

In database
attribute

String - unknown

Iplike database
attribute

String - Select data where attribute matches an given IPLIKE
expression

IsNull database
attribute

- - Select data where attribute is null

IsNotNul
l

database
attribute

- - Select data where attribute is not null

IsNotNul
l

database
attribute

- - Select data where attribute is not null

Le database
attribute

String - Select data where attribute is less equals than (⇐) a given
text value

Lt database
attribute

String - Select data where attribute is less than (<) a given text
value

Le database
attribute

String - Select data where attribute is less equals than (⇐) a given
text value

Like database
attribute

String - Select data where attribute is like a given text value
similar to SQL like

Limit - Intege
r

- Limit the result set by a given number

Ne database
attribute

String - Select data where attribute is not equals (!=) a given text
value

Not database
attribute

String - unknown difference between Ne

OrderBy database
attribute

- - Order the result set by a given attribute

For date values, absolute value can be specified in ISO format, e.g. 2019-06-
20T20:45:15.123-05:00. Relative times can be specified by +seconds and -seconds.

33

5.5. JMX Configuration Generator
OpenNMS Meridian implements the JMX protocol to collect long term performance data for Java
applications. There are a huge variety of metrics available and administrators have to select which
information should be collected. The JMX Configuration Generator Tools is build to help generating
valid complex JMX data collection configuration and RRD graph definitions for OpenNMS Meridian.

This tool is available as CLI and a web based version.

5.5.1. Web based utility

Complex JMX data collection configurations can be generated from a web based tool. It collects all
available MBean Attributes or Composite Data Attributes from a JMX enabled Java application.

The workflow of the tool is:

1. Connect with JMX or JMXMP against a MBean Server provided of a Java application

2. Retrieve all MBean and Composite Data from the application

3. Select specific MBeans and Composite Data objects which should be collected by OpenNMS
Meridian

4. Generate JMX Collectd configuration file and RRD graph definitions for OpenNMS Meridian as
downloadable archive

The following connection settings are supported:

• Ability to connect to MBean Server with RMI based JMX

• Authentication credentials for JMX connection

• Optional: JMXMP connection

The web based configuration tool can be used in the OpenNMS Meridian Web Application in
administration section Admin → JMX Configuration Generator.

Configure JMX Connection

At the beginning the connection to an MBean Server of a Java application has to be configured.

34

Figure 17. JMX connection configuration window

• Service name: The name of the service to bind the JMX data collection for Collectd

• Host: IP address or FQDN connecting to the MBean Server to load MBeans and Composite Data
into the generation tool

• Port: Port to connect to the MBean Server

• Authentication: Enable / Disable authentication for JMX connection with username and
password

• Skip non-number values: Skip attributes with non-number values

• JMXMP: Enable / Disable JMX Messaging Protocol instead of using JMX over RMI

By clicking the arrow (>) the MBeans and Composite Data will be retrieved with the given
connection settings. The data is loaded into the MBeans Configuration screen which allows to select
metrics for the data collection configuration.

Select MBeans and Composite

The MBeans Configuration section is used to assign the MBean and Composite Data attributes to RRD
domain specific data types and data source names.

35

Figure 18. Select MBeans or Composite Data for OpenNMS Meridian data collection

The left sidebar shows the tree with the JMX Domain, MBeans and Composite Data hierarchy
retrieved from the MBean Server. To select or deselect all attributes use Mouse right click →
select/deselect.

The right panel shows the MBean Attributes with the RRD specific mapping and allows to select or
deselect specific MBean Attriubtes or Composite Data Attributes for the data collection
configuration.

Figure 19. Configure MBean attributes for data collection configuration

Figure 20. Configure Composite attributes for data collection configuration

36

• MBean Name or Composite Alias: Identifies the MBean or the Composite Data object

• Selected: Enable/Disable the MBean attribute or Composite Member to be included in the data
collection configuration

• Name: Name of the MBean attribute or Composite Member

• Alias: the data source name for persisting measurements in RRD or JRobin file

• Type: Gauge or Counter data type for persisting measurements in RRD or JRobin file

The MBean Name, Composite Alias and Name are validated against special characters. For the Alias
inputs are validated to be not longer then 19 characters and have to be unique in the data collection
configuration.

Download and include configuration

The last step is generating the following configuration files for OpenNMS Meridian:

• collectd-configuration.xml: Generated sample configuration assigned to a service with a
matching data collection group

• jmx-datacollection-config.xml: Generated JMX data collection configuration with the selected
MBeans and Composite Data

• snmp-graph.properties: Generated default RRD graph definition files for all selected metrics

The content of the configuration files can be copy & pasted or can be downloaded as ZIP archive.

If the content of the configuration file exceeds 2,500 lines, the files can only be
downloaded as ZIP archive.

5.5.2. CLI based utility

The command line (CLI) based tool is not installed by default. It is available as an RPM package in
the official repositories.

Installation

RHEL based installation with Yum

yum install opennms-jmx-config-generator

Installation from source

It is required to have the Java 8 Development Kit with Apache Maven installed. The mvn binary has to
be in the path environment. After cloning the repository you have to enter the source folder and
compile an executable JAR.

cd opennms/features/jmx-config-generator
mvn package

37

Inside the newly created target folder a file named jmxconfiggenerator-<VERSION>-onejar.jar is
present. This file can be invoked by:

java -jar target/jmxconfiggenerator-2020.1.26-onejar.jar

Usage

After installing the the JMX Config Generator the tool’s wrapper script is located in the
${OPENNMS_HOME}/bin directory.

$ cd /path/to/opennms/bin
$./jmx-config-generator

 When invoked without parameters the usage and help information is printed.

The JMX Config Generator uses sub-commands for the different configuration generation tasks.
Each of these sub-commands provide different options and parameters. The command line tool
accepts the following sub-commands.

Sub-
command

Description

query Queries a MBean Server for certain MBeans and attributes.

generate-
conf

Generates a valid jmx-datacollection-config.xml file.

generate-
graph

Generates a RRD graph definition file with matching graph definitions for a given
jmx-datacollection-config.xml.

The following global options are available in each of the sub-commands of the tool:

Option/Argume
nt

Description Defaul
t

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging purposes. false

Sub-command: query

This sub-command is used to query a MBean Server for it’s available MBean objects. The following
example queries the server myserver with the credentials myusername/mypassword on port 7199 for
MBean objects in the java.lang domain.

38

./jmx-config-generator query --host myserver --username myusername --password
mypassword --port 7199 "java.lang:*"
java.lang:type=ClassLoading
 description: Information on the management interface of the MBean
 class name: sun.management.ClassLoadingImpl
 attributes: (5/5)
 TotalLoadedClassCount
 id: java.lang:type=ClassLoading:TotalLoadedClassCount
 description: TotalLoadedClassCount
 type: long
 isReadable: true
 isWritable: false
 isIs: false
 LoadedClassCount
 id: java.lang:type=ClassLoading:LoadedClassCount
 description: LoadedClassCount
 type: int
 isReadable: true
 isWritable: false
 isIs: false

<output omitted>

The following command line options are available for the query sub-command.

Option/Argument Description Defa
ult

<filter criteria> A filter criteria to query the MBean Server for. The format is
<objectname>[:attribute name]. The <objectname> accepts the default
JMX object name pattern to identify the MBeans to be retrieved. If null
all domains are shown. If no key properties are specified, the domain’s
MBeans are retrieved. To execute for certain attributes, you have to
add :<attribute name>. The <attribute name> accepts regular
expressions. When multiple <filter criteria> are provided they are
OR concatenated.

-

--host <host> Hostname or IP address of the remote JMX host. -

--ids-only Only show the ids of the attributes. false

--ignore <filter
criteria>

Set <filter criteria> to ignore while running. -

--include-values Include attribute values. false

--jmxmp Use JMXMP and not JMX over RMI. false

--password
<password>

Password for JMX authentication. -

--port <port> Port of JMX service. -

39

Option/Argument Description Defa
ult

--show-domains Only lists the available domains. true

--show-empty Includes MBeans, even if they do not have attributes. Either due to the
<filter criteria> or while there are none.

false

--url <url> Custom connection URL
<hostname>:<port>

service:jmx:<protocol>:<sap>

service:jmx:remoting-jmx://<hostname>:<port>

-

--username
<username>

Username for JMX authentication. -

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging purposes. false

Sub-command: generate-conf

This sub-command can be used to generate a valid jmx-datacollection-config.xml for a given set of
MBean objects queried from a MBean Server.

The following example generate a configuration file myconfig.xml for MBean objects in the java.lang
domain of the server myserver on port 7199 with the credentials myusername/mypassword. You have to
define either an URL or a hostname and port to connect to a JMX server.

jmx-config-generator generate-conf --host myserver --username myusername --password
mypassword --port 7199 "java.lang:*" --output myconfig.xml
Dictionary entries loaded: '18'

The following options are available for the generate-conf sub-command.

Option/Argume
nt

Description Default

<attribute id> A list of attribute Ids to be included for the generation of the
configuration file.

 -

--dictionary
<file>

Path to a dictionary file for replacing attribute names and part of
MBean attributes. The file should have for each line a replacement, e.g.
Auxillary:Auxil.

-

--host <host> Hostname or IP address of JMX host. -

--jmxmp Use JMXMP and not JMX over RMI. false

--output <file> Output filename to write generated jmx-datacollection-config.xml. -

40

Option/Argume
nt

Description Default

--password
<password>

Password for JMX authentication. -

--port <port> Port of JMX service -

--print
-dictionary

Prints the used dictionary to STDOUT. May be used with --dictionary false

--service
<value>

The Service Name used as JMX data collection name. anyserv
ice

--skipDefaultVM Skip default JavaVM Beans. false

--skipNonNumber Skip attributes with non-number values false

--url <url> Custom connection URL
<hostname>:<port>

service:jmx:<protocol>:<sap>

service:jmx:remoting-jmx://<hostname>:<port>

-

--username
<username>

Username for JMX authentication -

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging purposes. false

The option --skipDefaultVM offers the ability to ignore the MBeans provided as
standard by the JVM and just create configurations for the MBeans provided by the
Java Application itself. This is particularly useful if an optimized configuration for
the JVM already exists. If the --skipDefaultVM option is not set the generated
configuration will include the MBeans of the JVM and the MBeans of the Java
Application.

Check the file and see if there are alias names with more than 19 characters. This
errors are marked with NAME_CRASH_AS_19_CHAR_VALUE

Sub-command: generate-graph

This sub-command generates a RRD graph definition file for a given configuration file. The
following example generates a graph definition file mygraph.properties using the configuration in
file myconfig.xml.

41

./jmx-config-generator generate-graph --input myconfig.xml --output mygraph.properties
reports=java.lang.ClassLoading.MBeanReport, \
java.lang.ClassLoading.0TotalLoadeClassCnt.AttributeReport, \
java.lang.ClassLoading.0LoadedClassCnt.AttributeReport, \
java.lang.ClassLoading.0UnloadedClassCnt.AttributeReport, \
java.lang.Compilation.MBeanReport, \
<output omitted>

The following options are available for this sub-command.

Option/Argument Description Defa
ult

--input <jmx-
datacollection.xml>

Configuration file to use as input to generate the graph properties
file

 -

--output <file> Output filename for the generated graph properties file. -

--print-template Prints the default template. false

--template <file> Template file using Apache Velocity template engine to be used to
generate the graph properties.

 -

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging purposes. false

Graph Templates

The JMX Config Generator uses a template file to generate the graphs. It is possible to use a user-
defined template. The option --template followed by a file lets the JMX Config Generator use the
external template file as base for the graph generation. The following example illustrates how a
custom template mytemplate.vm is used to generate the graph definition file mygraph.properties using
the configuration in file myconfig.xml.

./jmx-config-generator generate-graph --input myconfig.xml --output mygraph.properties
--template mytemplate.vm

The template file has to be an Apache Velocity template. The following sample represents the
template that is used by default:

42

http://velocity.apache.org
http://velocity.apache.org

reports=#foreach($report in $reportsList)
${report.id}#if($foreach.hasNext), \
#end
#end

#foreach($report in $reportsBody)

#[[###]]#
#[[##]]# $report.id
#[[###]]#
report.${report.id}.name=${report.name}
report.${report.id}.columns=${report.graphResources}
report.${report.id}.type=interfaceSnmp
report.${report.id}.command=--title="${report.title}" \
 --vertical-label="${report.verticalLabel}" \
#foreach($graph in $report.graphs)
 DEF:${graph.id}={rrd${foreach.count}}:${graph.resourceName}:AVERAGE \
 AREA:${graph.id}#${graph.coloreB} \
 LINE2:${graph.id}#${graph.coloreA}:"${graph.description}" \
 GPRINT:${graph.id}:AVERAGE:" Avg \\: %8.2lf %s" \
 GPRINT:${graph.id}:MIN:" Min \\: %8.2lf %s" \
 GPRINT:${graph.id}:MAX:" Max \\: %8.2lf %s\\n" \
#end

#end

The JMX Config Generator generates different types of graphs from the jmx-datacollection-
config.xml. The different types are listed below:

Type Description

AttributeReport For each attribute of any MBean a graph will be generated. Composite
attributes will be ignored.

MbeanReport For each MBean a combined graph with all attributes of the MBeans is
generated. Composite attributes will be ignored.

CompositeReport For each composite attribute of every MBean a graph is generated.

CompositeAttribute
Report

For each composite member of every MBean a combined graph with all
composite attributes is generated.

5.6. Heatmap
The Heatmap can be either be used to display unacknowledged alarms or to display ongoing
outages of nodes. Each of this visualizations can be applied on categories, foreign sources or
services of nodes. The sizing of an entity is calculated by counting the services inside the entity.
Thus, a node with fewer services will appear in a smaller box than a node with more services.

43

The feature is by default deactivated and is configured through opennms.properties.

Heatmap visualizations of alarms

Table 6. Heatmap dashboard configuration properties

Name Type Description Default

org.opennms.heatmap.d
efaultMode

Strin
g

There exist two options for using the heatmap: alarms
and outages. This option configures which are
displayed per default.

alarms

org.opennms.heatmap.d
efaultHeatmap

Strin
g

This option defines which Heatmap is displayed by
default. Valid options are categories, foreignSources
and monitoredServices.

categories

org.opennms.heatmap.c
ategoryFilter

Strin
g

The following option is used to filter for categories to
be displayed in the Heatmap. This option uses the Java
regular expression syntax. The default is .* so all
categories will be displayed.

.*

org.opennms.heatmap.f
oreignSourceFilter

Strin
g

The following option is used to filter for foreign
sources to be displayed in the Heatmap. This option
uses the Java regular expression syntax. The default is
.* so all foreign sources will be displayed.

.*

org.opennms.heatmap.s
erviceFilter

Strin
g

The following option is used to filter for services to be
displayed in the Heatmap. This option uses the Java
regular expression syntax. The default is .* so all
services will be displayed.

.*

org.opennms.heatmap.o
nlyUnacknowledged

Bool
ean

This option configures whether only unacknowledged
alarms will be taken into account when generating
the alarm-based version of the Heatmap.

false

org.opennms.web.conso
le.centerUrl

Strin
g

You can also place the Heatmap on the landing page
by setting this option to /heatmap/heatmap-box.jsp.

/surveillanc
e-box.jsp

44

You can use negative lookahead expressions for excluding categories you wish not
to be displayed in the heatmap, e.g. by using an expression like ^(?!XY).* you can
filter out entities with names starting with XY.

5.7. Trend
The Trend feature allows to display small inline charts of database-based statistics. These chart are
accessible in the Status menu of the OpenNMS' web application. Furthermore it is also possible to
configure these charts to be displayed on the OpenNMS' landing page. To achieve this alter the
org.opennms.web.console.centerUrl property to also include the entry /trend/trend-box.htm.

Trend chart structure

These charts can be configured and defined in the trend-configuration.xml file in your OpenNMS'
etc directory. The following sample defines a Trend chart for displaying nodes with ongoing
outages.

45

Sample Trend chart XML definition for displaying nodes with outages

 <trend-definition name="nodes">
 <title>Nodes</title> ①
 <subtitle>w/ Outages</subtitle> ②
 <visible>true</visible> ③
 <icon>fa-fire</icon> ④
 <trend-attributes> ⑤
 <trend-attribute key="sparkWidth" value="100%"/>
 <trend-attribute key="sparkHeight" value="35"/>
 <trend-attribute key="sparkChartRangeMin" value="0"/>
 <trend-attribute key="sparkLineColor" value="white"/>
 <trend-attribute key="sparkLineWidth" value="1.5"/>
 <trend-attribute key="sparkFillColor" value="#88BB55"/>
 <trend-attribute key="sparkSpotColor" value="white"/>
 <trend-attribute key="sparkMinSpotColor" value="white"/>
 <trend-attribute key="sparkMaxSpotColor" value="white"/>
 <trend-attribute key="sparkSpotRadius" value="3"/>
 <trend-attribute key="sparkHighlightSpotColor" value="white"/>
 <trend-attribute key="sparkHighlightLineColor" value="white"/>
 </trend-attributes>
 <descriptionLink>outage/list.htm?outtype=current</descriptionLink> ⑥
 <description>${intValue[23]} NODES WITH OUTAGE(S)</description> ⑦
 <query> ⑧
 <![CDATA[
 select (
 select
 count(distinct nodeid)
 from
 outages o, events e
 where
 e.eventid = o.svclosteventid
 and iflostservice < E
 and (ifregainedservice is null
 or ifregainedservice > E)
) from (
 select
 now() - interval '1 hour' * (O + 1) AS S,
 now() - interval '1 hour' * O as E
 from
 generate_series(0, 23) as O
) I order by S;
]]>
 </query>
 </trend-definition>

① title of the Trend chart, see below for supported variable substitutions

② subtitle of the Trend chart, see below for supported variable substitutions

③ defines whether the chart is visible by default

46

④ icon for the chart, see Icons for viable options

⑤ options for inline chart, see jQuery Sparklines for viable options

⑥ the description link

⑦ the description text, see below for supported variable substitutions

⑧ the SQL statement for querying the chart’s values

 Don’t forget to limit the SQL query’s return values!

It is possible to use values or aggregated values in the title, subtitle and description fields. The
following table describes the available variable substitutions.

Table 7. Variables usable in definition’s title, subtitle and description fields

Name Type Description

${intMax} Integer integer maximum value

${doubleMax} Double maximum value

${intMin} Integer integer minimum value

${doubleMin} Double minimum value

${intAvg} Integer integer average value

${doubleAvg} Double average value

${intSum} Integer integer sum of values

${doubleSum} Double sum of value

${intValue[]} Integer array of integer result values for the given SQL query

${doubleValue[]} Double array of result values for the given SQL query

${intValueChange[]} Integer array of integer value changes for the given SQL query

${doubleValueChange[]} Double array of value changes for the given SQL query

${intLastValue} Integer last integer value

${doubleLastValue} Double last value

${intLastValueChange} Integer last integer value change

${doubleLastValueChange} Double last value change

You can also display a single graph in your JSP files by including the file /trend/single-trend-
box.jsp and specifying the name parameter.

47

https://getbootstrap.com/docs/4.1/extend/icons/
http://omnipotent.net/jquery.sparkline/#common

Sample JSP snippet to include a single Trend chart with name 'example'

<jsp:include page="/trend/single-trend-box.jsp" flush="false">
 <jsp:param name="name" value="example"/>
</jsp:include>

48

Chapter 6. Service Assurance
This section will cover the basic functionalities how OpenNMS Meridian tests if a service or device
available and measure his latency.

In OpenNMS Meridian this task is provided by a Service Monitor framework. The main component is
Pollerd which provides the following functionality:

• Track the status of a management resource or an application for availability calculations

• Measure response times for service quality

• Correlation of node and interface outages based on a Critical Service

The following image shows the model and representation of availability and response time.

Figure 21. Representation of latency measurement and availability

This information is based on Service Monitors which are scheduled and executed by Pollerd. A
Service can have any arbitrary name and is associated with a Service Monitor. For example, we can
define two Services with the name HTTP and HTTP-8080, both are associated with the HTTP Service
Monitor but use a different TCP port configuration parameter. The following figure shows how
Pollerd interacts with other components in OpenNMS and applications or agents to be monitored.

The availability is calculated over the last 24 hours and is shown in the Surveillance Views, SLA
Categories and the Node Detail Page. Response times are displayed as Resource Graphs of the IP
Interface on the Node Detail Page. Configuration parameters of the Service Monitor can be seen in
the Service Page by clicking on the Service Name on the Node Detail Page. The status of a Service can
be Up or Down.

49

The Service Page also includes timestamps indicating the last time at which the
service was polled and found to to be Up (Last Good) or Down (Last Fail). These
fields can be used to validate that Pollerd is polling the services as expected.

When a Service Monitor detects an outage, Pollerd sends an Event which is used to create an Alarm.
Events can also be used to generate Notifications for on-call network or server administrators. The
following images shows the interaction of Pollerd in OpenNMS Meridian.

Figure 22. Service assurance with Pollerd in OpenNMS platform

Pollerd can generate the following Events in OpenNMS Meridian:

Event name Description

uei.opennms.org/nodes/nodeLo
stService

Critical Services are still up, just this service is lost.

uei.opennms.org/nodes/nodeRe
gainedService

Service came back up

uei.opennms.org/nodes/interf
aceDown

Critical Service on an IP interface is down or all services are down.

uei.opennms.org/nodes/interf
aceUp

Critical Service on that interface came back up again

uei.opennms.org/nodes/nodeDo
wn

All critical services on all IP interfaces are down from node. The
whole host is unreachable over the network.

uei.opennms.org/nodes/nodeUp Some of the Critical Services came back online.

The behavior to generate interfaceDown and nodeDown events is described in the Critical Service
section.

 This assumes that node-outage processing is enabled.

6.1. Pollerd Configuration
Table 8. Configuration and log files related to Pollerd.

File Description

$OPENNMS_HOME/etc/poller-
configuration.xml

Configuration file for monitors and global daemon
configuration

50

File Description

$OPENNMS_HOME/logs/poller.log Log file for all monitors and the global Pollerd

$OPENNMS_HOME/etc/response-
graph.properties

RRD graph definitions for service response time
measurements

$OPENNMS_HOME/etc/events/opennms.e
vents.xml

Event definitions for Pollerd, i.e. nodeLostService,
interfaceDown or nodeDown

To change the behavior for service monitoring, the poller-configuration.xml can be modified. The
configuration file is structured in the following parts:

• Global daemon config: Define the size of the used Thread Pool to run Service Monitors in parallel.
Define and configure the Critical Service for Node Event Correlation.

• Polling packages: Package to allow grouping of configuration parameters for Service Monitors.

• Downtime Model: Configure the behavior of Pollerd to run tests in case of an Outage is detected.

• Monitor service association: Based on the name of the service, the implementation for
application or network management protocols are assigned.

Global configuration parameters for Pollerd

<poller-configuration threads="30" ①
 pathOutageEnabled="false" ②
 serviceUnresponsiveEnabled="false"> ③

① Size of the Thread Pool to run Service Monitors in parallel.

② Enable or Disable Path Outage functionality based on a Critical Node in a network path.

③ In case of unresponsive service services a serviceUnresponsive event is generated and not an
outage. This prevents the application of the Downtime Model in retesting the service after 30
seconds to help prevent false alarms.

Configuration changes are applied by restarting OpenNMS and Pollerd. It is also possible to send an
Event to Pollerd reloading the configuration. An Event can be sent on the CLI or the Web User
Interface.

Send configuration reload event on CLI

cd $OPENNMS_HOME/bin
./send-event.pl uei.opennms.org/internal/reloadDaemonConfig --parm 'daemonName
Pollerd'

51

Figure 23. Send configuration reload event with the Web User Interface

6.1.1. Meta-Data-DSL

Each parameter value can leverage dynamic configuration by using the Meta-Data-DSL.

During evaluation of an expression the following scopes are available:

• Node meta-data

52

#ga-meta-data-dsl

• Interface meta-data

• Service meta-data

6.2. Critical Service
Monitoring services on an IP network can be resource expensive, especially in cases where many of
these services are not available. When a service is offline, or unreachable, the monitoring system
spends most of it’s time waiting for retries and timeouts.

In order to improve efficiency, OpenNMS Meridian deems all services on a interface to be Down if
the critical service is Down. By default OpenNMS Meridian uses ICMP as the critical service.

The following image shows, how a Critical Services is used to generate these events.

Figure 24. Service assurance with Pollerd in OpenNMS Meridian platform

• (1) Critical services are all Up on the Node and just a nodeLostService is sent.

• (2) Critical service of one of many IP interface is Down and interfaceDown is sent. All other
services are not tested and no events are sent, the services are assumed as unreachable.

• (3) All Critical services on the Node are Down and just a nodeDown is sent. All other services on
the other IP Interfaces are not tested and no events are sent, these services are assumed as
unreachable.

The Critical Service is used to correlate outages from Services to a nodeDown or interfaceDown
event. It is a global configuration of Pollerd defined in poller-configuration.xml. The OpenNMS
Meridian default configuration enables this behavior.

53

Critical Service Configuration in Pollerd

<poller-configuration threads="30"
 pathOutageEnabled="false"
 serviceUnresponsiveEnabled="false">

 <node-outage status="on" ①
 pollAllIfNoCriticalServiceDefined="true"> ②
 <critical-service name="ICMP" /> ③
 </node-outage>

① Enable Node Outage correlation based on a Critical Service

② Optional: In case of nodes without a Critical Service this option controls the behavior. If set to
true then all services will be polled. If set to false then the first service in the package that exists
on the node will be polled until service is restored, and then polling will resume for all services.

③ Define Critical Service for Node Outage correlation

6.3. Downtime Model
By default the monitoring interval for a service is 5 minutes. To detect also short services outages,
caused for example by automatic network rerouting, the downtime model can be used. On a
detected service outage, the interval is reduced to 30 seconds for 5 minutes. If the service comes
back within 5 minutes, a shorter outage is documented and the impact on service availability can
be less than 5 minutes. This behavior is called Downtime Model and is configurable.

Figure 25. Downtime model with resolved and ongoing outage

In figure Outages and Downtime Model there are two outages. The first outage shows a short
outage which was detected as up after 90 seconds. The second outage is not resolved now and the
monitor has not detected an available service and was not available in the first 5 minutes (10 times
30 second polling). The scheduler changed the polling interval back to 5 minutes.

54

Example default configuration of the Downtime Model

<downtime interval="30000" begin="0" end="300000" /><!-- 30s, 0, 5m -->①
<downtime interval="300000" begin="300000" end="43200000" /><!-- 5m, 5m, 12h -->②
<downtime interval="600000" begin="43200000" end="432000000" /><!-- 10m, 12h, 5d -->③
<downtime interval="3600000" begin="432000000" delete="never"/><!-- 1h, 5d -->④

① from 0 seconds after an outage is detected until 5 minutes, the polling interval will be set to 30
seconds

② after 5 minutes of an ongoing outage until 12 hours, the polling interval will be set to 5 minutes

③ after 12 hours of an ongoing outage until 5 days, the polling interval will be set to 10 minutes

④ after 5 days of an ongoing outage the service will be polled only once a hour and we do not
delete services

The last downtime interval can have an attribute delete and allows you to influence the service
lifecycle. It defines the behavior that happens if a service doesn’t come back online after 5 days. The
following downtime attributes for delete can be used:

Value description

never services will never be deleted automatically

managed only managed services will be deleted

always managed and unmanaged services will be deleted

not set if delete is not configured it is similar to delete="never" and is the default

6.4. Path Outages
An outage of a central network component can cause a lot of node outages. Path Outages can be
used to suppress Notifications based on how Nodes depend on each other in the network which are
defined in a Critical Path. The Critical Path needs to be configured from the network perspective of
the monitoring system. By default the Path Outage feature is disabled and has to be enabled in the
poller-configuration.xml.

The following image shows an example network topology.

55

Figure 26. Path Outage example

From the perspective of the monitoring system, a Router named default-gw-01 is on the Critical Path
to reach two networks. If Router default-gw-01 is down, it is not possible to reach any node in the
two networks behind and they will be all unreachable as well. In this case an administrator would
like to have just one notification for default-gw-01 and not for all the other Nodes behind. Building
this configuration in OpenNMS Meridian requires the following information:

• Parent Foreign Source: The Foreign Source where the parent node is defined.

• Parent Foreign ID: The Foreign ID of the parent Node where this node depends on.

• The IP Interface selected as Primary is used as Critical IP

In this example we have created all Nodes in a Provisioning Requisition named Network-ACME and we
use as the Foreign ID the same as the Node Label.

In the Web UI go to Admin → Configure OpenNMS → Manage Provisioning Requisitions → Edit the
Requisition → Edit the Node → Path Outage to configure the network path by setting the Parent
Foreign Source, Parent Foreign ID and Provisioned Node.

Table 9. Provisioning for Topology Example

Parent Foreign
Source

Parent Foreign
ID

Provisioned
Node

not defined not defined default-gw-01

Network-ACME default-gw-01 node-01

Network-ACME default-gw-01 node-02

Network-ACME default-gw-01 default-gw02

Network-ACME default-gw-02 node-03

56

Parent Foreign
Source

Parent Foreign
ID

Provisioned
Node

Network-ACME default-gw-02 node-04

The IP Interface which is set to Primary is selected as the Critical IP. In this
example it is important the IP interface on default-gw-01 in the network
192.168.1.0/24 is set as Primary interface. The IP interface in the network
172.23.42.0/24 on default-gw-02 is set as Primary interface.

6.5. Poller Packages
To define more complex monitoring configuration it is possible to group Service configurations into
Polling Packages. They allow to assign to Nodes different Service Configurations. To assign a Polling
Package to nodes the Rules/Filters syntax can be used. Each Polling Package can have its own
Downtime Model configuration.

Multiple packages can be configured, and an interface can exist in more than one package. This
gives great flexibility to how the service levels will be determined for a given device.

Polling package assigned to Nodes with Rules and Filters

<package name="example1">①
 <filter>IPADDR != '0.0.0.0'</filter>②
 <include-range begin="1.1.1.1" end="254.254.254.254" />③
 <include-range begin="::1" end="ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" />③

① Unique name of the polling package.

② Filter can be based on IP address, categories or asset attributes of Nodes based on Rules/Filters.
The filter is evaluated first and is required. This package is used for all IP Interfaces which don’t
have 0.0.0.0 as an assigned IP address and is required.

③ Allow to specify if the configuration of Services is applied on a range of IP Interfaces (IPv4 or
IPv6).

Instead of the include-range it is possible to add one or more specific IP-Interfaces with:

Defining a specific IP Interfaces

<specific>192.168.1.59</specific>

It is also possible to exclude IP Interfaces with:

Exclude IP Interfaces

<exclude-range begin="192.168.0.100" end="192.168.0.104"/>

57

http://www.opennms.org/wiki/Filters
http://www.opennms.org/wiki/Filters

6.5.1. Response Time Configuration

The definition of Polling Packages allows to configure similar services with different polling
intervals. All the response time measurements are persisted in RRD Files and require a definition.
Each Polling Package contains a RRD definition

RRD configuration for Polling Package example1

<package name="example1">
 <filter>IPADDR != '0.0.0.0'</filter>
 <include-range begin="1.1.1.1" end="254.254.254.254" />
 <include-range begin="::1" end="ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" />
 <rrd step="300">①
 <rra>RRA:AVERAGE:0.5:1:2016</rra>②
 <rra>RRA:AVERAGE:0.5:12:1488</rra>③
 <rra>RRA:AVERAGE:0.5:288:366</rra>④
 <rra>RRA:MAX:0.5:288:366</rra>⑤
 <rra>RRA:MIN:0.5:288:366</rra>⑥
</rrd>

① Polling interval for all services in this Polling Package is reflected in the step of size 300 seconds.
All services in this package have to polled in 5 min interval, otherwise response time
measurements are not correct persisted.

② 1 step size is persisted 2016 times: 1 * 5 min * 2016 = 7 d, 5 min accuracy for 7 d.

③ 12 steps average persisted 1488 times: 12 * 5 min * 1488 = 62 d, aggregated to 60 min for 62 d.

④ 288 steps average persisted 366 times: 288 * 5 min * 366 = 366 d, aggregated to 24 h for 366 d.

⑤ 288 steps maximum from 24 h persisted for 366 d.

⑥ 288 steps minimum from 24 h persisted for 366 d.

The RRD configuration and the service polling interval has to be aligned. In other
cases the persisted response time data is not correct displayed in the response time
graph.

If the polling interval is changed afterwards, existing RRD files needs to be
recreated with the new definitions.

6.5.2. Overlapping Services

With the possibility of specifying multiple Polling Packages it is possible to use the same Service like
ICMP multiple times. The order how Polling Packages in the poller-configuration.xml are defined is
important when IP Interfaces match multiple Polling Packages with the same Service configuration.

The following example shows which configuration is applied for a specific service:

58

Overwriting

<package name="less-specific">
 <filter>IPADDR != '0.0.0.0'</filter>
 <include-range begin="1.1.1.1" end="254.254.254.254" />
 <include-range begin="::1" end="ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" />
 <rrd step="300">①
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <service name="ICMP" interval="300000" user-defined="false" status="on">②
 <parameter key="retry" value="5" />③
 <parameter key="timeout" value="10000" />④
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response" />
 <parameter key="rrd-base-name" value="icmp" />
 <parameter key="ds-name" value="icmp" />
 </service>
 <downtime interval="30000" begin="0" end="300000" />
 <downtime interval="300000" begin="300000" end="43200000" />
 <downtime interval="600000" begin="43200000" end="432000000" />
</package>

<package name="more-specific">
 <filter>IPADDR != '0.0.0.0'</filter>
 <include-range begin="192.168.1.1" end="192.168.1.254" />
 <include-range begin="2600::1" end="2600:::ffff" />
 <rrd step="30">①
 <rra>RRA:AVERAGE:0.5:1:20160</rra>
 <rra>RRA:AVERAGE:0.5:12:14880</rra>
 <rra>RRA:AVERAGE:0.5:288:3660</rra>
 <rra>RRA:MAX:0.5:288:3660</rra>
 <rra>RRA:MIN:0.5:288:3660</rra>
 </rrd>
 <service name="ICMP" interval="30000" user-defined="false" status="on">②
 <parameter key="retry" value="2" />③
 <parameter key="timeout" value="3000" />④
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response" />
 <parameter key="rrd-base-name" value="icmp" />
 <parameter key="ds-name" value="icmp" />
 </service>
 <downtime interval="10000" begin="0" end="300000" />
 <downtime interval="300000" begin="300000" end="43200000" />
 <downtime interval="600000" begin="43200000" end="432000000" />
</package>

① Polling interval in the packages are 300 seconds and 30 seconds

② Different polling interval for the service ICMP

59

③ Different retry settings for the service ICMP

④ Different timeout settings for the service ICMP

The last Polling Package on the service will be applied. This can be used to define a less specific
catch all filter for a default configuration. A more specific Polling Package can be used to overwrite
the default setting. In the example above all IP Interfaces in 192.168.1/24 or 2600:/64 will be
monitored with ICMP with different polling, retry and timeout settings.

Which Polling Packages are applied to the IP Interface and Service can be found in the Web User
Interface. The IP Interface and Service page show which Polling Package and Service configuration is
applied for this specific service.

Figure 27. Polling Package applied to IP interface and Service

6.5.3. Service Patterns

Usually, the Poller used to monitor a Service is found by the matching the pollers name with the
service name. In addition, a matching poller can be found if an additional element pattern is
specified for the poller. If so, the poller is used for all services matching the RegEx pattern, too.

The RegEx pattern allows to specify named capture groups. There can be multiple capture groups
inside of a pattern, but each must have a unique name. Please note, that the RegEx must be escaped
or be wrapped in a CDATA-Tag inside the configuration XML to make it a valid property.

If a poller is matched using its pattern, the parts of the service name which matches the capture
groups of the pattern are available as parameters to the Meta-Data-DSL using the context pattern
and the capture group name as key.

Examples:

<pattern><![CDATA[^HTTP-(?<vhost>.*)$]]></pattern>

Matches all services which names starts with HTTP- followed by a host name. If the services is
called HTTP-www.example.com, the Meta-DSL expression ${pattern:vhost} will resolved to

60

#ga-pollerd-configuration-meta-data

www.example.com.

<pattern><![CDATA[^HTTP-(?<vhost>.*?):(?<port>[0-9]+)$]]></pattern>"

Matches all services which names starts with HTTP- followed by a hostname and a port. There
will be two variables (${pattern:vhost} and ${pattern:port}) which can be used in the poller
parameters.

The service pattern mechanism can be used to whenever there are multiple instances of a service
on the same interface. By specifying a distinct service name to each instance, the services is
identifiable, but there is no need to add a poller definition per service. Common use-cases for such
services are HTTP Virtual Hosts, where multiple web applications run on the same web-server or
BGP session monitoring where each router has multiple neighbours.

6.5.4. Test Services on manually

For troubleshooting it is possible to run a test via the Karaf Shell:

ssh -p 8101 admin@localhost

Once in the shell, you can print show the commands help as follows:

61

opennms> opennms:poll --help
DESCRIPTION
 opennms:poll

 Used to invoke a monitor against a host at a specified location

SYNTAX
 opennms:poll [options] host [attributes]

ARGUMENTS
 host
 Hostname or IP Address of the system to poll
 (required)
 attributes
 Monitor specific attributes in key=value form

OPTIONS
 --help
 Display this help message
 -l, --location
 Location
 (defaults to Default)
 -s, --system-id
 System ID
 -t, --ttl
 Time to live
 -P, --package
 Poller Package
 -S, --service
 Service name
 -n, --node-id
 Node Id for Service
 -c, --class
 Monitor Class

The following example runs the ICMP monitor on a specific IP Interface.

Run ICMP monitor configuration defined in specific Polling Package

opennms> opennms:poll -S ICMP -P example1 10.23.42.1

The output is verbose which allows debugging of Monitor configurations. Important output lines
are shown as the following:

62

Important output testing a service on the CLI

Package: example1 ①
Service: ICMP ②
Monitor: org.opennms.netmgt.poller.monitors.IcmpMonitor ③
Parameter ds-name: icmp ④
Parameter retry: 2 ⑤
Parameter rrd-base-name: icmp ④
Parameter rrd-repository: /opt/opennms/share/rrd/response ④
Parameter timeout: 3000 ⑤

Service is Up on 192.168.31.100 using org.opennms.netmgt.poller.monitors.IcmpMonitor:
⑥
 response-time: 407,0000 ⑦

① Service and Package of this test

② Applied Service configuration from Polling Package for this test

③ Service Monitor used for this test

④ RRD configuration for response time measurement

⑤ Retry and timeout settings for this test

⑥ Polling result for the service polled against the IP address

⑦ Response time

6.5.5. Test filters on Karaf Shell

Filters are ubiquitous in opennms configurations with <filter> syntax. This karaf shell can be used
to verify filters. For more info, refer to Filters.

ssh -p 8101 admin@localhost

Once in the shell, print command help as follows

opennms> opennms:filter --help
DESCRIPTION
 opennms:filter
 Enumerates nodes/interfaces that match a give filter
SYNTAX
 opennms:filter filterRule
ARGUMENTS
 filterRule
 A filter Rule

For ex: Run a filter rule that match a location

63

https://wiki.opennms.org/wiki/Filters

opennms:filter "location='MINION'"

Output is displayed as follows

nodeId=2 nodeLabel=00000000-0000-0000-0000-000000ddba11 location=MINION
 IpAddresses:
 127.0.0.1

Another ex: Run a filter that match a node location and for a given IP Address range. Refer to
IPLIKE for more info on using IPLIKE syntax.

opennms:filter "location='Default' & (IPADDR IPLIKE 172.*.*.*)"

Output is displayed as follows

nodeId=3 nodeLabel=label1 location=Default
 IpAddresses:
 172.10.154.1
 172.20.12.12
 172.20.2.14
 172.01.134.1
 172.20.11.15
 172.40.12.18

nodeId=5 nodeLabel=label2 location=Default
 IpAddresses:
 172.17.0.111

nodeId=6 nodeLabel=label3 location=Default
 IpAddresses:
 172.20.12.22
 172.17.0.123

Node info displayed will have nodeId, nodeLabel, location and optional fileds like
foreignId, foreignSource, categories when they exist.

6.6. Service monitors
To support several specific applications and management agents, Pollerd executes Service Monitors.
This section describes all available built-in Service Monitors which are available and can be
configured to allow complex monitoring. For information how these can be extended, see
Development Guide of the OpenNMS documentation.

64

https://wiki.opennms.org/wiki/IPLIKE

6.6.1. Common Configuration Parameters

Application or Device specific Monitors are based on a generic API which provide common
configuration parameters. These minimal configuration parameters are available in all Monitors
and describe the behavior for timeouts, retries, etc.

Table 10. Common implemented configuration parameters

Parameter Description Require
d

Default
value

retry Number of attempts to test a Service to be up or down. optional 3

timeout Timeout for the isReachable method, in milliseconds. optional 3000

invert-status Invert the up/down behavior of the monitor optional false

In case the Monitor is using the SNMP Protocol the default configuration for
timeout and retry are used from the SNMP Configuration (snmp-config.xml).

Minion Configuration Parameters

When nodes are configured with a non-default location, the associated Service Monitors are
executed on a Minion configured with that same location. If there are many Minions at a given
location, the Service Monitor may be executed on any of the Minions that are currently available.
Users can choose to execute a Service Monitor on a specific Minion, by specifying the System ID of
the Minion. This mechanism is used for monitoring the Minions individually.

The following parameters can be used to override this behavior and control where the Service
Monitors are executed.

Table 11. Minion configuration parameters

Parameter Description Requi
red

Default value

location Specify the location at which the Service
Monitor should be executed.

option
al

(The location of the
associated node)

system-id Specify the System ID on which the Service
Monitor should be executed

option
al

(None)

use-foreign-id-as-
system-id

Use the foreign id of the associated node as
the System ID

option
al

false

When specifying a System ID the location should also be set to the corresponding
location for that system.

6.6.2. Using Placeholders in Parameters

Some monitor parameters support placeholder substitution. You can reference some node,

65

interface, and asset record properties by enclosing them in { and }. The supported properties are:

• nodeId

• nodeLabel

• foreignSource

• foreignId

• ipAddr (or ipAddress)

• all node asset record fields (e.g. username, password)

Parameters that support placeholder substitution are marked 'Yes' in the 'Placeholder substitution'
column of the Configuaration and Usage section of the monitor documentation.

6.6.3. ActiveMQMonitor

This monitor tests the availablity of an ActiveMQ Broker. The service is considered available if a
successful connection is made.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.ActiveMQMonitor

Remote Enabled true or false if the monitor can be used by the OpenNMS Meridian remote poller

Configuration and Usage

Table 12. Monitor specific parameters for the ActiveMQMonitor

Paramet
er

Description Requi
red

Default value

broker-
url

The ActiveMQ Broker URL to connect to. requi
red

vm://localhost?create=false&b
roker.persistent=false

user The user name used to login to the ActiveMQ
broker.

optio
nal

-

password The password used to authenticate the user on
the ActiveMQ broker.

optio
nal

-

use-
nodelabe
l

A boolean to enable using the nodelabel when
connecting to the ActiveMQ broker.

optio
nal

false

create-
session

A boolean to enable creating a JMS Session when
connecting to the ActiveMQ broker.

optio
nal

false

client-
id

The client ID to use when connecting to the
ActiveMQ broker.

optio
nal

-

This monitor implements the Common Configuration Parameters.

66

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

<parameter key="broker-url" value="failover://auto+ssl://192.168.1.1:61616/"/>
<parameter key="use-nodelabel" value="true"/>

6.6.4. AvailabilityMonitor

This monitor tests reachability of a node by using the isReachable method of the InetAddress java
class. The service is considered available if isReachable returns true. See Oracle’s documentation
for more details.

This monitor is deprecated in favour of the IcmpMonitor monitor. You should only
use this monitor on remote pollers running on unusual configurations (See below
for more details).

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.AvailabilityMonitor

Remote Enabled true

Configuration and Usage

This monitor implements the Common Configuration Parameters.

Examples

<service name="AVAIL" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="5000"/>
</service>

<monitor service="AVAIL" class-name=
"org.opennms.netmgt.poller.monitors.AvailabilityMonitor"/>

IcmpMonitor vs AvailabilityMonitor

This monitor has been developped in a time when the IcmpMonitor monitor wasn’t remote
enabled, to circumvent this limitation. Now, with the JNA ICMP implementation, the IcmpMonitor
monitor is remote enabled under most configurations and this monitor shouldn’t be needed -unless
you’re running your remote poller on such an unusual configuration (See also issue NMS-6735 for
more information)-.

67

http://docs.oracle.com/javase/7/docs/api/java/net/InetAddress.html#isReachable%28int%29
http://issues.opennms.org/browse/NMS-6735

6.6.5. BgpSessionMonitor

This monitor checks if a BGP-Session to a peering partner (peer-ip) is functional. To monitor the
BGP-Session the RFC1269 SNMP MIB is used and test the status of the session using the following
OIDs is used:

BGP_PEER_STATE_OID = .1.3.6.1.2.1.15.3.1.2.<peer-ip>
BGP_PEER_ADMIN_STATE_OID = .1.3.6.1.2.1.15.3.1.3.<peer-ip>
BGP_PEER_REMOTEAS_OID = .1.3.6.1.2.1.15.3.1.9.<peer-ip>
BGP_PEER_LAST_ERROR_OID = .1.3.6.1.2.1.15.3.1.14.<peer-ip>
BGP_PEER_FSM_EST_TIME_OID = .1.3.6.1.2.1.15.3.1.16.<peer-ip>

The <peer-ip> is the far end IP address of the BGP session end point.

A SNMP get request for BGP_PEER_STATE_OID returns a result between 1 to 6. The servicestates for
OpenNMS Meridian are mapped as follows:

Resul
t

State
description

Monitor state in OpenNMS
Meridian

1 Idle DOWN

2 Connect DOWN

3 Active DOWN

4 OpenSent DOWN

5 OpenConfirm DOWN

6 Established UP

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.BgpSessionMonitor

Remote Enabled false

To define the mapping I used the description from RFC1771 BGP Finite State Machine.

Configuration and Usage

Paramete
r

Description Require
d

Default
value

bgpPeerIp IP address of the far end BGP peer session required -

This monitor implements the Common Configuration Parameters.

68

http://www.freesoft.org/CIE/RFC/1771/31.htm

Examples

To monitor the session state Established it is necessary to add a service to your poller configuration
in '$OPENNMS_HOME/etc/poller-configuration.xml', for example:

<!-- Example configuration poller-configuration.xml -->
<service name="BGP-Peer-99.99.99.99-AS65423" interval="300000"
 user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="port" value="161" />
 <parameter key="bgpPeerIp" value="99.99.99.99" />
</service>

<monitor service="BGP-Peer-99.99.99.99-AS65423" class-name=
"org.opennms.netmgt.poller.monitors.BgpSessionMonitor" />

Error code mapping

The BGP_PEER_LAST_ERROR_OID gives an error in HEX-code. To make it human readable a
codemapping table is implemented:

Error
code

Error Message

0100 Message Header Error

0101 Message Header Error - Connection Not Synchronized

0102 Message Header Error - Bad Message Length

0103 Message Header Error - Bad Message Type

0200 OPEN Message Error

0201 OPEN Message Error - Unsupported Version Number

0202 OPEN Message Error - Bad Peer AS

0203 OPEN Message Error - Bad BGP Identifier

0204 OPEN Message Error - Unsupported Optional Parameter

0205 OPEN Message Error (deprecated)

0206 OPEN Message Error - Unacceptable Hold Time

0300 UPDATE Message Error

0301 UPDATE Message Error - Malformed Attribute List

0302 UPDATE Message Error - Unrecognized Well-known Attribute

0303 UPDATE Message Error - Missing Well-known Attribute

69

Error
code

Error Message

0304 UPDATE Message Error - Attribute Flags Error

0305 UPDATE Message Error - Attribute Length Error

0306 UPDATE Message Error - Invalid ORIGIN Attribute

0307 UPDATE Message Error (deprecated)

0308 UPDATE Message Error - Invalid NEXT_HOP Attribute

0309 UPDATE Message Error - Optional Attribute Error

030A UPDATE Message Error - Invalid Network Field

030B UPDATE Message Error - Malformed AS_PATH

0400 Hold Timer Expired

0500 Finite State Machine Error

0600 Cease

0601 Cease - Maximum Number of Prefixes Reached

0602 Cease - Administrative Shutdown

0603 Cease - Peer De-configured

0604 Cease - Administrative Reset

0605 Cease - Connection Rejected

0606 Cease - Other Configuration Change

0607 Cease - Connection Collision Resolution

0608 Cease - Out of Resources

Instead of HEX-Code the error message will be displayed in the service down logmessage. To give
some additional informations the logmessage contains also

BGP-Peer Adminstate
BGP-Peer Remote AS
BGP-Peer established time in seconds

Debugging

If you have problems to detect or monitor the BGP Session you can use the following command to
figure out where the problem come from.

snmpwalk -v 2c -c <myCommunity> <myRouter2Monitor> .1.3.6.1.2.1.15.3.1.2.99.99.99.99

70

Replace 99.99.99.99 with your BGP-Peer IP. The result should be an Integer between 1 and 6.

6.6.6. BSFMonitor

This monitor runs a Bean Scripting Framework BSF compatible script to determine the status of a
service. Users can write scripts to perform highly custom service checks. This monitor is not
optimised for scale. It’s intended for a small number of custom checks or prototyping of monitors.

BSFMonitor vs SystemExecuteMonitor

The BSFMonitor avoids the overhead of fork(2) that is used by the SystemExecuteMonitor.
BSFMonitor also grants access to a selection of OpenNMS Meridian internal methods and classes
that can be used in the script.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.BSFMonitor

Remote Enabled false

Configuration and Usage

Table 13. Monitor specific parameters for the BSFMonitor

Paramet
er

Description Requ
ired

Default value

file-name Path to the script file. requi
red

-

bsf-
engine

The BSF Engine to run the script in different languages
like
Bean Shell: bsh.util.BeanShellBSFEngine
Groovy: org.codehaus.groovy.bsf.GroovyEngine
Jython: org.apache.bsf.engines.jython.JythonEngine

requi
red

-

run-type one of eval or exec optio
nal

eval

lang-
class

The BSF language class, like groovy or beanshell. optio
nal

file-name extension is
interpreted by default

file-
extension
s

comma-separated list optio
nal

-

This monitor implements the Common Configuration Parameters.

Table 14. Beans which can be used in the script

71

http://commons.apache.org/proper/commons-bsf/

Variabl
e

Type Description

map Map<String, Object> The map contains all various parameters passed to the monitor
from the service definition it the poller-configuration.xml file.

ip_addr String The IP address that is currently being polled.

node_id int The Node ID of the node the ip_addr belongs to.

node_la
bel

String The Node Label of the node the ip_addr and service belongs to.

svc_nam
e

String The name of the service that is being polled.

bsf_mon
itor

BSFMonitor The instance of the BSFMonitor object calling the script. Useful
for logging via its log(String sev, String fmt, Object... args) method.

results HashMap<String,
String>

The script is expected to put its results into this object. The status
indication should be set into the entry with key status. If the
status is not OK, a key reason should contain a description of the
problem.

times LinkedHashMap<Strin
g, Number>

The script is expected to put one or more response times into this
object.

Additionally every parameter added to the service definition in poller-configuration.xml is
available as a String object in the script. The key attribute of the parameter represents the name of
the String object and the value attribute represents the value of the String object.

 Please keep in mind, that these parameters are also accessible via the map bean.

Avoid non-character names for parameters to avoid problems in the script
languages.

Response Codes

The script has to provide a status code that represents the status of the associated service. The
following status codes are defined:

Table 15. Status codes

Cod
e

Description

OK Service is available

UNK Service status unknown

UNR Service is unresponsive

NOK Service is unavailable

72

Response time tracking

By default the BSFMonitor tracks the whole time the script file consumes as the response time. If
the response time should be persisted the response time add the following parameters:

RRD response time tracking for this service in poller-configuration.xml

<!-- where in the filesystem response times are stored -->
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />

<!-- name of the rrd file -->
<parameter key="rrd-base-name" value="minimalbshbase" />

<!-- name of the data source in the rrd file -->
<!-- by default "response-time" is used as ds-name -->
<parameter key="ds-name" value="myResponseTime" />

It is also possible to return one or many response times directly from the script. To add custom
response times or override the default one, add entries to the times object. The entries are keyed
with a String that names the datasource and have as values a number that represents the response
time. To override the default response time datasource add an entry into times named response-
time.

Timeout and Retry

The BSFMonitor does not perform any timeout or retry processing on its own. If retry and or
timeout behaviour is required, it has to be implemented in the script itself.

Requirements for the script (run-types)

Depending on the run-type the script has to provide its results in different ways. For minimal
scripts with very simple logic run-type eval is the simple option. Scripts running in eval mode have
to return a String matching one of the status codes.

If your script is more than a one-liner, run-type exec is essentially required. Scripts running in exec
mode need not return anything, but they have to add a status entry with a status code to the
results object. Additionally, the results object can also carry a "reason":"message" entry that is used
in non OK states.

Commonly used language settings

The BSF supports many languages, the following table provides the required setup for commonly
used languages.

Table 16. BSF language setups

Languag
e

lang-
class

bsf-engine required library

BeanShell beanshell bsh.util.BeanShellBSFEngine supported by default

73

http://www.beanshell.org

Languag
e

lang-
class

bsf-engine required library

Groovy groovy org.codehaus.groovy.bsf.GroovyEngine groovy-all-[version].jar

Jython jython org.apache.bsf.engines.jython.JythonEngine jython-[version].jar

Example Bean Shell

BeanShell example poller-configuration.xml

<service name="MinimalBeanShell" interval="300000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalBeanShell.bsh"/>
 <parameter key="bsf-engine" value="bsh.util.BeanShellBSFEngine"/>
</service>

<monitor service="MinimalBeanShell" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

BeanShell example MinimalBeanShell.bsh script file

bsf_monitor.log("ERROR", "Starting MinimalBeanShell.bsf", null);
File testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
 return "OK";
} else {
 results.put("reason", "file does not exist");
 return "NOK";
}

Example Groovy

To use the Groovy language an additional library is required. Copy a compatible groovy-all.jar into
to opennms/lib folder and restart OpenNMS Meridian. That makes Groovy available for the
BSFMonitor.

Groovy example poller-configuration.xml with default run-type set to eval

<service name="MinimalGroovy" interval="300000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
 <parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>
</service>

<monitor service="MinimalGroovy" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

74

http://groovy.codehaus.org
http://www.jython.org

Groovy example MinimalGroovy.groovy script file for run-type eval

bsf_monitor.log("ERROR", "Starting MinimalGroovy.groovy", null);
File testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
 return "OK";
} else {
 results.put("reason", "file does not exist");
 return "NOK";
}

Groovy example poller-configuration.xml with run-type set to exec

<service name="MinimalGroovy" interval="300000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
 <parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>
 <parameter key="run-type" value="exec"/>
</service>

<monitor service="MinimalGroovy" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

Groovy example MinimalGroovy.groovy script file for run-type set to exec

bsf_monitor.log("ERROR", "Starting MinimalGroovy", null);
def testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
 results.put("status", "OK")
} else {
 results.put("reason", "file does not exist");
 results.put("status", "NOK");
}

Example Jython

To use the Jython (Java implementation of Python) language an additional library is required. Copy
a compatible jython-x.y.z.jar into the opennms/lib folder and restart OpenNMS Meridian. That
makes Jython available for the BSFMonitor.

75

Jython example poller-configuration.xml with run-type exec

<service name="MinimalJython" interval="300000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalJython.py"/>
 <parameter key="bsf-engine" value="org.apache.bsf.engines.jython.JythonEngine"/>
 <parameter key="run-type" value="exec"/>
</service>

<monitor service="MinimalJython" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

Jython example MinimalJython.py script file for run-type set to exec

from java.io import File

bsf_monitor.log("ERROR", "Starting MinimalJython.py", None);
if (File("/tmp/TestFile").exists()):
 results.put("status", "OK")
else:
 results.put("reason", "file does not exist")
 results.put("status", "NOK")

We have to use run-type exec here because Jython chokes on the import keyword in
eval mode.

As proof that this is really Python, notice the substitution of Python’s None value
for Java’s null in the log call.

Advanced examples

The following example references all beans that are exposed to the script, including a custom
parameter.

76

Groovy example poller-configuration.xml

<service name="MinimalGroovy" interval="30000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
 <parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>

 <!-- custom parameters (passed to the script) -->
 <parameter key="myParameter" value="Hello Groovy" />

 <!-- optional for response time tracking -->
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="rrd-base-name" value="minimalgroovybase" />
 <parameter key="ds-name" value="minimalgroovyds" />
</service>

<monitor service="MinimalGroovy" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

Groovy example Bean referencing script file

bsf_monitor.log("ERROR", "Starting MinimalGroovy", null);

//list of all available objects from the BSFMonitor
Map<String, Object> map = map;
bsf_monitor.log("ERROR", "---- map ----", null);
bsf_monitor.log("ERROR", map.toString(), null);

String ip_addr = ip_addr;
bsf_monitor.log("ERROR", "---- ip_addr ----", null);
bsf_monitor.log("ERROR", ip_addr, null);

int node_id = node_id;
bsf_monitor.log("ERROR", "---- node_id ----", null);
bsf_monitor.log("ERROR", node_id.toString(), null);

String node_label = node_label;
bsf_monitor.log("ERROR", "---- node_label ----", null);
bsf_monitor.log("ERROR", node_label, null);

String svc_name = svc_name;
bsf_monitor.log("ERROR", "---- svc_name ----", null);
bsf_monitor.log("ERROR", svc_name, null);

org.opennms.netmgt.poller.monitors.BSFMonitor bsf_monitor = bsf_monitor;
bsf_monitor.log("ERROR", "---- bsf_monitor ----", null);
bsf_monitor.log("ERROR", bsf_monitor.toString(), null);

HashMap<String, String> results = results;
bsf_monitor.log("ERROR", "---- results ----", null);
bsf_monitor.log("ERROR", results.toString(), null);

77

LinkedHashMap<String, Number> times = times;
bsf_monitor.log("ERROR", "---- times ----", null);
bsf_monitor.log("ERROR", times.toString(), null);

// reading a parameter from the service definition
String myParameter = myParameter;
bsf_monitor.log("ERROR", "---- myParameter ----", null);
bsf_monitor.log("ERROR", myParameter, null);

// minimal example
def testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
 bsf_monitor.log("ERROR", "Done MinimalGroovy ---- OK ----", null);
 return "OK";
} else {

 results.put("reason", "file does not exist");
 bsf_monitor.log("ERROR", "Done MinimalGroovy ---- NOK ----", null);
 return "NOK";
}

6.6.7. CiscoIpSlaMonitor

This monitor can be used to monitor IP SLA configurations on your Cisco devices. This monitor
supports the following SNMP OIDS from CISCO-RTT-MON-MIB:

RTT_ADMIN_TAG_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.3
RTT_OPER_STATE_OID = .1.3.6.1.4.1.9.9.42.1.2.9.1.10
RTT_LATEST_OPERSENSE_OID = .1.3.6.1.4.1.9.9.42.1.2.10.1.2
RTT_ADMIN_THRESH_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.5
RTT_ADMIN_TYPE_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.4
RTT_LATEST_OID = .1.3.6.1.4.1.9.9.42.1.2.10.1.1

The monitor can be run in two scenarios. The first one tests the RTT_LATEST_OPERSENSE which is
a sense code for the completion status of the latest RTT operation. If the RTT_LATEST_OPERSENSE
returns ok(1) the service is marked as up.

The second scenario is to monitor the configured threshold in the IP SLA config. If the
RTT_LATEST_OPERSENSE returns with overThreshold(3) the service is marked down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor

Remote Enabled false

78

http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en&translate=Translate&objectInput=1.3.6.1.4.1.9.9.42

Configuration and Usage

Table 17. Monitor-specific parameters for the CiscoIpSlaMonitor

Parameter Description Requir
ed

Default
value

admin-tag The tag attribute from your IP SLA configuration you want to
monitor.

require
d

-

ignore-
thresh

Boolean indicates if just the status or configured threshold
should be monitored.

require
d

``

This monitor implements the Common Configuration Parameters.

Example for HTTP and ICMP echo reply

In this example we configure an IP SLA entry to monitor Google’s website with HTTP GET from the
Cisco device. We use 8.8.8.8 as our DNS resolver. In our example our SLA says we should reach
Google’s website within 200ms. To advise co-workers that this monitor entry is used for monitoring,
I set the owner to OpenNMS. The tag is used to identify the entry later in the SNMP table for
monitoring.

Cisco device configuration for IP SLA instance for HTTP GET

ip sla monitor 1
 type http operation get url http://www.google.de name-server 8.8.8.8
 timeout 3000
 threshold 200
 owner OpenNMS
 tag Google Website
ip sla monitor schedule 3 life forever start-time now

In the second example we configure a IP SLA to test if the IP address from www.opennms.org is
reachable with ICMP from the perspective of the Cisco device. Like the example above we have a
threshold and a timeout.

Cisco device configuration for IP SLA instance for ICMP monitoring.

ip sla 1
 icmp-echo 64.146.64.212
 timeout 3000
 threshold 150
 owner OpenNMS
 tag OpenNMS Host
ip sla schedule 1 life forever start-time now

It´s not possible to reconfigure an IP SLA entry. If you want to change parameters,
you have to delete the whole configuration and reconfigure it with your new
parameters. Backup your Cisco configuration manually or take a look at RANCID.

79

http://www.shrubbery.net/rancid/

To monitor both of the entries the configuration in poller-configuration.xml requires two service
definition entries:

<service name="IP-SLA-WEB-Google" interval="300000"
 user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="admin-tag" value="Google Website" />
 <parameter key="ignore-thresh" value="false" />①
</service>
<service name="IP-SLA-PING-OpenNMS" interval="300000"
 user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="admin-tag" value="OpenNMS Host" />
 <parameter key="ignore-thresh" value="true" />②
</service>

<monitor service="IP-SLA-WEB-Google" class-name=
"org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor" />
<monitor service="IP-SLA-PING-OpenNMS" class-name=
"org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor" />

① Service is up if the IP SLA state is ok(1)

② Service is down if the IP SLA state is overThreshold(3)

6.6.8. CiscoPingMibMonitor

This poller monitor’s purpose is to create conceptual rows (entries) in the ciscoPingTable on Cisco
IOS devices that support the CISCO-PING-MIB. These entries direct the remote IOS device to ping an
IPv4 or IPv6 address with a configurable set of parameters. After the IOS device has completed the
requested ping operations, the poller monitor queries the IOS device to determine the results. If the
results indicate success according to the configured parameters in the service configuration, then
the monitored service is reported as available and the results are available for optional time-series
(RRD) storage. If the results indicate failure, the monitored service is reported unavailable with a
descriptive reason code. If something goes wrong during the setup of the entry or the subsequent
querying of its status, the monitored service is reported to be in an unknown state.

Unlike most poller monitors, the CiscoPingMibMonitor does not interpret the
timeout and retries parameters to determine when a poll attempt has timed out or
whether it should be attempted again. The packet-count and packet-timeout
parameters instead service this purpose from the perspective of the remote IOS
device.

80

http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&mibName=CISCO-PING-MIB

Supported MIB OIDs from CISCO_PING_MIB

 ciscoPingEntry 1.3.6.1.4.1.9.9.16.1.1.1
 ciscoPingSerialNumber 1.3.6.1.4.1.9.9.16.1.1.1.1
 ciscoPingProtocol 1.3.6.1.4.1.9.9.16.1.1.1.2
 ciscoPingAddress 1.3.6.1.4.1.9.9.16.1.1.1.3
 ciscoPingPacketCount 1.3.6.1.4.1.9.9.16.1.1.1.4
 ciscoPingPacketSize 1.3.6.1.4.1.9.9.16.1.1.1.5
 ciscoPingPacketTimeout 1.3.6.1.4.1.9.9.16.1.1.1.6
 ciscoPingDelay 1.3.6.1.4.1.9.9.16.1.1.1.7
 ciscoPingTrapOnCompletion 1.3.6.1.4.1.9.9.16.1.1.1.8
 ciscoPingSentPackets 1.3.6.1.4.1.9.9.16.1.1.1.9
 ciscoPingReceivedPackets 1.3.6.1.4.1.9.9.16.1.1.1.10
 ciscoPingMinRtt 1.3.6.1.4.1.9.9.16.1.1.1.11
 ciscoPingAvgRtt 1.3.6.1.4.1.9.9.16.1.1.1.12
 ciscoPingMaxRtt 1.3.6.1.4.1.9.9.16.1.1.1.13
 ciscoPingCompleted 1.3.6.1.4.1.9.9.16.1.1.1.14
 ciscoPingEntryOwner 1.3.6.1.4.1.9.9.16.1.1.1.15
 ciscoPingEntryStatus 1.3.6.1.4.1.9.9.16.1.1.1.16
 ciscoPingVrfName 1.3.6.1.4.1.9.9.16.1.1.1.17

Prerequisites

• One or more Cisco devices running an IOS image of recent vintage; any 12.2 or later image is
probably fine. Even very low-end devices appear to support the CISCO-PING-MIB.

• The IOS devices that will perform the remote pings must be configured with an SNMP write
community string whose source address access-list includes the address of the OpenNMS
Meridian server and whose MIB view (if any) includes the OID of the ciscoPingTable.

• The corresponding SNMP write community string must be specified in the write-community
attribute of either the top-level <snmp-config> element of snmp-config.xml or a <definition> child
element that applies to the SNMP-primary interface of the IOS device(s) that will perform the
remote pings.

Scalability concerns

This monitor spends a fair amount of time sleeping while it waits for the remote IOS device to
complete the requested ping operations. The monitor is pessimistic in calculating the delay between
creation of the ciscoPingTable entry and its first attempt to retrieve the results of that entry’s ping
operations — it will always wait at least (packet-count * (packet-timeout + packet-delay))
milliseconds before even checking whether the remote pings have completed. It’s therefore prone
to hogging poller threads if used with large values for the packet-count, packet-timeout, and/or
packet-delay parameters. Keep these values as small as practical to avoid tying up poller threads
unnecessarily.

This monitor always uses the current time in whole seconds since the UNIX epoch as the instance
identifier of the ciscoPingTable entries that it creates. The object that holds this identifier is a signed
32-bit integer type, precluding a finer resolution. It’s probably a good idea to mix in the least-
significant byte of the millisecond-accurate time as a substitute for that of the whole-second-

81

accurate value to avoid collisions. IOS seems to clean up entries in this table within a manner of
minutes after their ping operations have completed.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor

Remote Enabled false

Configuration and Usage

Table 18. Monitor specific parameters for the CiscoPingMibMonitor

Parameter Description Requ
ired

Default value

version SNMP protocol version (1, 2c, or 3) to use for
operations performed by this service monitor. Do
not use with out a very good reason to do so.

optio
nal

from snmp-
config.xml

packet-count Number of ping packets that the remote IOS
device should send.

optio
nal

5

packet-size Size, in bytes, of each ping packet that the remote
IOS device should send.

optio
nal

100

packet-timeout Timeout, in milliseconds, of each ping packet sent
by the remote IOS device.

optio
nal

2000

packet-delay Delay, in milliseconds, between ping packets sent
by the remote IOS device.

optio
nal

0

entry-owner String value to set as the value of
ciscoPingEntryOwner of entries created for this
service.

optio
nal

OpenNMS
CiscoPingMibMo
nitor

vrf-name String value to set as the VRF (VLAN) name in
whose context the remote IOS device should
perform the pings for this service.

optio
nal

empty String

proxy-node-id Numeric database identifier of the node whose
primary SNMP interface should be used as the
proxy for this service. If specified along with the
related proxy-node-foreign-source, proxy-node-
foreign-id, and/or proxy-ip-addr, this parameter
will be the effective one.

optio
nal

-

82

Parameter Description Requ
ired

Default value

proxy-node-foreign-

source

proxy-node-foreign-id

foreign-source name and foreign-ID of the node
whose primary SNMP interface should be used as
the "proxy" for this service. These two
parameters are corequisites. If they appear along
with the related proxy-ip-addr, these parameters
will be the effective ones.

optio
nal

-

proxy-ip-addr IP address of the interface that should be used as
the proxy for this service. Effective only if none of
proxy-node-id, proxy-node-foreign-source, nor
proxy-node-foreign-id appears alongside this
parameter. A value of ${ipaddr} will be
substituted with the IP address of the interface on
which the monitored service appears.

optio
nal

-

target-ip-addr IP address that the remote IOS device should
ping. A value of ${ipaddr} will be substituted with
the IP address of the interface on which the
monitored service appears.

optio
nal

-

success-percent A whole-number percentage of pings that must
succeed (from the perspective of the remote IOS
device) in order for this service to be considered
available. As an example, if packet-count is left at
its default value of 5 but you wish the service to
be considered available even if only one of those
five pings is successful, then set this parameter’s
value to 20.

optio
nal

100

rrd-repository Base directory of an RRD repository in which to
store this service monitor’s response-time
samples

optio
nal

-

ds-name Name of the RRD datasource (DS) name in which
to store this service monitor’s response-time
samples; rrd-base-name Base name of the RRD
file (minus the .rrd or .jrb file extension) within
the specified rrd-repository path in which this
service monitor’s response-time samples will be
persisted

optio
nal

-

This monitor implements the Common Configuration Parameters.

This is optional just if you can use variables in the configuration.

Table 19. Variables which can be used in the configuration

83

Variabl
e

Description

${ipaddr
}

This value will be substituted with the IP address of the interface on which the
monitored service appears.

Example: Ping the same non-routable address from all routers of customer Foo

A service provider’s client, Foo Corporation, has network service at multiple locations. At each Foo
location, a point-of-sale system is statically configured at IPv4 address 192.168.255.1. Foo wants to
be notified any time a point-of-sale system becomes unreachable. Using an OpenNMS Meridian
remote location monitor is not feasible. All of Foo Corporation’s CPE routers must be Cisco IOS
devices in order to achieve full coverage in this scenario.

One approach to this requirement is to configure all of Foo Corporation’s premise routers to be in
the surveillance categories Customer_Foo, CPE, and Routers, and to use a filter to create a poller
package that applies only to those routers. We will use the special value ${ipaddr} for the proxy-ip-
addr parameter so that the remote pings will be provisioned on each Foo CPE router. Since we want
each Foo CPE router to ping the same IP address 192.168.255.1, we statically list that value for the
target-ip-addr address.

<package name="ciscoping-foo-pos">
 <filter>catincCustomer_Foo & catincCPE & catincRouters & nodeSysOID LIKE
'.1.3.6.1.4.1.9.%'</filter>
 <include-range begin="0.0.0.0" end="254.254.254.254" />
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <service name="FooPOS" interval="300000" user-defined="false" status="on">
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="rrd-base-name" value="ciscoping" />
 <parameter key="ds-name" value="ciscoping" />
 <parameter key="proxy-ip-addr" value="${ipaddr}" />
 <parameter key="target-ip-addr" value="192.168.255.1" />
 </service>
 <downtime interval="30000" begin="0" end="300000" /><!-- 30s, 0, 5m -->
 <downtime interval="300000" begin="300000" end="43200000" /><!-- 5m, 5m, 12h -->
 <downtime interval="600000" begin="43200000" end="432000000" /><!-- 10m, 12h, 5d -->
 <downtime begin="432000000" delete="true" /><!-- anything after 5 days delete -->
</package>

<monitor service="FooPOS" class-name=
"org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor" />

84

Example: Ping from a single IOS device routable address of each router of customer Bar

A service provider’s client, Bar Limited, has network service at multiple locations. While OpenNMS
Meridian' world-class service assurance is generally sufficient, Bar also wants to be notified any
time a premise router at one of their locations unreachable from the perspective of an IOS device in
Bar’s main data center. Some or all of the Bar Limited CPE routers may be non-Cisco devices in this
scenario.

To meet this requirement, our approach is to configure Bar Limited’s premise routers to be in the
surveillance categories Customer_Bar, CPE, and Routers, and to use a filter to create a poller
package that applies only to those routers. This time, though, we will use the special value ${ipaddr}
not in the proxy-ip-addr parameter but in the target-ip-addr parameter so that the remote pings
will be performed for each Bar CPE router. Since we want the same IOS device 20.11.5.11 to ping
the CPE routers, we statically list that value for the proxy-ip-addr address. Example poller-
configuration.xml additions

<package name="ciscoping-bar-cpe">
 <filter>catincCustomer_Bar & catincCPE & catincRouters</filter>
 <include-range begin="0.0.0.0" end="254.254.254.254" />
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <service name="BarCentral" interval="300000" user-defined="false" status="on">
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="rrd-base-name" value="ciscoping" />
 <parameter key="ds-name" value="ciscoping" />
 <parameter key="proxy-ip-addr" value="20.11.5.11" />
 <parameter key="target-ip-addr" value="${ipaddr}" />
 </service>
 <downtime interval="30000" begin="0" end="300000" /><!-- 30s, 0, 5m -->
 <downtime interval="300000" begin="300000" end="43200000" /><!-- 5m, 5m, 12h -->
 <downtime interval="600000" begin="43200000" end="432000000" /><!-- 10m, 12h, 5d -->
 <downtime begin="432000000" delete="true" /><!-- anything after 5 days delete -->
</package>

<monitor service="BarCentral" class-name=
"org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor" />

6.6.9. CitrixMonitor

This monitor is used to test if a Citrix® Server or XenApp Server® is providing the Independent
Computing Architecture (ICA) protocol on TCP 1494. The monitor opens a TCP socket and tests the
greeting banner returns with ICA, otherwise the service is unavailable.

85

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CitrixMonitor

Remote Enabled true

Configuration and Usage

Table 20. Monitor specific parameters for the CitrixMonitor

Paramete
r

Description Require
d

Default
value

port TCP port where the ICA protocol is listening. optional 1494

This monitor implements the Common Configuration Parameters.

If you have configure the Metaframe Presentation Server Client using Session
Reliability, the TCP port is 2598 instead of 1494. You can find additional
information on CTX104147. It is not verified if the monitor works in this case.

Examples

The following example configures OpenNMS Meridian to monitor the ICA protocol on TCP 1494 with
2 retries and waiting 5 seconds for each retry.

<service name="Citrix-TCP-ICA" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="5000" />
</service>

<monitor service="Citrix-TCP-ICA" class-name=
"org.opennms.netmgt.poller.monitors.CitrixMonitor" />

6.6.10. DhcpMonitor

This monitor is used to check the availability and functionality of DHCP servers. The monitor class
DhcpMonitor is executed by Pollerd and opens the background process listening for incoming DHCP
responses. A DHCP server is tested by sending a DISCOVER message. If the DHCP server responds
with an OFFER the service is marked as up. The background listening process is only started if the
DhcpMonitor is used. The behavior for testing the DHCP server can be modified in the poller-
configuration.xml configuration file.

Make sure no DHCP client is running on the OpenNMS Meridian server and using
port UDP/67 and UDP/68. If UDP/67 and UDP/68 are already in use, you will find
warning messages in your log files. You can test if a process is listening on UDP/68
with sudo ss -lnpu sport = :68.

86

http://support.citrix.com/article/CTX104147
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DhcpMonitor

Remote Enabled true

This monitor implements the Common Configuration Parameters.

DhcpMonitor configuration

Table 21. DhcpMonitor parameters in poller-configuration.xml.

Parameter Description Requi
red

Default value

macAddress The MAC address which OpenNMS Meridian uses for a
dhcp request

optio
nal

00:06:0D:BE:9C:B2

relayMode Puts the poller in relay mode optio
nal

false

myIpAddres
s

This parameter will usually be set to the IP address of the
OpenNMS Meridian server, if relayMode is set to true. In
relay mode, the DHCP server being polled will unicast its
responses directly back to the IP address specified by
myIpAddress rather than broadcasting its responses. This
allows DHCP servers to be polled even though they are
not on the same subnet as the OpenNMS Meridian server,
and without the aid of an external relay.

optio
nal

127.0.0.1

extendedMo
de

When extendedMode is false, the DHCP poller will send a
DISCOVER and expect an OFFER in return. When
extendedMode is true, the DHCP poller will first send a
DISCOVER. If no valid response is received it will send an
INFORM. If no valid response is received it will then send
a REQUEST. OFFER, ACK, and NAK are all considered valid
responses in extendedMode.

optio
nal

false

requestIpA
ddress

This parameter only applies to REQUEST queries sent to
the DHCP server when extendedMode is true. The IP
address specified will be requested in the query.

optio
nal

127.0.0.1

rrd-
repository

The location to write RRD data. Generally, you will not
want to change this from default

requi
red

$OPENNMS_HOME/share
/rrd/response

rrd-base-
name

The name of the RRD file to write (minus the extension,
.rrd or .jrb)

requi
red

dhcp

ds-name This is the name as reference for this particular data
source in the RRD file

requi
red

dhcp

87

Figure 28. Visualization of DHCP message flow in broadcast mode

Figure 29. Visualization of DHCP message flow in relay mode

Example testing DHCP server in the same subnet

Example configuration how to configure the monitor in the poller-configuration.xml. The monitor
will try to send in maximum 3 DISCOVER messages and waits 3 seconds for the DHCP server OFFER
message.

Configure a DHCP service in poller-configuration.xml

<service name="DHCP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="relayMode" value="false"/>
 <parameter key="extendedMode" value="false"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="rrd-base-name" value="dhcp" />
 <parameter key="ds-name" value="dhcp" />
</service>

<monitor service="DHCP" class-name="org.opennms.netmgt.poller.monitors.DhcpMonitor"/>

88

Example testing DHCP server in a different subnet in extended mode

You can use the same monitor in poller-configuration.xml as in the example above.

Configure DhcpMonitor to test DHCP server in a different subnet. The OFFER from the DHCP server is
sent to myIpAddress.

<service name="DHCP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="relayMode" value="true"/>
 <parameter key="extendedMode" value="false"/>
 <parameter key="myIpAddress" value="1.2.3.4"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="rrd-base-name" value="dhcp" />
 <parameter key="ds-name" value="dhcp" />
</service>

<monitor service="DHCP" class-name="org.opennms.netmgt.poller.monitors.DhcpMonitor"/>

If in extendedMode, the time required to complete the poll for an unresponsive node
is increased by a factor of 3. Thus it is a good idea to limit the number of retries to
a small number.

6.6.11. DiskUsageMonitor

The DiskUsageMonitor monitor can be used to test the amount of free space available on certain
storages of a node. The monitor gets information about the available free storage spaces available
by inspecting the hrStorageTable of the HOST-RESOURCES-MIB. A storage’s description (as found in
the corresponding hrStorageDescr object) must match the criteria specified by the disk and match-
type parameters to be monitored. A storage’s available free space is calculated using the
corresponding hrStorageSize and hrStorageUsed objects.

The hrStorageUsed doesn’t account for filesystem reserved blocks (i.e. for the
super-user), so DiskUsageMonitor will report the service as unavailable only when
the amount of free disk space is actually lower than free minus the percentage of
reserved filesystem blocks.

This monitor uses SNMP to accomplish its work. Therefore systems against which it is to be used
must have an SNMP agent supporting the HOST-RESOURCES-MIB installed and configured. Most
modern SNMP agents, including most distributions of the Net-SNMP agent and the SNMP service
that ships with Microsoft Windows, support this MIB. Out-of-box support for HOST-RESOURCES-MIB
among commercial Unix operating systems may be somewhat spotty.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DiskUsageMonitor

89

http://tools.ietf.org/html/rfc1514

Remote Enabled false, relies on SNMP configuration.

Configuration and Usage

Table 22. Monitor specific parameters for the DiskUsageMonitor

Param
eter

Description Requi
red

Default value

disk A pattern that a storage’s description (hrStorageDescr) must
match to be taken into account.

requir
ed

-

free The minimum amount of free space that storages matching the
criteria must have available. This parameter is evaluated as a
percent of the storage’s reported maximum capacity.

option
al

15

match-
type

The way how the pattern specified by the disk parameter must be
compared to storages description Must be one of the following
symbolic operators:
endswith : The disk parameter’s value is evaluated as a string that
storages' description must end with;
exact : The disk parameter’s value is evaluated as a string that
storages" description must exactly match;
regex : The disk parameter’s value is evaluated as a regular
expression that storages' description must match;
startswith : The disk parameter’s value is evaluated as a string
that storages' description must start with.
Note: Comparisons are case-sensitive

option
al

exact

port Destination port where the SNMP requests shall be sent. option
al

from snmp-
config.xml

retries Deprecated. Same as retry. Parameter retry takes precedence
when both are set.

option
al

from snmp-
config.xml

This monitor implements the Common Configuration Parameters.

Examples

<!-- Make sure there's at least 5% of free space available on storages ending with
"/home" -->
<service name="DiskUsage-home" interval="300000" user-defined="false" status="on">
 <parameter key="timeout" value="3000" />
 <parameter key="retry" value="2" />
 <parameter key="disk" value="/home" />
 <parameter key="match-type" value="endsWith" />
 <parameter key="free" value="5" />
</service>
<monitor service="DiskUsage-home" class-name=
"org.opennms.netmgt.poller.monitors.DiskUsageMonitor" />

90

DiskUsageMonitor vs thresholds

Storages' available free space can also be monitored using thresholds if you are already collecting
these data.

6.6.12. DnsMonitor

This monitor is build to test the availability of the DNS service on remote IP interfaces. The monitor
tests the service availability by sending a DNS query for A resource record types against the DNS
server to test.

The monitor is marked as up if the DNS Server is able to send a valid response to the monitor. For
multiple records it is possible to test if the number of responses are within a given boundary.

The monitor can be simulated with the command line tool host:

~ % host -v -t a www.google.com 8.8.8.8
Trying "www.google.com"
Using domain server:
Name: 8.8.8.8
Address: 8.8.8.8#53
Aliases:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9324
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.google.com. IN A

;; ANSWER SECTION:
www.google.com. 283 IN A 74.125.232.17
www.google.com. 283 IN A 74.125.232.20
www.google.com. 283 IN A 74.125.232.19
www.google.com. 283 IN A 74.125.232.16
www.google.com. 283 IN A 74.125.232.18

Received 112 bytes from 8.8.8.8#53 in 41 ms

TIP: This monitor is intended for testing the availability of a DNS service. If you want to monitor the
DNS resolution of some of your nodes from a client’s perspective, please use the
DNSResolutionMonitor.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DnsMonitor

Remote Enabled true

91

Configuration and Usage

Table 23. Monitor specific parameters for the DnsMonitor

Parameter Description Requi
red

Default
value

retry Number of retries before the service is marked as down option
al

0

timeout Time in milliseconds to wait for the A Record response from the
server

option
al

5000

port UDP Port for the DNS server option
al

53

lookup DNS A Record for lookup test option
al

localhost

fatal-
response-
codes

A comma-separated list of numeric DNS response codes that will
be considered fatal if present in the server’s response. Default
value is 2 corresponds to Server Failed. A list of codes and their
meanings is found in RFC 2929

option
al

2

min-answers Minmal number of records in the DNS server respone for the
given lookup

option
al

-

max-answers Maximal number of records in the DNS server respone for the
given lookup

option
al

-

This monitor implements the Common Configuration Parameters.

Examples

The given examples shows how to monitor if the IP interface from a given DNS server resolves a
DNS request. This service should be bound to a DNS server which should be able to give a valid DNS
respone for DNS request www.google.com. The service is up if the DNS server gives between 1 and
10 A record responses.

Example configuration monitoring DNS request for a given server for www.google.com

<service name="DNS-www.google.com" interval="300000" user-defined="false" status="on">
 <parameter key="lookup" value="www.google.com" />
 <parameter key="fatal-response-code" value="2" />
 <parameter key="min-answers" value="1" />
 <parameter key="max-answers" value="10" />
</service>

<monitor service="DNS-www.google.com" class-name=
"org.opennms.netmgt.poller.monitors.DnsMonitor" />

92

http://tools.ietf.org/html/rfc2929

6.6.13. DNSResolutionMonitor

The DNS resolution monitor, tests if the node label of an OpenNMS Meridian node can be resolved.
This monitor uses the name resolver configuration from the poller configuration or from the
operating system where OpenNMS Meridian is running on. It can be used to test a client behavior
for a given host name. For example: Create a node with the node label www.google.com and an IP
interface. Assigning the DNS resolution monitor on the IP interface will test if www.google.com can
be resolved using the DNS configuration defined by the poller. The response from the A record
lookup can be any address, it is not verified with the IP address on the OpenNMS Meridian IP
interface where the monitor is assigned to. This monitor implements placeholder substitution in
parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DNSResolutionMonitor

Remote Enabled true

Configuration and Usage

Table 24. Monitor specific parameters for the DNSResolutionMonitor

Param
eter

Description Req
uire
d

Default value Placehold
er
substituti
on

resolut
ion-
type

Type of record for the node label test.
Allowed values
v4 for A records,
v6 for AAAA record,
both A and AAAA record must be available,
either A or AAAA record must be
available.

optio
nal

either No

record-
types

Alternate DNS record types to search for.
The comma separated list can contain A,
AAAA, CNAME, NS, MX, PTR, SOA,
SRV, or TXT.

optio
nal

`` No

lookup Alternate DNS record to lookup optio
nal

The node label. Yes

nameser
ver

The DNS server to query for the records.
The string can be in the form of hostname,
hostname:port, or [ipv6address]:port.

optio
nal

Use name server from host
system running OpenNMS
Meridian

Yes

This monitor implements the Common Configuration Parameters.

93

Examples

The following example shows the possibilities monitoring IPv4 and/or IPv6 for the service
configuration:

<!-- Assigned service test if the node label is resolved for an A record -->
<service name="DNS-Resolution-v4" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="v4"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-v4"/>
 <parameter key="ds-name" value="dns-res-v4"/>
</service>

<!-- Assigned service test if www.google.com is resolved for an A record -->
<service name="DNS-Resolution-v4-lookup" interval="300000" user-defined="false"
status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="v4"/>
 <parameter key="lookup" value="www.google.com"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record using a
specific DNS server -->
<service name="DNS-Resolution-v6" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="v6"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-v6"/>
 <parameter key="ds-name" value="dns-res-v6"/>
 <parameter key="nameserver" value="8.8.8.8"/>
</service>

<!-- Use parameter substitution for nameserver and lookup parameter values -->
<service name="DNS-Resolution-Sub" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="v6"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-v6"/>
 <parameter key="ds-name" value="dns-res-v6"/>
 <parameter key="nameserver" value="{ipAddr}"/>
 <parameter key="lookup" value="{nodeLabel}"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record AND A
record -->
<service name="DNS-Resolution-v4-and-v6" interval="300000" user-defined="false"

94

status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="both"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-both"/>
 <parameter key="ds-name" value="dns-res-both"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record OR A
record -->
<service name="DNS-Resolution-v4-or-v6" interval="300000" user-defined="false" status
="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="either"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-either"/>
 <parameter key="ds-name" value="dns-res-either"/>
</service>

<!-- Assigned service test if the node label is resolved for an CNAME record AND MX
record -->
<service name="DNS-Resolution-CNAME-and-MX" interval="300000" user-defined="false"
status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="record-types" value="CNAME,MX"/>
 <parameter key="lookup" value="www.google.comm"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-cname-mx"/>
 <parameter key="ds-name" value="dns-res-cname-mx"/>
</service>

<monitor service="DNS-Resolution-v4" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />
<monitor service="DNS-Resolution-v4-lookup" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />
<monitor service="DNS-Resolution-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />
<monitor service="DNS-Resolution-Sub" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />
<monitor service="DNS-Resolution-v4-and-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />
<monitor service="DNS-Resolution-v4-or-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />
<monitor service="DNS-Resolution-CNAME-and-MX" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />

To have response time graphs for the name resolution you have to configure RRD graphs for the

95

given ds-names (dns-res-v4, dns-res-v6, dns-res-both, dns-res-either, dns-res-cname-mx) in
'$OPENNMS_HOME/etc/response-graph.properties'.

DNSResolutionMonitor vs DnsMonitor

The DNSResolutionMonitor is used to measure the availability and record outages of a name
resolution from client perspective. The service is mainly used for websites or similar public
available resources. It can be used in combination with the Page Sequence Monitor to give a hint if
a website isn’t available for DNS reasons.

The DnsMonitor on the other hand is a test against a specific DNS server. In OpenNMS Meridian the
DNS server is the node and the DnsMonitor will send a lookup request for a given A record to the
DNS server IP address. The service goes down if the DNS server doesn’t have a valid A record in his
zone database or as some other issues resolving A records.

6.6.14. FtpMonitor

The FtpMonitor is able to validate ftp connection dial-up processes. The monitor can test ftp server
on multiple ports and specific login data.

The service using the FtpMonitor is up if the FTP server responds with return codes between 200
and 299. For special cases the service is also marked as up for 425 and 530.

This monitor implements placeholder substitution in parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.FtpMonitor

Remote Enabled true

Configuration and Usage

Table 25. Monitor specific parameters for the FtpMonitor.

Param
eter

Description Requi
red

Default
value

Placeholder
substitution

retry Number of attempts to get a valid FTP response/response-
text

optio
nal

0 No

port A list of TCP ports to which connection shall be tried. optio
nal

20,21 No

passwo
rd

This parameter is meant to be used together with the
userid parameter to perform authentication. This
parameter specifies the password to be used.

optio
nal

empty
string

Yes

userid This parameter is meant to be used together with the
password parameter to perform authentication. This
parameter specifies the user ID to be used.

optio
nal

- Yes

96

This monitor implements the Common Configuration Parameters.

Examples

Some example configuration how to configure the monitor in the 'poller-configuration.xml'

<service name="FTP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="21"/>
 <parameter key="userid" value=""/>
 <parameter key="password" value=""/>
</service>

<service name="FTP-With-Auth-From-Asset" interval="300000" user-defined="false"
status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="21"/>
 <parameter key="userid" value="{username}"/>
 <parameter key="password" value="{password}"/>
</service>

<service name="FTP-Customer" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="21"/>
 <parameter key="userid" value="Customer"/>
 <parameter key="password" value="MySecretPassword"/>
</service>

<monitor service="FTP" class-name="org.opennms.netmgt.poller.monitors.FtpMonitor"/>
<monitor service="FTP-With-Auth-From-Asset" class-name=
"org.opennms.netmgt.poller.monitors.FtpMonitor"/>
<monitor service="FTP-Customer" class-name=
"org.opennms.netmgt.poller.monitors.FtpMonitor"/>

Hint

Comment from FtpMonitor source

Also want to accept the following ERROR message generated by some FTP servers following a QUIT
command without a previous successful login: "530 QUIT : User not logged in. Please login with
USER and PASS first."

Also want to accept the following ERROR message generated by some FTP servers following a QUIT
command without a previously successful login: "425 Session is disconnected."

See also: http://tools.ietf.org/html/rfc959

97

http://tools.ietf.org/html/rfc959

6.6.15. HostResourceSwRunMonitor

This monitor test the running state of one or more processes. It does this via SNMP by inspecting
the hrSwRunTable of the HOST-RESOURCES-MIB. The test is done by matching a given process as
hrSwRunName against the numeric value of the hrSwRunState.

This monitor uses SNMP to accomplish its work. Therefore systems against which it is to be used
must have an SNMP agent installed and configured. Furthermore, the SNMP agent on the system
must support the HOST-RESOURCES-MIB. Most modern SNMP agents, including most distributions
of the Net-SNMP agent and the SNMP service that ships with Microsoft Windows, support this MIB.
Out-of-box support for HOST-RESOURCES-MIB among commercial Unix operating systems may be
somewhat spotty.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HostResourceSwRunMonitor

Remote Enabled false

Configuration and Usage

Table 26. Monitor specific parameters for the HostResourceSwRunMonitor

Parameter Description Requi
red

Default value

port The port of the SNMP agent of the server to test. option
al

from snmp-
config.xml

service-
name

The name of the process to be monitored. This parameter’s
value is case-sensitive and is evaluated as an exact match.

requir
ed

-

match-all If the process name appears multiple times in the
hrSwRunTable, and this parameter is set to true, then all
instances of the named process must match the value
specified for run-level.

option
al

false

run-level The maximum allowable value of hrSWRunStatus among
running(1),
runnable(2) = waiting for resource
notRunnable(3) = loaded but waiting for event
invalid(4) = not loaded

option
al

2

service-
name-oid

The numeric object identifier (OID) from which process
names are queried. Defaults to hrSwRunName and should
never be changed under normal circumstances. That said,
changing it to hrSwRunParameters (.1.3.6.1.2.1.25.4.2.1.5)
is often helpful when dealing with processes running under
Java Virtual Machines which all have the same process name
java.

option
al

.1.3.6.1.2.1.2
5.4.2.1.2

98

http://www.ietf.org/rfc/rfc2790

Parameter Description Requi
red

Default value

service-
status-oid

The numeric object identifier (OID) from which run status is
queried. Defaults to hrSwRunStatus and should never be
changed under normal circumstances.

option
al

.1.3.6.1.2.1.2
5.4.2.1.7

This monitor implements the Common Configuration Parameters.

Examples

The following example shows how to monitor the process called httpd running on a server using
this monitor. The configuration in poller-configuration.xml has to be defined as the following:

<service name="Process-httpd" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="service-name" value="httpd"/>①
 <parameter key="run-level" value="3"/>②
 <parameter key="match-all" value="true"/>③
</service>

<monitor service="Process-httpd" class-name=
"org.opennms.netmgt.poller.monitors.HostResourceSwRunMonitor"/>

① Name of the process on the system

② Test the state if the process is in a valid state, i.e. have a run-level no higher than notRunnable(3)

③ If the httpd process runs multiple times the test is done for each instance of the process.

6.6.16. HttpMonitor

The HTTP monitor tests the response of an HTTP server on a specific HTTP 'GET' command. During
the poll, an attempt is made to connect on the specified port(s). The monitor can test web server on
multiple ports. By default the test is made against port 80, 8080 and 8888. If the connection request
is successful, an HTTP 'GET' command is sent to the interface. The response is parsed and a return
code extracted and verified. This monitor implements placeholder substitution in parameter
values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpMonitor

Remote Enabled true

Configuration and Usage

Table 27. Monitor specific parameters for the HttpMonitor

99

Parame
ter

Description Req
uire
d

Default value Placehol
der
substitut
ion

basic-
authenti
cation

Authentication credentials to
perform basic authentication.
Credentials should comply to
RFC1945 section 11.1, without the
Base64 encoding part. That’s: be a
string made of the concatenation
of:
1- the user ID;
2- a colon;
3- the password.
basic-authentication takes
precedence over the user and
password parameters.

opti
onal

- Yes

header[0
-9]+

Additional headers to be sent along
with the request.
Example of valid parameter’s
names are
header0, header1 and header180.
header is not a valid parameter
name.

opti
onal

- No

host-
name

Specify the Host header’s value. opti
onal

- No

nodelabe
l-host-
name

If the host-name parameter isn’t set
and the resolve-ip parameter is set
to false, then OpenNMS Meridian
will use the node’s label to set the
Host header’s value if this
parameter is set to true. Otherwise,
OpenNMS Meridian will fall back
using the node interface’s IP
address as Host header value.

opti
onal

false No

password This parameter is meant to be used
together with the user parameter to
perform basic
authentication. This parameter
specifies the password to be used.
The user and password
parameters are ignored when the
basic-authentication parameter is
defined.

opti
onal

empty string Yes

100

http://www.rfc-editor.org/rfc/rfc1945.txt

Parame
ter

Description Req
uire
d

Default value Placehol
der
substitut
ion

port A list of TCP ports to which
connection shall be tried.

opti
onal

80,8080,8888 No

retry Number of attempts to get a valid
HTTP response/response-text

opti
onal

0 No

resolve-
ip

If the host-name parameter isn’t set
and this parameter is set to true,
OpenNMS Meridian will use DNS to
resolve the node interface’s IP
address, and use the result to set
the Host header’s value. When set
to false and the host-name
parameter isn’t set, OpenNMS
Meridian will try to use the
nodelabel-host-name parameter to
set the Host header’s value.

opti
onal

false No

response A comma-separated list of
acceptable HTTP response code
ranges. Example: 200-202,299

opti
onal

If the url parameter is set to /, the
default
value for this parameter is 100-499,
otherwise it’s 100-399.

No

response
-text

Text to look for in the response
body. This will be matched against
every line, and it will be considered
a success at the first match. If there
is a ~ at the beginning of the
parameter, the rest of the string
will be used as a regular expression
pattern match, otherwise the match
will be a substring match. The
regular expression match is
anchored at the beginning and end
of the line, so you will likely need
to put a .* on both sides of your
pattern unless you are going to be
matching on the entire line.

opti
onal

- No

url URL to be retrieved via the HTTP
'GET' command

opti
onal

/ Yes

101

Parame
ter

Description Req
uire
d

Default value Placehol
der
substitut
ion

user This parameter is meant to be used
together with the password
parameter to perform basic
authentication. This parameter
specifies the user ID to be used. The
user and password parameters are
ignored when the basic-
authentication parameter is
defined.

opti
onal

- Yes

user-
agent

Allows you to set the User-Agent
HTTP header (see also RFC2616
section 14.43).

opti
onal

OpenNMS HttpMonitor Yes

verbose When set to true, full
communication between client and
the webserver will be logged (with
a log level of DEBUG).

opti
onal

- No

This monitor implements the Common Configuration Parameters.

Examples

102

http://www.rfc-editor.org/rfc/rfc2616.txt

<!-- Test HTTP service on port 80 only -->
<service name="HTTP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="80"/>
 <parameter key="url" value="/"/>
</service>

<!-- Test for virtual host opennms.com running -->
<service name="OpenNMSdotCom" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="80"/>
 <parameter key="host-name" value="opennms.com"/>
 <parameter key="url" value="/solutions"/>
 <parameter key="response" value="200-202,299"/>
 <parameter key="response-text" value="~.*[Cc]onsulting.*"/>
</service>

<!-- Test for instance of OpenNMS 1.2.9 running -->
<service name="OpenNMS-129" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="8080"/>
 <parameter key="url" value="/opennms/event/list"/>
 <parameter key="basic-authentication" value="admin:admin"/>
 <parameter key="response" value="200"/>
</service>

<!-- Test for instance of OpenNMS 1.2.9 with parameter substitution in basic-
authentication parameter -->
<service name="OpenNMS-22" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="8080"/>
 <parameter key="url" value="/opennms/event/list"/>
 <parameter key="basic-authentication" value="{username}:{password}"/>
 <parameter key="response" value="200"/>
</service>
<monitor service="HTTP" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor" />
<monitor service="OpenNMSdotCom" class-name=
"org.opennms.netmgt.poller.monitors.HttpMonitor" />
<monitor service="OpenNMS-129" class-name=
"org.opennms.netmgt.poller.monitors.HttpMonitor" />
<monitor service="OpenNMS-22" class-name=
"org.opennms.netmgt.poller.monitors.HttpMonitor" />

103

Testing filtering proxies with HttpMonitor

In case a filtering proxy server is set up to allow retrieval of some URLs but deny others, the
HttpMonitor can be used to verify this behavior.

As an example a proxy server is running on TCP port 3128, and serves http://www.opennms.org/ but
never http://www.myspace.com/. To test this behaviour, the HttpMonitor can be configured as the
following:

<service name="HTTP-Allow-opennms.org" interval="300000" user-defined="false" status=
"on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="3128"/>
 <parameter key="url" value="http://www.opennms.org/"/>
 <parameter key="response" value="200-399"/>
</service>

<service name="HTTP-Block-myspace.com" interval="300000" user-defined="false" status=
"on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="3128"/>
 <parameter key="url" value="http://www.myspace.com/"/>
 <parameter key="response" value="400-599"/>
</service>

<monitor service="HTTP-Allow-opennms.org" class-name=
"org.opennms.netmgt.poller.monitors.HttpMonitor"/>
<monitor service="HTTP-Block-myspace.com" class-name=
"org.opennms.netmgt.poller.monitors.HttpMonitor"/>

6.6.17. HttpPostMonitor

If it is required to HTTP POST any arbitrary content to a remote URI, the HttpPostMonitor can be
used. A use case is to HTTP POST to a SOAP endpoint. This monitor implements placeholder
substitution in parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpPostMonitor

Remote Enabled false

Configuration and Usage

Table 28. Monitor specific parameters for the HttpPostMonitor

104

http://www.opennms.org/
http://www.myspace.com/

Paramete
r

Description Requ
ired

Default
value

Placeholder
substitution

payload The body of the POST, for example properly escaped
XML.

requi
red

- No

auth-
password

The password to use for HTTP BASIC auth. optio
nal

- Yes

auth-
username

The username to use for HTTP BASIC auth. optio
nal

- Yes

header[0-
9]+

Additional headers to be sent along with the request.
Example of valid parameter’s names are header0,
header1 and header180.
header is not a valid parameter name.

optio
nal

- No

banner A string that is matched against the response of the
HTTP POST. If the output contains the banner, the
service is determined as up. Specify a regex by starting
with ~.

optio
nal

- Yes

charset Set the character set for the POST. optio
nal

UTF-8 No

mimetype Set the mimetype for the POST. optio
nal

text/xm
l

No

port The port for the web server where the POST is send to. optio
nal

80 No

scheme The connection scheme to use. optio
nal

http No

usesslfil
ter

Enables or disables the SSL ceritificate validation. true
- false

optio
nal

false No

uri The uri to use during the POST. optio
nal

/ Yes

use-
system-
proxy

Should the system wide proxy settings be used? The
system proxy settings can be configured in system
properties

optio
nal

false No

This monitor implements the Common Configuration Parameters.

Examples

The following example would create a POST that contains the payload Word.

105

#ga-opennms-system-properties
#ga-opennms-system-properties

<service name="MyServlet" interval="300000" user-defined="false" status="on">
 <parameter key="banner" value="Hello"/>
 <parameter key="port" value="8080"/>
 <parameter key="uri" value="/MyServlet">
 <parameter key="payload" value="World"/>
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="30000"/>
</service>
<monitor service="MyServlet" class-name=
"org.opennms.netmgt.poller.monitors.HttpPostMonitor"/>

The resulting POST looks like this:

POST /MyServlet HTTP/1.1
Content-Type: text/xml; charset=utf-8
Host: <ip_addr_of_interface>:8080
Connection: Keep-Alive

World

6.6.18. HttpsMonitor

The HTTPS monitor tests the response of an SSL-enabled HTTP server. The HTTPS monitor is an
SSL-enabled extension of the HTTP monitor with a default TCP port value of 443. All HttpMonitor
parameters apply, so please refer to HttpMonitor’s documentation for more information. This
monitor implements placeholder substitution in parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpsMonitor

Remote Enabled true

Configuration and Usage

Table 29. Monitor specific parameters for the HttpsMonitor

Paramete
r

Description Require
d

Default
value

port A list of TCP ports to which connection shall be tried. optional 443

Examples

106

<!-- Test HTTPS service on port 8443 -->
<service name="HTTPS" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="8443"/>
 <parameter key="url" value="/"/>
</service>

<monitor service="HTTPS" class-name="org.opennms.netmgt.poller.monitors.HttpsMonitor"
/>

6.6.19. IcmpMonitor

The ICMP monitor tests for ICMP service availability by sending echo request ICMP messages. The
service is considered available when the node sends back an echo reply ICMP message within the
specified amount of time.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.IcmpMonitor

Remote Enabled true with some restrictions (see below)

Configuration and Usage

Table 30. Monitor specific parameters for the IcmpMonitor

Parameter Description Require
d

Default
value

timeout Time in milliseconds to wait for a response. optional 800

allow-
fragmentation

Whether to set the "Don’t Fragment" bit on outgoing
packets

optional true

dscp DSCP traffic-control value. optional 0

packet-size Number of bytes of the ICMP packet to send. optional 64

thresholding-
enabled

Enables ICMP thresholding. optional true

This monitor implements the Common Configuration Parameters.

Examples

107

<service name="ICMP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="icmp"/>
 <parameter key="ds-name" value="icmp"/>
</service>
<monitor service="ICMP" class-name="org.opennms.netmgt.poller.monitors.IcmpMonitor"/>

<!-- Advanced example: set DSCP bits and send a large packet with allow-
fragmentation=false -->
<service name="ICMP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="dscp" value="0x1C"/> <!-- AF32: Class 3, Medium drop probability -->
 <parameter key="allow-fragmentation" value="false"/>
 <parameter key="packet-size" value="2048"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="icmp"/>
 <parameter key="ds-name" value="icmp"/>
</service>
<monitor service="ICMP" class-name="org.opennms.netmgt.poller.monitors.IcmpMonitor"/>

Note on Remote Poller

The IcmpMonitor needs the JNA ICMP implementation to function on remote poller. Though, corner
cases exist where the IcmpMonitor monitor won’t work on remote poller. Examples of such corner
cases are: Windows when the remote poller isn’t running has administrator, and Linux on ARM /
Rasperry Pi. JNA is the default ICMP implementation used in the remote poller.

6.6.20. ImapMonitor

This monitor checks if an IMAP server is functional. The test is done by initializing a very simple
IMAP conversation. The ImapMonitor establishes a TCP connection, sends a logout command and
test the IMAP server responses.

The behavior can be simulated with telnet:

108

telnet mail.myserver.de 143
Trying 62.108.41.197...
Connected to mail.myserver.de.
Escape character is '^]'.
* OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE IDLE STARTTLS
LOGINDISABLED] Dovecot ready. ①
ONMSPOLLER LOGOUT ②
* BYE Logging out ③
ONMSPOLLER OK Logout completed.
Connection closed by foreign host.

① Test IMAP server banner, it has to start * OK to be up

② Sending a ONMSPOLLER LOGOUT

③ Test server responds with, it has to start with * BYE to be up

If one of the tests in the sample above fails the service is marked down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.ImapMonitor

Remote Enabled false

Configuration and Usage

Table 31. Monitor specific parameters for the ImapMonitor

Paramete
r

Description Require
d

Default
value

retry Number of attempts to get a valid IMAP response optional 0

port The port of the IMAP server. optional 143

This monitor implements the Common Configuration Parameters.

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml

<!-- Test IMAP service on port 143 only -->
<service name="IMAP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="port" value="143"/>
 <parameter key="timeout" value="3000"/>
</service>

<monitor service="IMAP" class-name="org.opennms.netmgt.poller.monitors.ImapMonitor" />

109

6.6.21. ImapsMonitor

The IMAPS monitor tests the response of an SSL-enabled IMAP server. The IMAPS monitor is an SSL-
enabled extension of the IMAP monitor with a default TCP port value of 993. All ImapMonitor
parameters apply, so please refer to ImapMonitor’s documentation for more information.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.ImapsMonitor

Remote Enabled true

Configuration and Usage

Table 32. Monitor specific parameters for the ImapsMonitor

Paramete
r

Description Require
d

Default
value

port The destination port where connections shall be attempted. optional 993

This monitor implements the Common Configuration Parameters.

Examples

<!-- IMAPS service at OpenNMS.org is on port 9993 -->
<service name="IMAPS" interval="300000" user-defined="false" status="on">
 <parameter key="port" value="9993"/>
 <parameter key="version" value="3"/>
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="imaps"/>
 <parameter key="ds-name" value="imaps"/>
</service>

<monitor service="IMAPS" class-name="org.opennms.netmgt.poller.monitors.ImapsMonitor"
/>

6.6.22. JCifsMonitor

This monitor allows to test a file sharing service based on the CIFS/SMB protocol. This monitor
implements placeholder substitution in parameter values.

This monitor is not installed by default. You have to install opennmms-plugin-
protocol-cifs from your OpenNMS Meridian installation repository.

With the JCIFS monitor you have different possibilities to test the availability of the JCIFS service:

110

With the JCifsMonitor it is possible to run tests for the following use cases:

• share is available in the network

• a given file exists in the share

• a given folder exists in the share

• a given folder should contain at least one (1) file

• a given folder folder should contain no (0) files

• by testing on files and folders, you can use a regular expression to ignore specific file and folder
names from the test

A network resource in SMB like a file or folder is addressed as a UNC Path.

\\server\share\folder\file.txt

The Java implementation jCIFS, which implements the CIFS/SMB network protocol, uses SMB URLs
to access the network resource. The same resource as in our example would look like this as an
SMB URL:

smb://workgroup;user:password@server/share/folder/file.txt

The JCifsMonitor can not test:

• file contains specific content

• a specific number of files in a folder, for example folder should contain exactly / more or less
than x files

• Age or modification time stamps of files or folders

• Permissions or other attributes of files or folders

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JCifsMonitor

Remote Enabled false

Configuration and Usage

Table 33. Monitor specific parameters for the JCifsMonitor

Paramete
r

Description Requ
ired

Default
value

Placeholder
substitution

retry Number of retries before the service is marked as
down.

optio
nal

0 No

111

https://en.wikipedia.org/wiki/Path_%28computing%29#Uniform_Naming_Convention
http://www.iana.org/assignments/uri-schemes/prov/smb

Paramete
r

Description Requ
ired

Default
value

Placeholder
substitution

domain Windows domain where the user is located. You don’t
have to use the domain parameter if you use local user
accounts.

optio
nal

empty
String

Yes

username Username to access the resource over a network optio
nal

empty
String

Yes

password Password for the user optio
nal

empty
String

Yes

path Path to the resource you want to test requi
red

empty
String

No

mode The test mode which has the following options
path_exist: Service is up if the resource is accessible
path_not_exist: Service is up if the resource is not
accessible
folder_empty: Service is up if the folder is empty (0
files)
folder_not_empty: Service is up if the folder has at least
one file

optio
nal

path_ex
ist

No

smbHost Override the IP address of the SMB url to check shares
on different file servers.

optio
nal

empty
String

No

folderIgno
reFiles

Ignore specific files in folder with regular expression.
This parameter will just be applied on folder_empty
and folder_not_empty, otherwise it will be ignored.

optio
nal

- No

 Due to limitations in the JCifs library, only global timeouts can be used reliably.

This monitor implements the Common Configuration Parameters.

It makes little sense to have retries higher than 1. It is a waste of resources during
the monitoring.

Please consider, if you are accessing shares with Mac OSX you have some side
effects with the hidden file '.DS_Store.' It could give you false positives in
monitoring, you can use then the folderIgnoreFiles parameter.

Example test existence of a file

This example shows how to configure the JCifsMonitor to test if a file share is available over a
network. For this example we have access to a share for error logs and we want to get an outage if
we have any error log files in our folder. The share is named log. The service should go back to
normal if the error log file is deleted and the folder is empty.

112

JCifsMonitor configuration to test that a shared folder is empty

<service name="CIFS-ErrorLog" interval="30000" user-defined="true" status="on">
 <parameter key="retry" value="1" />
 <parameter key="timeout" value="3000" />
 <parameter key="domain" value="contoso" />①
 <parameter key="username" value="MonitoringUser" />②
 <parameter key="password" value="MonitoringPassword" />③
 <parameter key="path" value="/fileshare/log/" />④
 <parameter key="mode" value="folder_empty" />⑤
</service>

<monitor service="CIFS-ErrorLog" class-name=
"org.opennms.netmgt.poller.monitors.JCifsMonitor" />

① Name of the SMB or Microsoft Windows Domain

② User for accessing the share

③ Password for accessing the share

④ Path to the folder inside of the share as part of the SMB URL

⑤ Mode is set to folder_empty

6.6.23. JDBCMonitor

The JDBCMonitor checks that it is able to connect to a database and checks if it is able to get the
database catalog from that database management system (DBMS). It is based on the JDBC
technology to connect and communicate with the database. This monitor implements placeholder
substitution in parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCMonitor

Remote Enabled true

Configuration and Usage

Table 34. Monitor specific parameters for the JDBCMonitor

Param
eter

Description Requi
red

Default value Placeholder
substitution

driver JDBC driver class to use requi
red

org.postgresql.Driver No

url JDBC Url to connect to. requi
red

jdbc:postgresql://:OPENNMS_J
DBC_HOSTNAME/opennms

Yes

user Database user requi
red

postgres Yes

113

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Param
eter

Description Requi
red

Default value Placeholder
substitution

passwo
rd

Database password requi
red

empty string Yes

retrie
s

How many retries should be
performed before failing the test

optio
nal

0 No

The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or
resolved hostname of the interface the monitored service is assigned to.

This monitor implements the Common Configuration Parameters.

Provide the database driver

The JDBCMonitor is based on JDBC and requires a JDBC driver to communicate with any database.
Due to the fact that OpenNMS Meridian itself uses a PostgreSQL database, the PostgreSQL JDBC
driver is available out of the box. For all other database systems a compatible JDBC driver has to be
provided to OpenNMS Meridian as a jar-file. To provide a JDBC driver place the driver-jar in the
opennms/lib folder of your OpenNMS Meridian. To use the JDBCMonitor from a remote poller, the
driver-jar has to be provided to the Remote Poller too. This may be tricky or impossible when using
the Java Webstart Remote Poller, because of code signing requirements.

Examples

The following example checks if the PostgreSQL database used by OpenNMS Meridian is available.

<service name="OpenNMS-DBMS" interval="30000" user-defined="true" status="on">
 <parameter key="driver" value="org.postgresql.Driver"/>
 <parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
 <parameter key="user" value="opennms"/>
 <parameter key="password" value="opennms"/>
</service>

<monitor service="OpenNMS-DBMS" class-name=
"org.opennms.netmgt.poller.monitors.JDBCMonitor" />

6.6.24. JDBCStoredProcedureMonitor

The JDBCStoredProcedureMonitor checks the result of a stored procedure in a remote database. The
result of the stored procedure has to be a boolean value (representing true or false). The service
associated with this monitor is marked as up if the stored procedure returns true and it is marked
as down in all other cases. It is based on the JDBC technology to connect and communicate with the
database. This monitor implements placeholder substitution in parameter values.

114

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCStoredProcedureMonitor

Remote Enabled false

Configuration and Usage

Table 35. Monitor specific parameters for the JDBCStoredProcedureMonitor

Paramete
r

Description Requ
ired

Default value Placeholder
substitution

driver JDBC driver class to use requi
red

org.postgresql.Driver No

url JDBC Url to connect to. requi
red

jdbc:postgresql://:OPENNMS_
JDBC_HOSTNAME/opennms

Yes

user Database user requi
red

postgres Yes

password Database password requi
red

empty string Yes

retries How many retries should be
performed before failing the test

optio
nal

0 No

stored-
procedure

Name of the database stored
procedure to call

requi
red

- No

schema Name of the database schema in
which the stored procedure is

optio
nal

test No

The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or
resolved hostname of the interface the monitored service is assigned to.

This monitor implements the Common Configuration Parameters.

Provide the database driver

The JDBCStoredProcedureMonitor is based on JDBC and requires a JDBC driver to communicate with
any database. Due to the fact that OpenNMS Meridian itself uses a PostgreSQL database, the
PostgreSQL JDBC driver is available out of the box. For all other database systems a compatible
JDBC driver has to be provided to OpenNMS Meridian as a jar-file. To provide a JDBC driver place
the driver-jar in the opennms/lib folder of your OpenNMS Meridian. To use the
JDBCStoredProcedureMonitor from a remote poller, the driver-jar has to be provided to the Remote
Poller too. This may be tricky or impossible when using the Java Webstart Remote Poller, because of
code signing requirements.

115

Examples

The following example checks a stored procedure added to the PostgreSQL database used by
OpenNMS Meridian. The stored procedure returns true as long as less than 250000 events are in the
events table of OpenNMS Meridian.

Stored procedure which is used in the monitor

CREATE OR REPLACE FUNCTION eventlimit_sp() RETURNS boolean AS
$BODY$DECLARE
num_events integer;
BEGIN
 SELECT COUNT(*) into num_events from events;
 RETURN num_events > 250000;
END;$BODY$
LANGUAGE plpgsql VOLATILE NOT LEAKPROOF
COST 100;

<service name="OpenNMS-DB-SP-Event-Limit" interval="300000" user-defined="true"
status="on">
 <parameter key="driver" value="org.postgresql.Driver"/>
 <parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
 <parameter key="user" value="opennms"/>
 <parameter key="password" value="opennms"/>
 <parameter key="stored-procedure" value="eventlimit_sp"/>
 <parameter key="schema" value="public"/>
</service>

<monitor service="OpenNMS-DB-SP-Event-Limit" class-name=
"org.opennms.netmgt.poller.monitors.JDBCStoredProcedureMonitor"/>

6.6.25. JDBCQueryMonitor

The JDBCQueryMonitor runs an SQL query against a database and is able to verify the result of the
query. A read-only connection is used to run the SQL query, so the data in the database is not
altered. It is based on the JDBC technology to connect and communicate with the database. This
monitor implements placeholder substitution in parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCQueryMonitor

Remote Enabled false

Configuration and Usage

Table 36. Monitor specific parameters for the JDBCQueryMonitor

116

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Para
mete
r

Description Requ
ired

Default value Placeholde
r
substitutio
n

drive
r

JDBC driver class to use requi
red

org.postgresql.Driver No

url JDBC URL to connect to requi
red

jdbc:postgresql://:OPEN
NMS_JDBC_HOSTNAME/openn
ms

Yes

user Database user requi
red

postgres Yes

passw
ord

Database password requi
red

empty string Yes

query The SQL query to run requi
red

- No

actio
n

What evaluation action to perform requi
red

row_count No

colum
n

The result column to evaluate against when
using compare_string method

requi
red

- No

opera
tor

Operator to use for the evaluation requi
red

>= No

opera
nd

The operand to compare against the SQL
query result

requi
red

depends on the action No

messa
ge

The message to use if the service is down. Both
operands and the operator are added to the
message too.

optio
nal

generic message
depending on the action

No

retri
es

How many retries should be performed before
failing the test

optio
nal

0 No

The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or
resolved hostname of the interface the monitored service is assigned to.

This monitor implements the Common Configuration Parameters.

Table 37. Available action parameters and their default operand

Parameter Description Default
operand

row_count The number of returned rows is compared, not a value of the
resulting rows

1

117

Parameter Description Default
operand

compare_stri
ng

Strings are always checked for equality with the operand -

compare_int An integer from a column of the first result row is compared 1

Table 38. Available operand parameters

Paramete
r

XML entity to use in XML
configs

= =

< <

> >

!= !=

⇐ <=

>= >=

Evaluating the action - operator - operand

Only the first result row returned by the SQL query is evaluated. The evaluation can be against the
value of one column or the number of rows returned by the SQL query.

Provide the database driver

The JDBCQueryMonitor is based on JDBC and requires a JDBC driver to communicate with any
database. Due to the fact that OpenNMS Meridian itself uses a PostgreSQL database, the PostgreSQL
JDBC driver is available out of the box. For all other database systems a compatible JDBC driver has
to be provided to OpenNMS Meridian as a jar-file. To provide a JDBC driver place the driver-jar in
the opennms/lib folder of your OpenNMS Meridian. To use the JDBCQueryMonitor from a remote
poller, the driver-jar has to be provided to the Remote Poller too. This may be tricky or impossible
when using the Java Webstart Remote Poller, because of code signing requirements.

Examples

Row Count

The following example checks if the number of events in the OpenNMS Meridian database is fewer
than 250,000.

118

<service name="OpenNMS-DB-Event-Limit" interval="30000" user-defined="true" status="
on">
 <parameter key="driver" value="org.postgresql.Driver"/>
 <parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
 <parameter key="user" value="opennms"/>
 <parameter key="password" value="opennms"/>
 <parameter key="query" value="select eventid from events" />
 <parameter key="action" value="row_count" />
 <parameter key="operand" value="250000" />
 <parameter key="operator" value="<" />
 <parameter key="message" value="too many events in OpenNMS database" />
</service>

<monitor service="OpenNMS-DB-Event-Limit" class-name=
"org.opennms.netmgt.poller.monitors.JDBCQueryMonitor" />

String Comparison

The following example checks if the queried string matches against a defined operand.

<service name="MariaDB-Galera" interval="300000" user-defined="false" status="on">
 <parameter key="driver" value="org.mariadb.jdbc.Driver"/>
 <parameter key="user" value="opennms"/>
 <parameter key="password" value="********"/>
 <parameter key="url" value="jdbc:mysql://OPENNMS_JDBC_HOSTNAME"/>
 <parameter key="query" value="SELECT VARIABLE_VALUE FROM
INFORMATION_SCHEMA.GLOBAL_STATUS WHERE VARIABLE_NAME = 'wsrep_cluster_status'"/>
 <parameter key="column" value="VARIABLE_VALUE"/>
 <parameter key="action" value="compare_string"/>
 <parameter key="operator" value="="/>
 <parameter key="operand" value="Primary"/>
 <parameter key="message" value="Galera Node is not in primary component"/>
</service>

<monitor service="MariaDB-Galera" class-name=
"org.opennms.netmgt.poller.monitors.JDBCQueryMonitor" />

6.6.26. JmxMonitor

The JMX monitor allows to test service availability of Java applications. The monitor offers the
following functionalities:

• test the application’s connectivity via JMX

• existence of management beans

• test the status of a single or multiple management beans and evaluate their value

119

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.Jsr160Monitor

Remote Enabled true

Configuration and Usage

Table 39. Monitor specific parameters for the JmxMonitor

Parameter Description Requir
ed

Default value

retry Number of attempts to get a response option
al

3

timeout Time in milliseconds to wait for a response option
al

?

port Destination port where the JMX requests shall be sent option
al

from jmx-
config.xml

factory

Set this to PASSWORD-CLEAR if credentials are required option
al

STANDARD

protocol

Protocol used in the JMX connection string option
al

rmi

urlPath

Path used in JMX connection string option
al

/jmxrmi

rmiServerPort

RMI port option

al

45444

remoteJMX

Use an alternative JMX URL scheme option
al

false

beans.<variab
le>

Defines a mbeans objectname to access. The ´<variable>´
name is arbitrary.

option
al

-

tests.<variab
le>

Tests a mbeans attribute value. The ´<variable>´ name is
arbitrary.

option
al

-

Examples

120

Test if a JMX connection can be established

<service name="JMX-Connection-Test" interval="300000" user-defined="false" status="on
">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="18980"/>
</service>
<monitor service="JMX-Connection-Test" class-name=
"org.opennms.netmgt.poller.monitors.JmxMonitor"/>

Test a specific management bean for a value

<service name="JMX-BeanValue-Test" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="18980"/>
 <parameter key="beans.connected" value=
"org.opennms.workflow:name=client.onms.connected"/>
 <parameter key="tests.isConnected" value="connected.get("Value") ==
true"/>
</service>
<monitor service="JMX-BeanValue-Test" class-name=
"org.opennms.netmgt.poller.monitors.Jsr160Monitor"/>

 Reserved XML characters like >, <, " need to be escaped.

6.6.27. JolokiaBeanMonitor

The JolokiaBeanMonitor is a JMX monitor specialized for the use with the Jolokia framework. If it is
required to execute a method via JMX or poll an attribute via JMX, the JolokiaBeanMonitor can be
used. It requires a fully installed and configured Jolokia agent to be deployed in the JVM container.
If required it allows attribute names, paths, and method parameters to be provided additional
arguments to the call. To determine the status of the service the JolokiaBeanMonitor relies on the
output to be matched against a banner. If the banner is part of the output the status is interpreted
as up. If the banner is not available in the output the status is determined as down. Banner
matching supports regular expression and substring match. This monitor implements placeholder
substitution in parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JolokiaBeanMonitor

Remote Enabled false

Configuration and Usage

Table 40. Monitor specific parameters for the JolokiaBeanMonitor

121

http://www.jolokia.org

Param
eter

Description Required Defaul
t value

Placeholde
r
substitutio
n

beannam
e

The bean name to query against. required - No

attrnam
e

The name of the JMX attribute to scrape. optional (attrname or
methodname must be
set)

- No

attrpat
h

The attribute path. optional - No

auth-
usernam
e

The username to use for HTTP BASIC auth. optional - Yes

auth-
passwor
d

The password to use for HTTP BASIC auth. optional - Yes

banner A string that is match against the output of the
system-call. If the output contains the banner,
the service is determined as up. Specify a
regex by starting with ~.

optional - Yes

input1 Method input optional - Yes

input2 Method input optional - Yes

methodn
ame

The name of the bean method to execute,
output will be compared to banner.

optional (attrname or
methodname must be
set)

- Yes

port The port of the jolokia agent. optional 8080 No

url The jolokia agent url. Defaults to
"http://<ipaddr>:<port>/jolokia"

optional - Yes

This monitor implements the Common Configuration Parameters.

Table 41. Variables which can be used in the configuration

Variable Description

${ipaddr} IP-address of the interface the service is bound to.

${port} Port the service it bound to.

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml

122

<parameter key="url" value="http://${ipaddr}:${port}/jolokia"/>
<parameter key="url" value="https://${ipaddr}:${port}/jolokia"/>

AttrName vs MethodName

The JolokiaBeanMonitor has two modes of operation. It can either scrape an attribute from a bean,
or execute a method and compare output to a banner. The method execute is useful when your
application has its own test methods that you would like to trigger via OpenNMS Meridian.

The args to execute a test method called "superTest" that take in a string as input would look like
this:

<parameter key="beanname" value="MyBean" />
<parameter key="methodname" value="superTest" />
<parameter key="input1" value="someString"/>

The args to scrape an attribute from the same bean would look like this:

<parameter key="beanname" value="MyBean" />
<parameter key="attrname" value="upTime" />

6.6.28. LdapMonitor

The LDAP monitor tests for LDAP service availability. The LDAP monitor first tries to establish a TCP
connection on the specified port. Then, if it succeeds, it will attempt to establish an LDAP
connection and do a simple search. If the search returns a result within the specified timeout and
attempts, the service will be considered available. The scope of the LDAP search is limited to the
immediate subordinates of the base object. The LDAP search is anonymous by default. The LDAP
monitor makes use of the com.novell.ldap.LDAPConnection class. This monitor implements
placeholder substitution in parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.LdapMonitor

Remote Enabled true

Configuration and Usage

Table 42. Monitor specific parameters for the LdapMonitor

Param
eter

Description Requ
ired

Default
value

Placeholder
substitution

dn The distinguished name to use if authenticated search is
needed.

optio
nal

- Yes

123

Param
eter

Description Requ
ired

Default
value

Placeholder
substitution

passwor
d

The password to use if authenticated search is needed. optio
nal

- Yes

port The destination port where connection shall be
attempted.

optio
nal

389 No

retry Number of attempts to get a search result. optio
nal

1 No

searchb
ase

The base distinguished name to search from. optio
nal

base No

searchf
ilter

The LDAP search’s filter. optio
nal

(objectcl
ass=*)

No

version The version of the LDAP protocol to use, specified as an
integer. Note: Only LDAPv3 is supported at the moment.

optio
nal

3 No

This monitor implements the Common Configuration Parameters.

Examples

<!-- OpenNMS.org -->
<service name="LDAP" interval="300000" user-defined="false" status="on">
 <parameter key="port" value="389"/>
 <parameter key="version" value="3"/>
 <parameter key="searchbase" value="dc=opennms,dc=org"/>
 <parameter key="searchfilter" value="uid=ulf"/>
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="ldap"/>
 <parameter key="ds-name" value="ldap"/>
</service>
<monitor service="LDAP" class-name="org.opennms.netmgt.poller.monitors.LdapMonitor"/>

6.6.29. LdapsMonitor

The LDAPS monitor tests the response of an SSL-enabled LDAP server. The LDAPS monitor is an
SSL-enabled extension of the LDAP monitor with a default TCP port value of 636. All LdapMonitor
parameters apply, so please refer to LdapMonitor’s documentation for more information. This
monitor implements the same placeholder substitution in parameter values as LdapMonitor.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.LdapsMonitor

124

Remote Enabled true

Configuration and Usage

Table 43. Monitor specific parameters for the LdapsMonitor

Paramete
r

Description Require
d

Default
value

port The destination port where connections shall be attempted. optional 636

This monitor implements the Common Configuration Parameters.

Examples

<!-- LDAPS service at OpenNMS.org is on port 6636 -->
<service name="LDAPS" interval="300000" user-defined="false" status="on">
 <parameter key="port" value="6636"/>
 <parameter key="version" value="3"/>
 <parameter key="searchbase" value="dc=opennms,dc=org"/>
 <parameter key="searchfilter" value="uid=ulf"/>
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="ldaps"/>
 <parameter key="ds-name" value="ldaps"/>
</service>

<monitor service="LDAPS" class-name="org.opennms.netmgt.poller.monitors.LdapsMonitor"
/>

6.6.30. MemcachedMonitor

This monitor allows to monitor Memcached, a distributed memory object caching system. To
monitor the service availability the monitor tests if the Memcached statistics can be requested. The
statistics are processed and stored in RRD files. The following metrics are collected:

Table 44. Collected metrics using the MemcachedMonitor

Metric Description

uptime Seconds the Memcached server has been running since last restart.

rusageuser User time seconds for the server process.

rusagesystem System time seconds for the server process.

curritems Number of items in this servers cache.

totalitems Number of items stored on this server.

125

http://memcached.org

Metric Description

bytes Number of bytes currently used for caching items.

limitmaxbytes Maximum configured cache size.

currconnections Number of open connections to this Memcached.

totalconnections Number of successful connect attempts to this server since start.

connectionstructure Number of internal connection handles currently held by the server.

cmdget Number of GET commands received since server startup.

cmdset Number of SET commands received since server startup.

gethits Number of successful GET commands (cache hits) since startup.

getmisses Number of failed GET requests, because nothing was cached.

evictions Number of objects removed from the cache to free up memory.

bytesread Number of bytes received from the network.

byteswritten Number of bytes send to the network.

threads Number of threads used by this server.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.MemcachedMonitor

Remote Enabled true

Configuration and Usage

Table 45. Monitor specific parameters for the MemcachedMonitor

Paramete
r

Description Require
d

Default
value

retry Number of attempts to establish the Memcached connnection. optional 0

port TCP port connecting to Memcached. optional 11211

This monitor implements the Common Configuration Parameters.

Examples

The following example shows a configuration in the poller-configuration.xml.

126

<service name="Memcached" interval="300000" user-defined="false" status="on">
 <parameter key="port" value="11211" />
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="ds-name" value="memcached" />
 <parameter key="rrd-base-name" value="memcached" />
</service>

<monitor service="Memcached" class-name=
"org.opennms.netmgt.poller.monitors.MemcachedMonitor" />

6.6.31. NetScalerGroupHealthMonitor

This monitor is designed for Citrix® NetScaler® loadbalancing checks. It checks if more than x
percent of the servers assigned to a specific group on a loadbalanced service are active. The
required data is gathered via SNMP from the NetScaler®. The status of the servers is determined by
the NetScaler®. The provided service it self is not part of the check. The basis of this monitor is the
SnmpMonitorStrategy. A valid SNMP configuration in OpenNMS Meridian for the NetScaler® is
required.

A NetScaler® can manage several groups of servers per application. This monitor
just covers one group at a time. If there are multiple groups to check, define one
monitor per group.

 This monitor is not checking the loadbalanced service it self.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NetScalerGroupHealthMonitor

Remote Enabled false

Configuration and Usage

Table 46. Monitor specific parameters for the NetScalerGroupHealthMonitor

Parameter Description Requir
ed

Default
value

group-name The name of the server group to check require
d

-

group-
health

The percentage of active servers vs total server of the group as
an integer

optional 60

This monitor implements the Common Configuration Parameters.

127

Examples

The following example checks a server group called central_webfront_http. If at least 70% of the
servers are active, the service is up. If less then 70% of the servers are active the service is down. A
configuration like the following can be used for the example in the poller-configuration.xml.

<service name="NetScaler_Health" interval="300000" user-defined="false" status="on">
 <parameter key="group-name" value="central_webfront_http" />
 <parameter key="group-health" value="70" />
</service>

<monitor service="NetScaler_Health" class-name=
"org.opennms.netmgt.poller.monitors.NetScalerGroupHealthMonitor” />

Details about the used SNMP checks

The monitor checks the status of the server group based on the NS-ROOT-MIB using the
svcGrpMemberState. svcGrpMemberState is part of the serviceGroupMemberTable. The
serviceGroupMemberTable is indexed by svcGrpMemberGroupName and svcGrpMemberName. A
initial lookup for the group-name is performed. Based on the lookup the serviceGroupMemberTable is
walked with the numeric representation of the server group. The monitor interprets just the server
status code 7-up as active server. Other status codes like 2-unknown or 3-busy are counted for total
amount of servers.

6.6.32. NrpeMonitor

This monitor allows to test plugins and checks running on the Nagios Remote Plugin Executor
(NRPE) framework. The monitor allows to test the status output of any available check command
executed by NRPE. Between OpenNMS Meridian and Nagios are some conceptional differences. In
OpenNMS Meridian a service can only be available or not available and the response time for the
service is measured. Nagios on the other hand combines service availability, performance data
collection and thresholding in one check command. For this reason a Nagios check command can
have more states then OK and CRITICAL. Using the NrpeMonitor marks all check command results
other than OK as down. The full output of the check command output message is passed into the
service down event in OpenNMS Meridian.

NRPE configuration on the server is required and the check command has to be
configured, e.g. command[check_apt]=/usr/lib/nagios/plugins/check_apt

OpenNMS Meridian executes every NRPE check in a Java thread without fork() a
process and it is more resource friendly. Nevertheless it is possible to run NRPE
plugins which combine a lot of external programs like sed, awk or cut. Be aware,
each command end up in forking additional processes.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NrpeMonitor

128

http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE—2D-Nagios-Remote-Plugin-Executor/details

Remote Enabled false

Configuration and Usage

Table 47. Monitor specific parameters for the NrpeMonitor

Param
eter

Description Requi
red

Default
value

retry Number of retries before the service is marked as down. option
al

0

command The {check_name} of the command configured as
`command[{check_name}]="/path/to/plugin/check-script"

requir
ed

empty

port Port to access NRPE on the remote server. option
al

5666

padding Padding for sending the command to the NRPE agent. option
al

2

usessl Enable encryption of network communication. NRPE uses SSL with
anonymous DH and the following cipher suite
TLS_DH_anon_WITH_AES_128_CBC_SHA

option
al

true

This monitor implements the Common Configuration Parameters.

Example: Using check_apt with NRPE

This examples shows how to configure the NrpeMonitor running the check_apt command on a
configured NRPE.

Configuration of the NRPE check command on the agent in 'nrpe.cfg'

command[check_apt]=/usr/lib/nagios/plugins/check_apt

Configuration to test the NRPE plugin with the NrpeMonitor

<service name="NRPE-Check-APT" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3" />
 <parameter key="timeout" value="3000" />
 <parameter key="port" value="5666" />
 <parameter key="command" value="check_apt" />
 <parameter key="padding" value="2" />
</service>

<monitor service="NRPE-Check-APT" class-name=
"org.opennms.netmgt.poller.monitors.NrpeMonitor" />

129

6.6.33. NtpMonitor

The NTP monitor tests for NTP service availability. During the poll an NTP request query packet is
generated. If a response is received, it is parsed and validated. If the response is a valid NTP
response, the service is considered available.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NtpMonitor

Remote Enabled true

Configuration and Usage

Table 48. Monitor specific parameters for the NtpMonitor

Paramete
r

Description Require
d

Default
value

port The destination port where the NTP request shall be sent. optional 123

retry Number of attempts to get a response. optional 0

timeout Time in milliseconds to wait for a response. optional 5000

This monitor implements the Common Configuration Parameters.

Examples

<!-- Fast NTP server -->
<service name="NTP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="1000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="ntp"/>
 <parameter key="ds-name" value="ntp"/>
</service>
<monitor service="NTP" class-name="org.opennms.netmgt.poller.monitors.NtpMonitor"/>

6.6.34. OmsaStorageMonitor

With OmsaStorageMonitor you are able to monitor your Dell OpenManaged servers RAID array
status. The following OIDs from the STORAGEMANAGEMENT-MIB are supported by this monitor:

virtualDiskRollUpStatus .1.3.6.1.4.1.674.10893.1.20.140.1.1.19
arrayDiskLogicalConnectionVirtualDiskNumber .1.3.6.1.4.1.674.10893.1.20.140.3.1.5
arrayDiskNexusID .1.3.6.1.4.1.674.10893.1.20.130.4.1.26
arrayDiskLogicalConnectionArrayDiskNumber .1.3.6.1.4.1.674.10893.1.20.140.3.1.3
arrayDiskState .1.3.6.1.4.1.674.10893.1.20.130.4.1.4

130

http://de.community.dell.com/techcenter/systems-management/w/wiki/438.dell-openmanage-server-administrator-omsa.aspx
http://support.dell.com/support/systemsinfo/document.aspx?~file=/software/svradmin/2.2/en/snmp/snmpc22.htm

To test the status of the disk array the virtualDiskRollUpStatus is used. If the result of the
virtualDiskRollUpStatus is not 3 the monitors is marked as down.

Table 49. Possible result of virtual disk rollup status

Resul
t

State
description

Monitor state in OpenNMS
Meridian

1 other DOWN

2 unknown DOWN

3 ok UP

4 non-critical DOWN

5 critical DOWN

6 non-recoverable DOWN

You’ll need to know the maximum number of possible logical disks you have in
your environment. For example: If you have 3 RAID arrays, you need for each
logical disk array a service poller.

To give more detailed information in case of an disk array error, the monitor tries to identify the
problem using the other OIDs. This values are used to enrich the error reason in the service down
event. The disk array state is resolved to a human readable value by the following status table.

Table 50. Possible array disk
state errors

Valu
e

Status

1 Ready

2 Failed

3 Online

4 Offline

6 Degraded

7 Recovering

11 Removed

15 Resynching

24 Rebuilding

25 noMedia

26 Formating

131

Valu
e

Status

28 Running Diagnostics

35 Initializing

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.OmsaStorageMonitor

Remote Enabled false

Configuration and Usage

Table 51. Monitor specific parameters for the OmsaStorageMonitor

Parameter Description Require
d

Default value

virtualDiskNumber The disk index of your RAID array optional 1

port The TCP port OpenManage is listening optional from snmp-config.xml

This monitor implements the Common Configuration Parameters.

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml. The
RAID array monitor for your first array is configured with virtualDiskNumber = 1 and can look like
this:

<service name="OMSA-Disk-Array-1" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="6000"/>
 <parameter key="virtualDiskNumber" value="1"/>
</service>

<monitor service="OMSA-Disk-Array-1" class-name=
"org.opennms.netmgt.poller.monitors.OmsaStorageMonitor"/>

If there is more than one RAID array to monitor you need an additional configuration. In this case
virtualDiskNumber = 2.

132

<service name="OMSA-Disk-Array-2" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="6000"/>
 <parameter key="virtualDiskNumber" value="2"/>
</service>

<monitor service="OMSA-Disk-Array-2" class-name=
"org.opennms.netmgt.poller.monitors.OmsaStorageMonitor"/>

6.6.35. OpenManageChassisMonitor

The OpenManageChassis monitor tests the status of a Dell chassis by querying its SNMP agent. The
monitor polls the value of the node’s SNMP OID .1.3.6.1.4.1.674.10892.1.300.10.1.4.1 (MIB-Dell-
10892::chassisStatus). If the value is OK (3), the service is considered available.

As this monitor uses SNMP, the queried nodes must have proper SNMP configuration in snmp-
config.xml.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.OpenManageChassisMonitor

Remote Enabled false

Configuration and Usage

Table 52. Monitor specific parameters for the OpenManageChassisMonitor

Paramete
r

Description Require
d

Default value

port The port to which connection shall be tried. optional from snmp-config.xml

This monitor implements the Common Configuration Parameters.

Examples

<!-- Overriding default SNMP config -->
<service name="OMA-Chassis" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="5000"/>
</service>

<monitor service="OMA-Chassis" class-name=
"org.opennms.netmgt.poller.monitors.OpenManageChassisMonitor" />

133

Dell MIBs

Dell MIBs can be found here. Download the DCMIB<version>.zip or DCMIB<version>.exe file
corresponding to the version of your OpenManage agents. The latest one should be good enough for
all previous version though.

6.6.36. PageSequenceMonitor

The PageSequenceMonitor (PSM) allows OpenNMS to monitor web applications. This monitor has
several configuration options regarding IPv4, IPv6 and how to deal with name resolution. To add
flexibility, the node label and IP address can be passed as variable into the monitor. This allows
running the monitor with node dependent configuration. Beyond testing a web application with a
single URL it can also test a path through a web application. A test path through an web application
can look like this:

1. login to a certain web application

2. Execute an action while being logged in

3. Log off

The service is considered as up if all this is working ok. If there’s an error somewhere, your
application will need attention and the service changes the state to down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.PageSequenceMonitor

Remote Enabled true

Configuration and Usage

The configuration for this monitor consists of several parts. First is the overall configuration for
retries and timeouts. These parameters are global for the whole path through the web application.

134

ftp://ftp.us.dell.com/sysman

Figure 30. Configuration overview of the PSM

The overall layout of the monitor configuration is more complex. Additionally, it is possible to
configure a page sequence containing a path through a web application.

Table 53. Monitor parameters for the PageSequenceMonitor

Parameter Description Requi
red

Default
value

retry The number of retries per page. option
al

0

strict-
timeout

Defines a timer to wait before a retry attempt is made. It is only
used if at least one (1) retry is configured. If retry >= 1 and strict-
timeout is true the next attempt is delayed and the Poller Daemon
waits NOW - InitialAttempt ms + Timeout ms. With strict-timout =
false the next attempt is started right after a failure.

option
al

false

page-
sequence

Definition of the page-sequence to execute, see table with Page
Sequence Parameter

requir
ed

-

sequence-
retry

The retry parameter for the entire page sequence. option
al

0

135

Parameter Description Requi
red

Default
value

use-system-
proxy

Should the system wide proxy settings be used? The system proxy
settings can be configured via system properties

option
al

false

This monitor implements the Common Configuration Parameters.

Table 54. Page Sequence Parameter

Parameter Description Requ
ired

Default

name The name of the page-sequence. (Is this
relevant/used?)

optio
nal

-

method HTTP method for example GET or POST - -

http-version HTTP protocol version number, 0.9, 1.0 or 1.1 optio
nal

HTTP/1.1

user-agent Set the user agent field in HTTP header to
identify the OpenNMS monitor

optio
nal

OpenNMS PageSequenceMonitor
(Service name: "${SERVICE
NAME}")

virtual-host Set the virtual host field in HTTP header. In
case of an HTTPS request, this is also the
virtual domain to send as part of the TLS
negotiation, known as server name indication
(SNI) (See: RFC3546 section 3.1)

- -

path The relative URL to call in the request. requi
red

-

scheme Define the URL scheme as http or https optio
nal

http

user-info Set user info field in the HTTP header - -

host Set host field in HTTP header optio
nal

IP interface address of the
service

requireIPv6 Communication requires a connection to an
IPv6 address. (true or false)

- -

requireIPv4 Communication requires a connection to an
IPv4 address. (true or false)

- -

disable-ssl-
verification

Enable or disable SSL certificate verification
for HTTPS tests. Please use this option
carefully, for self-signed certificates import the
CA certificate in the JVM and don’t just disable
it.

optio
nal

false

136

#ga-opennms-system-properties
https://www.ietf.org/rfc/rfc3546.txt

Parameter Description Requ
ired

Default

port Port of the web server connecting to optio
nal

80

query ?? - -

failureMatch Text to look for in the response body. This is a
Regular Expression matched against every
line, and it will be considered a failure at the
first match and sets the service with this
monitor Down.

- -

failureMessa
ge

The failure message is used to construct the
reason code. ${n} values may be used to pull
information from matching groups in the
failureMatch regular expression.

- -

successMatch Text to look for in the response body. This is a
Regular Expression matched against every
line, and it will be considered a success at the
first match and sets the service with this
monitor Up.

optio
nal

-

locationMatc
h

The relative URL which must be loaded for the
request to be considered successful.

optio
nal

-

response-
range

Range for allowed HTTP error codes from the
response.

- -

session-
variable

Assign the value of a regex match group to a
session variable with a user-defined name.
The match group is identified by number and
must be zero or greater.

- -

response-
range

A comma-separated list of acceptable HTTP
response code ranges (200-202,299).

optio
nal

100-399

If you set requireIPv4 and requireIPv6 false, the host IP for connection will be
resolved from system name resolver and the associated IP address from the IP
interface is ignored.

Table 55. Variables which can be passed in the configuration

Variable Description

${nodelabel} Nodelabel of the node the monitor is associated to.

137

Session variables

It is possible to assign strings from a retrieved page to variables that can be used in page
parameters later in the same sequence. First, specify one or more capturing groups in the
successMatch expression (see Java Class Pattern for more information on regular expressions in
Java). The captured values can then be assigned to variable names by using the session-variable
parameter, and used in a later page load.

Per-page response times

It is possible to collect response times for individual pages in a sequence. To use this functionality, a
ds-name attribute must be added to each page whose load time should be tracked. The response time
for each page will be stored in the same RRD file specified for the service via the rrd-base-name
parameter under the specified datasource name.

You will need to delete existing RRD files and let them be recreated with the new
list of datasources when you add a ds-name attribute to a page in a sequence that is
already storing response time data.

Examples

The following example shows how to monitor the OpenNMS web application using several
mechanisms. It first does an HTTP GET of ${ipaddr}/opennms (following redirects as a browser
would) and then checks to ensure that the resulting page has the phrase Password on it. Next, a login
is attempted using HTTP POST to the relative URL for submitting form data (usually, the URL which
the form action points to). The parameters (j_username and j_password) indicate the form’s data and
values to be submitted. Furthermore a custom header (foo) is set for demonstration purposes. After
getting the resulting page, first the expression specified in the page’s failureMatch attribute is
verified, which when found anywhere on the page indicates that the page has failed. If the
failureMatch expression is not found in the resulting page, then the expression specified in the
page’s successMatch attribute is checked to ensure it matches the resulting page. If the successMatch
expression is not found on the page, then the page fails. If the monitor was able to successfully
login, then the next page is processed. In the example, the monitor navigates to the Event page, to
ensure that the text Event Queries is found on the page. Finally, the monitor calls the URL of the
logout page to close the session. By using the locationMatch parameter, it is verified that the logout
was successful and a redirect was triggered.

Each page is checked to ensure its HTTP response code fits into the response-range,
before the failureMatch, successMatch, and locationMatch expressions are
evaluated.

138

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Configuration to test the login to the OpenNMS Web application

<service name="OpenNMS-Web-Login" interval="30000" user-defined="true" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="5000"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="ds-name" value="opennmslogin"/>
 <parameter key="page-sequence">
 <page-sequence>
 <page path="/opennms/login.jsp"
 port="8980"
 successMatch="Password" />
 <page path="/opennms/j_spring_security_check"
 port="8980"
 method="POST">
 <parameter key="j_username" value="admin"/>
 <parameter key="j_password" value="admin"/>
 <header name="foo" value="bar"/>
 </page>
 <page path="/opennms/index.jsp"
 port="8980"
 successMatch="Log Out" />
 <page path="/opennms/event/index"
 port="8980" successMatch="Event Queries" />
 <page path="/opennms/j_spring_security_logout"
 port="8980"
 method="POST"
 response-range="300-399"
 locationMatch="/opennms" />
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Web-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

139

Test with mixing HTTP and HTTPS in a page sequence

<service name="OpenNMS-Web-Login" interval="30000" user-defined="true" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="5000"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="ds-name" value="opennmslogin"/>
 <parameter key="page-sequence">
 <page-sequence>
 <page scheme="http"
 host="ecomm.example.com"
 port="80"
 path="/ecomm/jsp/Login.jsp"
 virtual-host="ecomm.example.com"
 successMatch="eComm Login"
 timeout="10000"
 http-version="1.1"/>
 <page scheme="https"
 method="POST"
 host="ecomm.example.com" port="443"
 path="/ecomm/controller"
 virtual-host="ecomm.example.com"
 successMatch="requesttab_select.gif"
 failureMessage="Login failed: ${1}"
 timeout="10000"
 http-version="1.1">
 <parameter key="action_name" value="XbtnLogin"/>
 <parameter key="session_timeout" value=""/>
 <parameter key="userid" value="EXAMPLE"/>
 <parameter key="password" value="econ"/>
 </page>
 <page scheme="http"
 host="ecomm.example.com" port="80"
 path="/econsult/controller"
 virtual-host="ecomm.example.com"
 successMatch="You have successfully logged out of eComm"
 timeout="10000" http-version="1.1">
 <parameter key="action_name" value="XbtnLogout"/>
 </page>
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Web-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

140

Test login with dynamic credentials using session variables

<service name="OpenNMS-Web-Login" interval="30000" user-defined="true" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="5000"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="ds-name" value="opennmslogin"/>
 <parameter key="page-sequence">
 <page-sequence name="opennms-login-seq-dynamic-credentials">
 <page path="/opennms"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="(?s)User:.*(.*?).*?Password:.*?
(.*?)">
 <session-variable name="username" match-group="1" />
 <session-variable name="password" match-group="2" />
 </page>
 <page path="/opennms/j_acegi_security_check"
 port="80"
 virtual-host="demo.opennms.org"
 method="POST"
 failureMatch="(?s)Your log-in attempt failed.*Reason: ([^<]*)"
 failureMessage="Login Failed: ${1}"
 successMatch="Log out">"
 <parameter key="j_username" value="${username}" />
 <parameter key="j_password" value="${password}" />
 </page>
 <page path="/opennms/event/index.jsp"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="Event Queries" />
 <page path="/opennms/j_acegi_logout"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="logged off" />
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Web-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

141

Log in to demo.opennms.org without knowing username and password

<service name="OpenNMS-Demo-Login" interval="300000" user-defined="true" status="on">
 <parameter key="page-sequence">
 <page-sequence>
 <page path="/opennms"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="(?s)User:.*(.*?).*?Password:.*?
(.*?)">
 <session-variable name="username" match-group="1" />
 <session-variable name="password" match-group="2" />
 </page>
 <page path="/opennms/j_acegi_security_check"
 port="80"
 virtual-host="demo.opennms.org"
 method="POST"
 successMatch="Log out">"
 <parameter key="j_username" value="${username}" />
 <parameter key="j_password" value="${password}" />
 </page>
 <page path="/opennms/j_acegi_logout"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="logged off" />
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Demo-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

142

Example with per-page response times

<service name="OpenNMS-Login" interval="300000" user-defined="false" status="on">
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="opennmslogin"/>
 <parameter key="ds-name" value="overall"/>
 <parameter key="page-sequence">
 <page-sequence>
 <page path="/opennms/acegilogin.jsp"
 port="8980"
 ds-name="login-page"/>
 <page path="/opennms/event/index.jsp"
 port="8980"
 ds-name="event-page"/>
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

6.6.37. PercMonitor

This monitor tests the status of a PERC RAID array.

The monitor first polls the RAID-Adapter-MIB::logicaldriveTable (1.3.6.1.4.1.3582.1.1.2) to retrieve
the status of the RAID array you want to monitor. If the value of the status object of the
corresponding logicaldriveEntry is not 2, the array is degraded and the monitor further polls the
RAID-Adapter-MIB::physicaldriveTable (1.3.6.1.4.1.3582.1.1.3) to detect the failed drive(s).

This monitor requires the outdated persnmpd software to be installed on the
polled nodes. Please prefer using OmsaStorageMonitor monitor where possible.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.PercMonitor

Remote Enabled false (relies on SNMP configuration)

Configuration and Usage

Table 56. Monitor specific parameters for the PercMonitor

Paramete
r

Description Require
d

Default value

array The RAID array you want to monitor. optional 0.0

port The UDP port to connect to optional from snmp-config.xml

143

This monitor implements the Common Configuration Parameters.

Examples

<!-- Monitor 1st RAID arrays using configuration from snmp-config.xml -->
<service name="PERC" interval="300000" user-defined="false" status="on" />

<monitor service="PERC" class-name="org.opennms.netmgt.poller.monitors.PercMonitor" />

6.6.38. Pop3Monitor

The POP3 monitor tests for POP3 service availability on a node. The monitor first tries to establish a
TCP connection on the specified port. If a connection is established, a service banner should have
been received. The monitor makes sure the service banner is a valid POP3 banner (ie: starts with
+OK). If the banner is valid, the monitor sends a QUIT POP3 command and makes sure the service
answers with a valid response (ie: a response that starts with +OK). The service is considered
available if the service’s answer to the QUIT command is valid.

The behaviour can be simulated with telnet:

$ telnet mail.opennms.org 110
Trying 192.168.0.100
Connected to mail.opennms.org.
Escape character is '^]'.
+OK <21860.1076718099@mail.opennms.org>
quit
+OK
Connection closed by foreign host.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.Pop3Monitor

Remote Enabled true

Configuration and Usage

Table 57. Monitor specific parameters for the Pop3Monitor

Parameter Description Requir
ed

Default
value

port TCP port to connect to. option
al

110

retry Number of attempts to find the service available. option
al

0

144

Parameter Description Requir
ed

Default
value

strict-
timeout

If set to true, makes sure that at least timeout milliseconds are
elapsed between attempts.

option
al

false

This monitor implements the Common Configuration Parameters.

Examples

<service name="POP3" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="pop3"/>
 <parameter key="ds-name" value="pop3"/>
</service>
<monitor service="POP3" class-name="org.opennms.netmgt.poller.monitors.Pop3Monitor"/>

6.6.39. PrTableMonitor

The PrTableMonitor monitor tests the prTable of a Net-SNMP agent.

prTable definition

A table containing information on running programs/daemons configured
for monitoring in the snmpd.conf file of the agent. Processes violating the
number of running processes required by the agent’s configuration file are
flagged with numerical and textual errors.

— UCD-SNMP-MIB

The monitor looks up the prErrorFlag entries of this table. If the value of a prErrorFlag entry in this
table is set to "1" the service is considered unavailable.

prErrorFlag definition

An Error flag to indicate trouble with a process. It goes to 1 if there is an
error, 0 if no error.

— UCD-SNMP-MIB

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.PrTableMonitor

Remote Enabled false

145

http://www.net-snmp.org/docs/mibs/ucdavis.html#prTable

Configuration and Usage

Table 58. Monitor specific parameters for the PrTableMonitor

Parame
ter

Description Requir
ed

Default value

port The port to which connection shall be tried. optiona
l

from snmp-
config.xml

retries Deprecated. Same as retry. Parameter retry takes
precedence if both are set.

optiona
l

from snmp-
config.xml

This monitor implements the Common Configuration Parameters.

Examples

<!-- Overriding default SNMP config -->
<service name="Process-Table" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="5000"/>
</service>

<monitor service="Process-Table" class-name=
"org.opennms.netmgt.poller.monitors.PrTableMonitor" />

UCD-SNMP-MIB

The UCD-SNMP-MIB may be found here.

6.6.40. RadiusAuthMonitor

This monitor allows to test the functionality of the RADIUS authentication system. The availability
is tested by sending an AUTH packet to the RADIUS server. If a valid ACCEPT response is received,
the RADIUS service is up and considered as available. This monitor implements placeholder
substitution in parameter values.

To use this monitor it is required to install the RADIUS protocol for OpenNMS
Meridian.

{apt-get,yum} install {opennms-package-base-name}-plugin-protocol-radius

The test is similar to test the behavior of a RADIUS server by evaluating the result with the
command line tool radtest.

146

http://www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt
http://freeradius.org/rfc/rfc2865.html

root@vagrant:~# radtest "John Doe" hello 127.0.0.1 1812 radiuspassword
Sending Access-Request of id 49 to 127.0.0.1 port 1812
 User-Name = "John Doe"
 User-Password = "hello"
 NAS-IP-Address = 127.0.0.1
 NAS-Port = 1812
 Message-Authenticator = 0x00000000000000000000000000000000
rad_recv: Access-Accept packet from host 127.0.0.1 port 1812, id=49, length=37 ①
 Reply-Message = "Hello, John Doe"

① The Access-Accept message which is evaluated by the monitor.

Monitor facts

Class Name org.opennms.protocols.radius.monitor.RadiusAuthMonitor

Remote Enabled false

Configuration and Usage

Table 59. Monitor specific parameters for the RadiusAuthMonitor

Paramet
er

Description Requ
ired

Default
value

Placeholder
substitution

timeout Time in milliseconds to wait for the RADIUS service. optio
nal

5000 No

retry This is a placeholder for the second optional monitor
parameter description.

optio
nal

0 No

authport RADIUS authentication port. optio
nal

1812 No

acctport RADIUS accounting port. optio
nal

1813 No

user Username to test the authentication optio
nal

OpenNMS Yes

password Password to test the authentication optio
nal

OpenNMS Yes

secret The RADIUS shared secret used for communication
between the client/NAS and the RADIUS server.

optio
nal

secret Yes

authtype RADIUS authentication type. The following
authentication types are supported: chap, pap, mschapv1,
mschapv2, eapmd5, eapmschapv2, eapttls

optio
nal

pap No

nasid The Network Access Server identifier originating the
Access-Request.

optio
nal

opennms Yes

147

http://freeradius.org/rfc/rfc2865.html#NAS-Identifier

Paramet
er

Description Requ
ired

Default
value

Placeholder
substitution

inner-
protocol

When using EAP-TTLS authentication, this property
indicates the tunnelled authentication type. Only pap is
currently supported.

optio
nal

pap No

inner-
user

Username for the tunnelled pap authentication when
using EAP-TTLS.

optio
nal

Inner-
OpenNMS

Yes

This monitor implements the Common Configuration Parameters.

Examples

Example configuration how to configure the monitor in the poller-configuration.xml.

<service name="Radius-Authentication" interval="300000" user-defined="false" status=
"on">
 <parameter key="retry" value="3" />
 <parameter key="timeout" value="3000" />
 <parameter key="user" value="John Doe" />
 <parameter key="password" value="hello" />
 <parameter key="secret" value="radiuspassword" />
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response" />
 <parameter key="ds-name" value="radiusauth" />
</service>

<monitor service="Radius-Authentication" class-name=
"org.opennms.protocols.radius.monitor.RadiusAuthMonitor" />

6.6.41. SmbMonitor

This monitor is used to test the NetBIOS over TCP/IP name resolution in Microsoft Windows
environments. The monitor tries to retrieve a NetBIOS name for the IP address of the interface.
Name services for NetBIOS in Microsoft Windows are provided on port 137/UDP or 137/TCP.

The service uses the IP address of the interface, where the monitor is assigned to. The service is up
if for the given IP address a NetBIOS name is registered and can be resolved.

For troubleshooting see the usage of the Microsoft Windows command line tool nbtstat or on Linux
nmblookup.

Microsoft deprecated the usage of NetBIOS. Since Windows Server 2000 DNS is
used as the default name resolution.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SmbMonitor

148

Remote Enabled false

Configuration and Usage

Table 60. Monitor specific parameters for the SmbMonitor

Parameter Description Require
d

Default
value

do-node-
status

Try to get the NetBIOS node status type for the given
address

optional true

This monitor implements the Common Configuration Parameters.

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

<service name="SMB" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
</service>

<monitor service="SMB" class-name="org.opennms.netmgt.poller.monitors.SmbMonitor"/>

6.6.42. SmtpMonitor

The SMTP monitor tests for SMTP service availability on a node. The monitor first tries to establish
a TCP connection on the specified port. If a connection is established, a service banner should have
been received. The monitor makes sure the service banner is a valid SMTP banner (starts with
"220"). If the banner is valid, the monitor sends a HELO SMTP command, identifying itself with the
hostname of the OpenNMS server, and makes sure the service answers with a valid response (starts
with "250"). If the response to the HELO is valid, the monitor issues a QUIT SMTP command. The
service is considered available if the service’s answer to the HELO command is valid (starts with
"221").

The behaviour can be simulated with telnet or netcat:

$ nc -v gmail-smtp-in.l.google.com 25
Ncat: Version 7.60 (https://nmap.org/ncat)
Ncat: Connected to 2607:f8b0:4002:c06::1a:25.
220 mx.google.com ESMTP j17-v6si13545102ywb.87 - gsmtp
HELO opennms.com
250 mx.google.com at your service
QUIT
221 2.0.0 closing connection j17-v6si13545102ywb.87 - gsmtp

149

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SmtpMonitor

Remote Enabled true

Configuration and Usage

Table 61. Monitor specific parameters for the SmtpMonitor

Paramet
er

Description Requir
ed

Default
value

port TCP port to connect to. optiona
l

25

retry Number of attempts to find the service available. optiona
l

0

timeout Timeout in milliseconds for the underlying socket’s connect and
read operations.

optiona
l

3000

Examples

<service name="SMTP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1" />
 <parameter key="timeout" value="3000" />
 <parameter key="port" value="25" />
 <parameter key="rrd-repository" value="${install.share.dir}/rrd/response" />
 <parameter key="rrd-base-name" value="smtp" />
 <parameter key="ds-name" value="smtp" />
</service>
<monitor service="SMTP" class-name="org.opennms.netmgt.poller.monitors.SmtpMonitor" />

6.6.43. SnmpMonitor

The SNMP monitor gives a generic possibility to monitor states and results from SNMP agents. This
monitor has two basic operation modes:

• Test the response value of one specific OID (scalar object identifier);

• Test multiple values in a whole table.

To decide which mode should be used, the walk and match-all parameters are used.

See the Operating mode selection'' and Monitor specific parameters for the SnmpMonitor'' tables
below for more information about these operation modes.

Table 62. Operating mode selection

150

walk match-
all

Operating mode

true true tabular, all values must match

false tabular, any value must match

count specifies that the value of at least minimum and at most maximum objects
encountered in

fals
e

true scalar

false scalar

count tabular, between minimum and maximum values must match

This monitor can’t be used on the OpenNMS Meridian Remote Poller. It is currently
not possible for the Remote Poller to have access to the SNMP configuration of a
central OpenNMS Meridian.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SnmpMonitor

Remote Enabled false

When the monitor is configured to persist the response time, it will count the total amount of time
spent until a successful response is obtained, including the retries. It won’t store the time spent
during the last successful attempt.

Configuration and Usage

Table 63. Monitor specific parameters for the SnmpMonitor

Paramet
er

Description Requ
ired

Default value

hex Specifies that the value monitored should be
compared against its hexadecimal representation.
Useful when the monitored value is a string
containing non-printable characters.

optio
nal

false

151

Paramet
er

Description Requ
ired

Default value

match-all Can be set to:
count: specifies that the value of at least minimum
and at most maximum objects encountered in the
walk must match the criteria specified by operand and
operator.
true and walk is set to true: specifies that the value of
every object encountered in the walk must match the
criteria specified by the operand and operator
parameters.
false and walk is set to true: specifies that the value of
any object encountered in the walk must match the
criteria specified by the operand and operator
parameters.

optio
nal

true

maximum Valid only when match-all is set to count, otherwise
ignored. Should be used in conjunction with the
minimum parameter. Specifies that the value of at most
maximum objects encountered in the walk must meet
the criteria specified by the operand and operator
parameters.

optio
nal

0

minimum Valid only when match-all is set to count, otherwise
ignored. Should be used in conjunction with the
maximum parameter. Specifies that the value of at least
minimum objects encountered in the walk must meet
the criteria specified by the operand and operator
parameters.

optio
nal

0

oid The object identifier of the MIB object to monitor. If
no other parameters are present, the monitor asserts
that the agent’s response for this object must include
a valid value (as opposed to an error, no-such-name,
or end-of-view condition) that is non-null.

optio
nal

.1.3.6.1.2.1.1.2.0

(SNMPv2-
MIB::SysObjectID)

operand The value to be compared against the observed value
of the monitored object. Note: Comparison will
always succeed if either the operand or operator
parameter isn’t set and the monitored value is non-
null.

optio
nal

-

152

Paramet
er

Description Requ
ired

Default value

operator The operator to be used for comparing the monitored
object against the operand parameter. Must be one of
the following symbolic operators:
< (<): Less than. Both operand and observed object
value must be numeric.
> (>): Greater than. Both operand and observed
object value must be numeric.
<= (⇐): Less than or equal to. Both operand and
observed object value must be numeric.
>= (>=): Greater than or equal to. Both operand and
observed object value must be numeric.
=: Equal to. Applied in numeric context if both
operand and observed object value are numeric,
otherwise in string context as a case-sensitive exact
match.
!=: Not equal to. Applied in numeric context if both
operand and observed object value are numeric,
otherwise in string context as a case-sensitive exact
match.
~: Regular expression match. Always applied in string
context.
Note: Comparison will always succeed if either the
operand or operator parameter isn’t set and the
monitored value is non-null. Keep in mind that you
need to escape all < and > characters as XML entities
(< and > respectively)

optio
nal

-

port Destination port where the SNMP requests shall be
sent.

optio
nal

from snmp-config.xml

reason-
template

A user-provided template used for the monitor’s
reason code if the service is unvailable. Defaults to a
reasonable value if unset. See below for an
explanation of the possible template parameters.

optio
nal

depends on operation
mode

retries Deprecated Same as retry. Parameter retry takes
precedence if both are set.

optio
nal

from snmp-config.xml

walk false: Sets the monitor to poll for a scalar object
unless if the match-all parameter is set to count, in
which case the match-all parameter takes precedence.
true: Sets the monitor to poll for a tabular object
where the match-all parameter defines how the
tabular object’s values must match the criteria
defined by the operator and operand parameters. See
also the match-all, minimum, and maximum parameters.

optio
nal

false

153

This monitor implements the Common Configuration Parameters.

Table 64. Variables which can be used in the reason-template parameter

Variable Description

${hex} Value of the hex parameter.

${ipaddr} IP address polled.

${matchAll} Value of the match-all parameter.

${matchCount} When match-all is set to count, contains the number of matching instances
encountered.

${maximum} Value of the maximum parameter.

${minimum} Value of the minimum paramater.

${observedValue
}

Polled value that made the monitor succeed or fail.

${oid} Value of the oid parameter.

${operand} Value of the operand parameter.

${operator} Value of the operator parameter.

${port} Value of the port parameter.

${retry} Value of the retry parameter.

${timeout} Value of the timeout parameter.

${walk} Value of the walk parameter.

Example for monitoring scalar object

As a working example we want to monitor the thermal system fan status which is provided as a
scalar object ID.

cpqHeThermalSystemFanStatus .1.3.6.1.4.1.232.6.2.6.4.0

The manufacturer MIB gives the following information:

154

Description of the cpqHeThermalSystemFanStatus from CPQHLTH-MIB

SYNTAX INTEGER {
 other (1),
 ok (2),
 degraded (3),
 failed (4)
}
ACCESS read-only
DESCRIPTION
"The status of the fan(s) in the system.

This value will be one of the following:
other(1)
Fan status detection is not supported by this system or driver.

ok(2)
All fans are operating properly.

degraded(3)
A non-required fan is not operating properly.

failed(4)
A required fan is not operating properly.

If the cpqHeThermalDegradedAction is set to shutdown(3) the
system will be shutdown if the failed(4) condition occurs."

The SnmpMonitor is configured to test if the fan status returns ok(2). If so, the service is marked as
up. Any other value indicates a problem with the thermal fan status and marks the service down.

Example SnmpMonitor as HP InsightManager fan monitor in poller-configuration.xml

<service name="HP-Insight-Fan-System" interval="300000" user-defined="false" status=
"on">
 <parameter key="oid" value=".1.3.6.1.4.1.232.6.2.6.4.0"/>①
 <parameter key="operator" value="="/>②
 <parameter key="operand" value="2"/>③
 <parameter key="reason-template" value="System fan status is not ok. The state
should be ok(${operand}) the observed value is ${observedValue}. Please check your HP
Insight Manager. Syntax: other(1), ok(2), degraded(3), failed(4)"/>④
</service>

<monitor service="HP-Insight-Fan-System" class-name=
"org.opennms.netmgt.poller.monitors.SnmpMonitor" />

① Scalar object ID to test

② Operator for testing the response value

③ Integer 2 as operand for the test

155

http://h18013.www1.hp.com/products/servers/management/hpsim/mibkit.html

④ Encode MIB status in the reason code to give more detailed information if the service goes down

Example test SNMP table with all matching values

The second mode shows how to monitor values of a whole SNMP table. As a practical use case the
status of a set of physical drives is monitored. This example configuration shows the status
monitoring from the CPQIDA-MIB.

We use as a scalar object id the physical drive status given by the following tabular OID:

cpqDaPhyDrvStatus .1.3.6.1.4.1.232.3.2.5.1.1.6

Description of the cpqDaPhyDrvStatus object id from CPQIDA-MIB

SYNTAX INTEGER {
 other (1),
 ok (2),
 failed (3),
 predictiveFailure (4)
}
ACCESS read-only
DESCRIPTION
Physical Drive Status.
This shows the status of the physical drive.
The following values are valid for the physical drive status:

other (1)
 Indicates that the instrument agent does not recognize
 the drive. You may need to upgrade your instrument agent
 and/or driver software.

ok (2)
 Indicates the drive is functioning properly.

failed (3)
 Indicates that the drive is no longer operating and
 should be replaced.

predictiveFailure(4)
 Indicates that the drive has a predictive failure error and
 should be replaced.

The configuration in our monitor will test all physical drives for status ok(2).

156

http://h18013.www1.hp.com/products/servers/management/hpsim/mibkit.html

Example SnmpMonitor as HP Insight physical drive monitor in poller-configuration.xml

<service name="HP-Insight-Drive-Physical" interval="300000" user-defined="false"
status="on">
 <parameter key="oid" value=".1.3.6.1.4.1.232.3.2.5.1.1.6"/>①
 <parameter key="walk" value="true"/>②
 <parameter key="operator" value="="/>③
 <parameter key="operand" value="2"/>④
 <parameter key="match-all" value="true"/>⑤
 <parameter key="reason-template" value="One or more physical drives are not ok.
The state should be ok(${operand}) the observed value is ${observedValue}. Please
check your HP Insight Manager. Syntax: other(1), ok(2), failed(3),
predictiveFailure(4), erasing(5), eraseDone(6), eraseQueued(7)"/>⑥
</service>

<monitor service="HP-Insight-Drive-Physical" class-name=
"org.opennms.netmgt.poller.monitors.SnmpMonitor" />

① OID for SNMP table with all physical drive states

② Enable walk mode to test every entry in the table against the test criteria

③ Test operator for integer

④ Integer 2 as operand for the test

⑤ Test in walk mode has to be passed for every entry in the table

⑥ Encode MIB status in the reason code to give more detailed information if the service goes down

Example test SNMP table with all matching values

This example shows how to use the SnmpMonitor to test if the number of static routes are within a
given boundary. The service is marked as up if at least 3 and at maxium 10 static routes are set on a
network device. This status can be monitored by polling the table ipRouteProto from the RFC1213-
MIB2.

ipRouteProto 1.3.6.1.2.1.4.21.1.9

The MIB description gives us the following information:

157

http://www.ietf.org/rfc/rfc1213.txt
http://www.ietf.org/rfc/rfc1213.txt

SYNTAX INTEGER {
 other(1),
 local(2),
 netmgmt(3),
 icmp(4),
 egp(5),
 ggp(6),
 hello(7),
 rip(8),
 is-is(9),
 es-is(10),
 ciscoIgrp(11),
 bbnSpfIgp(12),
 ospf(13),
 bgp(14)}
}
ACCESS read-only
DESCRIPTION
"The routing mechanism via which this route was learned.
Inclusion of values for gateway routing protocols is not
intended to imply that hosts should support those protocols."

To monitor only local routes, the test should be applied only on entries in the ipRouteProto table
with value 2. The number of entries in the whole ipRouteProto table has to be counted and the
boundaries on the number has to be applied.

Example SnmpMonitor used to test if the number of local static route entries are between 3 or 10.

<service name="All-Static-Routes" interval="300000" user-defined="false" status="on">
 <parameter key="oid" value=".1.3.6.1.2.1.4.21.1.9" />①
 <parameter key="walk" value="true" />②
 <parameter key="operator" value="=" />③
 <parameter key="operand" value="2" />④
 <parameter key="match-all" value="count" />⑤
 <parameter key="minimum" value="3" />⑥
 <parameter key="maximum" value="10" />⑦
</service>

<monitor service="All-Static-Routes" class-name=
"org.opennms.netmgt.poller.monitors.SnmpMonitor" />

① OID for SNMP table ipRouteProto

② Enable walk mode to test every entry in the table against the test criteria

③ Test operator for integer

④ Integer 2 as operand for testing local route entries

⑤ Test in walk mode has is set to count to get the number of entries in the table regarding operator
and operand

158

⑥ Lower count boundary set to 3

⑦ High count boundary is set to 10

6.6.44. SshMonitor

The SshMonitor tests the availability of a SSH service. During the poll an attempt is made to connect
on the specified port. If the connection request is successful, then the service is considered up.
Optionaly, the banner line generated by the service may be parsed and compared against a pattern
before the service is considered up.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SshMonitor

Remote Enabled true

Configuration and Usage

Table 65. Monitor specific parameters for the SshMonitor

Paramet
er

Description Requi
red

Default value

banner Regular expression to be matched against the service’s banner. option
al

-

client-
banner

The client banner that OpenNMS Meridian will use to identify
itself on the service.

option
al

SSH-1.99-
OpenNMS_1.5

match Regular expression to be matched against the service’s banner.
Deprecated, please use the banner parameter instead.
Note that this parameter takes precedence over the banner
parameter, though.

option
al

-

port TCP port to which SSH connection shall be tried. option
al

22

retry Number of attempts to establish the SSH connnection. option
al

0

This monitor implements the Common Configuration Parameters.

Examples

159

<service name="SSH" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="banner" value="SSH"/>
 <parameter key="client-banner" value="OpenNMS poller"/>
 <parameter key="timeout" value="5000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="ssh"/>
 <parameter key="ds-name" value="ssh"/>
</service>
<monitor service="SSH" class-name="org.opennms.netmgt.poller.monitors.SshMonitor"/>

6.6.45. SSLCertMonitor

This monitor is used to test if a SSL certificate presented by a remote network server are valid. A
certificate is invalid if its initial time is prior to the current time, or if the current time is prior to 7
days (configurable) before the expiration time.

You can simulate the behavior by running a command like this:

echo | openssl s_client -connect <site>:<port> 2>/dev/null | openssl x509 -noout
-dates

The output shows you the time range a certificate is valid:

notBefore=Dec 24 14:11:34 2013 GMT
notAfter=Dec 25 10:37:40 2014 GMT

You can configure a threshold in days applied on the notAfter date.

While the monitor is mainly useful for plain SSL sockets, the monitor does provide limited support
for STARTTLS protocols by providing the user with the ability to specify a STARTTLS message to be
sent prior to the SSL negotiation and a regular expression to match to the response received from
the server. An additional preliminary message and response regular expression pair is available for
protocols that require it (such as XMPP).

This monitor implements placeholder substitution in parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SSLCertMonitor

Remote Enabled true

Configuration and Usage

Table 66. Monitor specific parameters for the SSLCertMonitor

160

Parameter Description Requ
ired

Default
value

Placeholde
r substition

port TCP port for the service with SSL certificate. requi
red

-1 No

retry Number of attempts to get the certificate state optio
nal

0 No

days Number of days before the certificate expires that
we mark the service as failed.

optio
nal

7 No

server-name This is the DNS hostname to send as part of the TLS
negotiation, known as server name indication (SNI)
(See: RFC3546 section 3.1)

optio
nal

- No

starttls-
preamble

Preliminary message to send to server prior to
STARTTLS command.

optio
nal

`` Yes

starttls-
preamble-
response

Regular expression which must match response to
preliminary message sent to server prior to
STARTTLS command.

optio
nal

`` Yes

starttls-start STARTTLS command. optio
nal

`` Yes

starttls-
start-response

Regular expression which must match response to
STARTTLS command sent to server.

optio
nal

`` Yes

This monitor implements the Common Configuration Parameters.

Table 67. Variables which can be passed in the configuration
for server-name

Variable Description

${ipaddr} The node’s IP-Address

${nodeid} The node ID

${nodelabel} Label of the node the monitor is associated to.

${svcname} The service name

The monitor has limited support for communicating on other protocol layers
above the SSL session layer. The STARTTLS support has only been tested with a
single XMPP server. It is not known if the same approach will prove useful for
other use cases, like sending a Host header for HTTPS, or issue a STARTTLS
command for IMAP, POP3, SMTP, FTP, LDAP, or NNTP.

Examples

The following examples show how to monitor SSL certificates on services like IMAPS, SMTPS and

161

https://www.ietf.org/rfc/rfc3546.txt

HTTPS as well as an example use of the STARTTLS feature for XMPP. If the certificates expire within
30 days the service goes down and indicates this issue in the reason of the monitor. In this example
the monitoring interval is reduced to test the certificate every 2 hours (7,200,000 ms). Configuration
in poller-configuration.xml is as the following:

162

<service name="SSL-Cert-IMAPS-993" interval="7200000" user-defined="false" status="on
">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="port" value="993"/>
 <parameter key="days" value="30"/>
</service>
<service name="SSL-Cert-SMTPS-465" interval="7200000" user-defined="false" status="on
">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="port" value="465"/>
 <parameter key="days" value="30"/>
</service>
<service name="SSL-Cert-HTTPS-443" interval="7200000" user-defined="false" status="on
">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="443"/>
 <parameter key="days" value="30"/>
 <parameter key="server-name" value="${nodelabel}.example.com"/>
</service>
<service name="XMPP-STARTTLS-5222" interval="7200000" user-defined="false" status="on
">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="5222"/>
 <parameter key="days" value="30"/>
 <parameter key="starttls-preamble" value="<stream:stream
xmlns:stream='http://etherx.jabber.org/streams' xmlns='jabber:client' to='{ipAddr}'
version='1.0'>"/>
 <parameter key="starttls-preamble-response" value="^.*starttls.*$"/>
 <parameter key="starttls-start" value="<starttls
xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>"/>
 <parameter key="starttls-start-response" value="^.*starttls.*$"/>
</service>

<monitor service="SSL-Cert-IMAPS-993" class-name=
"org.opennms.netmgt.poller.monitors.SSLCertMonitor" />
<monitor service="SSL-Cert-SMTPS-465" class-name=
"org.opennms.netmgt.poller.monitors.SSLCertMonitor" />
<monitor service="SSL-Cert-HTTPS-443" class-name=
"org.opennms.netmgt.poller.monitors.SSLCertMonitor" />
<monitor service="XMPP-STARTTLS-5222" class-name=
"org.opennms.netmgt.poller.monitors.SSLCertMonitor" />

6.6.46. StrafePingMonitor

This monitor is used to monitor packet delay variation to a specific endpoint using ICMP. The main

163

http://en.wikipedia.org/wiki/Packet_delay_variation

use case is to monitor a WAN end point and visualize packet loss and ICMP packet round trip time
deviation. The StrafePingMonitor performs multiple ICMP echo requests (ping) and stores the
response-time of each as well as the packet loss, in a RRD file. Credit is due to Tobias Oetiker, as this
graphing feature is an adaptation of the SmokePing tool that he developed.

Figure 31. Visualization of a graph from the StrafePingMonitor

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.StrafePingMonitor

Remote Enabled false

Configuration and Usage

Monitor specific parameters for the StrafePingMonitor

Parameter Description Requi
red

Default value

timeout Time in milliseconds to wait before assuming that a
packet has not responded

option
al

800

retry The number of retries to attempt when a packet fails
to respond in the given timeout

option
al

2

ping-count The number of pings to attempt each interval requir
ed

20

failure-
ping-count

The number of pings that need to fail for the service
to be considered down

requir
ed

20

allow-
fragmentatio
n

Whether to set the "Don’t Fragment" bit on outgoing
packets

option
al

true

dscp DSCP traffic-control value. option
al

0

164

http://oss.oetiker.ch/smokeping/

Parameter Description Requi
red

Default value

packet-size Number of bytes of the ICMP packet to send. option
al

64

wait-
interval

Time in milliseconds to wait between each ICMP echo-
request packet

requir
ed

50

rrd-
repository

The location to write RRD data. Generally, you will not
want to change this from default

requir
ed

$OPENNMS_HOME/share/
rrd/response

rrd-base-
name

The name of the RRD file to write (minus the
extension, .rrd or .jrb)

requir
ed

strafeping

This monitor implements the Common Configuration Parameters.

Examples

The StrafePingMonitor is typically used on WAN connections and not activated for every ICMP
enabled device in your network. Further this monitor is much I/O heavier than just a simple RRD
graph with a single ICMP response time measurement. By default you can find a separate poller
package in the 'poller-configuration.xml' called strafer. Configure the include-range or a filter to
enable monitoring for devices with the service StrafePing.

 Don’t forget to assign the service StrafePing on the IP interface to be activated.

The following example enables the monitoring for the service StrafePing on IP interfaces in the
range 10.0.0.1 until 10.0.0.20. Additionally the Nodes have to be in a surveillance category named
Latency.

165

<package name="strafer" >
 <filter>categoryName == 'Latency'</filter>
 <include-range begin="10.0.0.1" end="10.0.0.20"/>
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <service name="StrafePing" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="0"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="ping-count" value="20"/>
 <parameter key="failure-ping-count" value="20"/>
 <parameter key="wait-interval" value="50"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="strafeping"/>
 </service>
 <downtime interval="30000" begin="0" end="300000"/>
 <downtime interval="300000" begin="300000" end="43200000"/>
 <downtime interval="600000" begin="43200000" end="432000000"/>
 <downtime begin="432000000" delete="true"/>
 </package>
 <monitor service="StrafePing" class-name=
"org.opennms.netmgt.poller.monitors.StrafePingMonitor"/>

6.6.47. TcpMonitor

This monitor is used to test IP Layer 4 connectivity using TCP. The monitor establishes an TCP
connection to a specific port. To test the availability of the service, the greetings banner of the
application is evaluated. The behavior is similar to a simple test using the telnet command as
shown in the example.

Simulating behavior of the monitor with telnet

root@vagrant:~# telnet 127.0.0.1 22
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 ①

① Service greeting banner

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.TcpMonitor

Remote Enabled true

166

Configuration and Usage

Table 68. Monitor specific parameters for the TcpMonitor

Param
eter

Description Requi
red

Default
value

port TCP port of the application. requir
ed

-1

retry Number of retries before the service is marked as down. option
al

0

banner Evaluation of the service connection banner with regular expression.
By default any banner result is valid.

option
al

*

This monitor implements the Common Configuration Parameters.

Examples

This example shows to test if the ICA service is available on TCP port 1494. The test evaluates the
connection banner starting with ICA.

<service name="TCP-Citrix-ICA" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="0" />
 <parameter key="banner" value="ICA" />
 <parameter key="port" value="1494" />
 <parameter key="timeout" value="3000" />
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response" />
 <parameter key="rrd-base-name" value="tcpCitrixIca" />
 <parameter key="ds-name" value="tcpCitrixIca" />
</service>

<monitor service="TCP-Citrix-ICA" class-name=
"org.opennms.netmgt.poller.monitors.TcpMonitor" />

6.6.48. SystemExecuteMonitor

If it is required to execute a system call or run a script to determine a service status, the
SystemExecuteMonitor can be used. It is calling a script or system command, if required it provides
additional arguments to the call. To determine the status of the service the SystemExecuteMonitor
can rely on 0 or a non-0 exit code of system call. As an alternative, the output of the system call can
be matched against a banner. If the banner is part of the output the status is interpreted as up. If
the banner is not available in the output the status is determined as down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SystemExecuteMonitor

Remote Enabled true

167

https://en.wikipedia.org/wiki/Independent_Computing_Architecture

Configuration and Usage

Table 69. Monitor specific parameters for the SystemExecuteMonitor

Param
eter

Description Requi
red

Default
value

script The system-call to execute. requir
ed

-

args The arguments to hand over to the system-call. It supports variable
replacement, see below.

option
al

-

banner A string that is match against the output of the system-call. If the
output contains the banner, the service is determined as UP.

option
al

-

The parameter args supports variable replacement for the following set of variables.

Providing always a script output with a more detailed test error makes it easier to
diagnose the problem when the nodeLostDown event occurs.

This monitor implements the Common Configuration Parameters.

Table 70. Variables which can be used in the configuration

Variable Description

${timeout} Timeout in milliseconds, based on config of the service.

${timeoutsec} Timeout in seconds, based on config of the service.

${retry} Amount of retries based on config of the service.

${svcname} Service name based on the config of the service.

${ipaddr} IP-address of the interface the service is bound to.

${nodeid} Nodeid of the node the monitor is associated to.

${nodelabel} Nodelabel of the node the monitor is associated to.

Examples

Placeholder usage

<parameter key="args" value="-i ${ipaddr} -t ${timeout}"/>
<parameter key="args" value="http://${nodelabel}/${svcname}/static"/>

Exit status example

168

<service name="Script_Example" interval="300000" user-defined="true" status="on">
 <parameter key="script" value="/opt/opennms/contrib/Script_Example.sh"/>
 <parameter key="timeout" value="5000"/>
</service>

<monitor service="Script_Example" class-name=
"org.opennms.netmgt.poller.monitors.SystemExecuteMonitor"/>

#!/usr/bin/env bash

...some test logic

RESULT="TEST OK"

if [["TEST OK" == "${RESULT}"]]; then
 echo "This test passed"
 exit 0
else
 echo "This test failed because of ..."
 exit 1
fi

Banner matching example

<service name="Script_Example" interval="300000" user-defined="true" status="on">
 <parameter key="script" value="/opt/opennms/contrib/Script_Example.sh"/>
 <parameter key="banner" value="PASSED"/>
 <parameter key="timeout" value="5000"/>
</service>

<monitor service="Script_Example" class-name=
"org.opennms.netmgt.poller.monitors.SystemExecuteMonitor"/>

#!/usr/bin/env bash

...some test logic

RESULT="TEST OK"

if [["TEST OK" == "${RESULT}"]]; then
 echo "PASSED"
else
 echo "FAILED"
fi

169

SystemExecuteMonitor vs GpMonitor

The SystemExecuteMonitor is the successor of the GpMonitor. The main differences are:

• Variable replacement for the parameter args

• There are no fixed arguments handed to the system-call

• The SystemExecuteMonitor supports RemotePoller deployment

To migrate services from the GpMonitor to the SystemExecuteMonitor it is required to alter the
parameter args. To match the arguments called hoption for the hostAddress and toption for the
timeoutInSeconds. The args string that matches the GpMonitor call looks like this:

<parameter key="args" value="--hostname ${ipaddr} --timeout ${timeoutsec}" />

To migrate the GpMonitor parameters hoption and toption just replace the --hostname and --timeout
directly in the args key.

6.6.49. VmwareCimMonitor

This monitor is part of the VMware integration provided in Provisiond. The monitor is specialized
to test the health status provided from all Host System (host) sensor data.

 This monitor is only executed if the host is in power state on.

This monitor requires to import hosts with Provisiond and the VMware import.
OpenNMS Meridian requires network access to VMware vCenter and the hosts. To
get the sensor data the credentials from vmware-config.xml for the responsible
vCenter is used. The following asset fields are filled from Provisiond and is
provided by VMware import feature: VMware Management Server, VMware
Managed Entity Type and the foreignId which contains an internal VMware vCenter
Identifier.

The global health status is evaluated by testing all available host sensors and evaluating the state of
each sensor. A sensor state could be represented as the following:

• Unknown(0)

• OK(5)

• Degraded/Warning(10)

• Minor failure(15)

• Major failure(20)

• Critical failure(25)

• Non-recoverable error(30)

The service is up if all sensors have the status OK(5). If any sensor gives another status then OK(5)
the service is marked as down. The monitor error reason contains a list of all sensors which not

170

returned status OK(5).

In case of using Distributed Power Management the standBy state forces a service
down. The health status is gathrered with a direct connection to the host and in
stand by this connection is unavailable and the service is down. To deal with stand
by states, the configuration ignoreStandBy can be used. In case of a stand by state,
the service is considered as up.

state can be changed see the ignoreStandBy configuration parameter.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.VmwareCimMonitor

Remote Enabled false

Configuration and Usage

Table 71. Monitor specific parameters for the VmwareCimMonitor

Parameter Description Require
d

Default
value

retry Number of retries before the service is marked as down. optional 0

ignoreStandBy Treat power state standBy as up. optional false

This monitor implements the Common Configuration Parameters.

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

<service name="VMwareCim-HostSystem" interval="300000" user-defined="false" status="
on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
</service>

<monitor service="VMwareCim-HostSystem" class-name=
"org.opennms.netmgt.poller.monitors.VmwareCimMonitor"/>

6.6.50. VmwareMonitor

This monitor is part of the VMware integration provided in Provisiond and test the power state of a
virtual machine (VM) or a host system (host). If the power state of a VM or host is poweredOn the
service is up. The state off the service on the VM or Host is marked as down. By default standBy is
also considered as down. In case of using Distributed Power Management the standBy state can be
changed see the ignoreStandBy configuration parameter.

171

http://www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf
http://www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf

The information for the status of a virtual machine is collected from the
responsible VMware vCenter using the credentials from the vmware-config.xml. It
is also required to get specific asset fields assigned to an imported virtual machine
and host system. The following asset fields are required, which are populated by
the VMware integration in Provisiond: VMware Management Server, VMware
Managed Entity Type and the foreignId which contains an internal VMware vCenter
Identifier.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.VmwareMonitor

Remote Enabled false

Configuration and Usage

Table 72. Monitor specific parameters for the VmwareMonitor

Paramet
er

Description Requi
red

Default
value

retry Number of retries before the service is marked as down. option
al

0

ignoreSta
ndBy

Treat power state standBy as up. option
al

false

reportAla
rms

Checks for unacknowledged vSphere alarms for a given comma-
separated list of severities (red, yellow, green, gray).

option
al

``

This monitor implements the Common Configuration Parameters.

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml. With
this configuration the monitor will go down if any unacknowledged vSphere alarms with severity
red or yellow exist for this managed entity.

<service name="VMware-ManagedEntity" interval="300000" user-defined="false" status="
on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="reportAlarms" value="red, yellow"/>
</service>

<monitor service="VMware-ManagedEntity" class-name=
"org.opennms.netmgt.poller.monitors.VmwareMonitor"/>

172

6.6.51. WebMonitor

WebMonitor is a clone of HttpMonitor, that uses a different underlying library for doing HTTP
connections. WebMonitor uses Apache HttpClient, which acts more like a real browser (follows
redirects, etc.) than HttpMonitor.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.WebMonitor

Configuration and Usage

Note that all parameters listed are optional.

Table 73. Configuration parameters

Parameter Description Default value

use-system-proxy Specifies that system-wide proxy settings be used. The
system proxy settings can be configured via system
properties.

false

scheme Protocol/scheme to use. http, https

port The port to connect to. 80

path The path of the URL to request (e.g., /store/index.html).

queryString The query string to add to the URL after a ? (e.g.,
foo=bar&baz=zot)

timeout The connection/socket timeout.

user-agent The User-Agent: header to send.

virtual-host The Host: header to send.

http-1.0 True/false whether to use HTTP 1.0 or 1.1.

header_#/header_#_
value

Headers to add

use-ssl-filter Defaults to false, if true it will trust self-signed certificates. false

auth-enabled Whether to enable basic authentication.

auth-user The username for basic authentication.

auth-password The password

auth-preemptive Whether to send basic authentication even if the site did
not ask for it.

true

response-text The response text to look for.

response-range What HTTP status ranges are considered success. 100-399

173

#ga-opennms-system-properties
#ga-opennms-system-properties

6.6.52. Win32ServiceMonitor

The Win32ServiceMonitor enables OpenNMS Meridian to monitor the running state of any
Windows service. The service status is monitored using the Microsoft Windows® provided SNMP
agent providing the LAN Manager MIB-II. For this reason it is required the SNMP agent and
OpenNMS Meridian is correctly configured to allow queries against part of the MIB tree. The status
of the service is monitored by polling the

svSvcOperatingState = 1.3.6.1.4.1.77.1.2.3.1.3

of a given service by the display name.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.Win32ServiceMonitor

Remote Enabled false

Configuration and Usage

Table 74. Monitor specific parameters for the Win32ServiceMonitor

Paramet
er

Description Requi
red

Default
value

service-
name

The name of the service, this should be the exact name of the
Windows service to monitor as it appears in the Services MSC snap-
in. Short names such as you might use with net start will not work
here.

requir
ed

Server

This monitor implements the Common Configuration Parameters.

Non-English Windows The service-name is sometime encoded in languages other
than English. Like in French, the Task Scheduler service is Planificateur de tâche.
Because of the "â" (non-English character), the OID value is encoded in hexa (0x50
6C 61 6E 69 66 69 63 61 74 65 75 72 20 64 65 20 74 C3 A2 63 68 65 73).

Troubleshooting

If you’ve created a Win32ServiceMonitor poller and are having difficulties with it not being
monitored properly on your hosts, chances are there is a difference in the name of the service
you’ve created, and the actual name in the registry.

For example, I need to monitor a process called Example Service on one of our production servers. I
retrieve the Display name from looking at the service in service manager, and create an entry in the
poller-configuration.xml files using the exact name in the Display name field.

However, what I don’t see is the errant space at the end of the service display name that is revealed
when doing the following:

174

http://technet.microsoft.com/en-us/library/cc977581.aspx

snmpwalk -v 2c -c <communitystring> <hostname> .1.3.6.1.4.1.77.1.2.3.1.1

This provides the critical piece of information I am missing:

iso.3.6.1.4.1.77.1.2.3.1.1.31.83.116.97.102.102.119.97.114.101.32.83.84.65.70.70.86.73
.69.87.32.66.97.99.107.103.114.111.117.110.100.32 = STRING: "Example Service "

 Note the extra space before the close quote.

The extra space at the end of the name was difficult to notice in the service manager GUI, but is
easily visible in the snmpwalk output. The right way to fix this would be to correct the service Display
name field on the server, however, the intent of this procedure is to recommend verifying the true
name using snmpwalk as opposed to relying on the service manager GUI.

Examples

Monitoring the service running state of the Task Scheduler on an English local Microsoft Windows®
Server requires at minimum the following entry in the poller-configuration.xml.

<service name="Windows-Task-Scheduler" interval="300000" user-defined="false" status=
"on">
 <parameter key="service-name" value="Task Scheduler"/>
</service>

<monitor service="Windows-Task-Scheduler" class-name=
"org.opennms.netmgt.poller.monitors.Win32ServiceMonitor"/>

6.6.53. WsManMonitor

This monitor can be used to issue a WS-Man Get command and validate the results using a SPEL
expression. This monitor implements placeholder substitution in parameter values.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.WsManMonitor

Remote Enabled false

Configuration and Usage

Table 75. Monitor specific parameters for the WsManMonitor

175

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Paramet
er

Description Requi
red

Default
value

Placeholder
substitution

resource-
uri

Resource URI requir
ed

- No

rule SPEL expression applied against the result of the
Get

requir
ed

- Yes

selector. Used to filter the result set. All selectors must
prefixed with selector.

option
al

(None) No

This monitor implements the Common Configuration Parameters.

Examples

The following monitor will issue a Get against the configured resource and verify that the correct
service tag is returned:

<service name="WsMan-ServiceTag-Check" interval="300000" user-defined="false" status=
"on">
 <parameter key="resource-uri" value="http://schemas.dell.com/wbem/wscim/1/cim-
schema/2/root/dcim/DCIM_ComputerSystem"/>
 <parameter key="selector.CreationClassName" value="DCIM_ComputerSystem"/>
 <parameter key="selector.Name" value="srv:system"/>
 <parameter key="rule" value="#IdentifyingDescriptions matches '.*ServiceTag' and
#OtherIdentifyingInfo matches 'C7BBBP1'"/>
</service>

<monitor service="WsMan-ServiceTag-Check" class-name=
"org.opennms.netmgt.poller.monitors.WsManMonitor/>

6.6.54. XmpMonitor

The XMP monitor tests for XMP service/agent availability by establishing an XMP session and
querying the target agent’s sysObjectID variable contained in the Core MIB. The service is
considered available when the session attempt succeeds and the agent returns its sysObjectID
without error.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.XmpMonitor

Remote Enabled false

Configuration and Usage

These parameters can be set in the XMP service entry in collectd-configuration.xml and will
override settings from xmp-config.xml. Also, don’t forget to add an entry in response-

176

http://www.opennms.org/wiki/XMP

graph.properties so that response values will be graphed.

Table 76. Monitor specific parameters for the XmpMonitor

Paramete
r

Description Require
d

Default
value

timeout Time in milliseconds to wait for a successful session. optional 5000

authenUser The authenUser parameter for use with the XMP session. optional xmpUser

port TCP port to connect to for XMP session establishment optional 5270

mib Name of MIB to query optional core

object Name of MIB object to query optional sysObjectID

This monitor implements the Common Configuration Parameters.

Examples

Adding entry in collectd-configuration.xml

<service name="XMP" interval="300000" user-defined="false" status="on">
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="xmp"/>
 <parameter key="ds-name" value="xmp"/>
</service>
<monitor service="XMP" class-name="org.opennms.netmgt.poller.monitors.XmpMonitor"/>

Add entry in response-graph.properties

reports=icmp, \
xmp, \

report.xmp.name=XMP
report.xmp.columns=xmp
report.xmp.type=responseTime
report.xmp.command=--title="XMP Response Time" \
 --vertical-label="Seconds" \
 DEF:rtMills={rrd1}:xmp:AVERAGE \
 DEF:minRtMills={rrd1}:xmp:MIN \
 DEF:maxRtMills={rrd1}:xmp:MAX \
 CDEF:rt=rtMills,1000,/ \
 CDEF:minRt=minRtMills,1000,/ \
 CDEF:maxRt=maxRtMills,1000,/ \
 LINE1:rt#0000ff:"Response Time" \
 GPRINT:rt:AVERAGE:" Avg \\: %8.2lf %s" \
 GPRINT:rt:MIN:"Min \\: %8.2lf %s" \
 GPRINT:rt:MAX:"Max \\: %8.2lf %s\\n"

177

Chapter 7. Performance Management
OpenNMS Meridian collects performance data using the Collectd daemon, which is enabled by
default. Collectd schedules data collection on OpenNMS Meridian entities (currently nodes and
interfaces), using management agents and protocol-specific collectors (SNMP, HTTPS, JMX, JDBC,
etc.) to collect performance metrics. Each collector has its own associated configuration that defines
parameters for the collector.

Figure 32. Collectd overview for associated files and configuration

By default, data collection is enabled for SNMP and for OpenNMS-JVM (to monitor itself through
JMX). Data collection works out of the box with SNMP, provided you have your SNMP community
string configured properly. The default value of the community string is public. If your community
string is different, you need to change the value:

1. Login to the web UI.

2. Go to admin>Configure OpenNMS.

3. In the Provisioning section, select Configure SNMP Community Names by IP Address.

4. Under v1/v2c specific parameters change the Read Community String value and click Save
Config.

Performance data collection on other protocols (HTTPS, JMX, JDBC, etc.), requires additional
configuration. You may also want to change how collectd works: when, how, and what data it
collects.

Learn how to manage performance data collection:

• collectd configuration

• collection for specific protocols

• resource type management

• collectd administration (logging, graphing, and event properties)

178

configuration.pdf#ga-collectd-configuration
configuration.pdf#ga-collectd-configuration

7.1. Configuring Collectd
The collectd-configuration.xml file defines the nodes, services and parameters on which collectd
collects metrics. It also specifies the list of available collectors.

The file is located in $OPENNMS_HOME.

Edit the collectd-configuration.xml file to:

• set the thread pool

• configure collector packages

• specify collectors to use

In addtion to editing the collectd-configuration.xml, you need to configure collectors for the
protocols from which you want to collect data by editing the configuration files associated with
them.

7.1.1. Setting the Thread Pool

A globally defined thread attribute limits the number of threads the data collection process uses in
parallel. Increase or decrease this value based on your network and the size of your server by
changing the value in $OPENNMS_HOME/etc/collectd-configuration.xml:

<collectd-configuration
 threads="50">

7.1.2. Configuring Collector Packages

Collector packages in the collectd-configuration.xml file contain the information (IP addresses,
interfaces, services, and connection parameters) that collectd needs to activate data collection.

Collectd activates data collection for each node that contains an IP interface in the configured range
and also contains any of the services listed in the package associated with the selected IP interface.

Edit existing collector packages or create new ones to customize data collection for your needs. If
you create a new collector package, we recommend copying and pasting an existing package in the
collectd-configuration.xml to use as a template.

A collector package has two categories of information to edit or specify:

• collector package attributes

• collector package services

Collector Package Attributes

At a minimum, collector package attributes include a package name and a filter that specifies the
interfaces to include in the collector package:

179

collection-packages.pdf#ga-collector-list-edit

<package name="cassandra-via-jmx" remote="false">
 <filter>IPADDR != '0.0.0.0'</filter>

Note that remote="false" means that the services in this package are tested only from the OpenNMS
core system itself and not from a different remote location.

Each package must have a filter tag that performs the initial test to see if an interface should be
included in a package. Filters operate on interfaces (not nodes). Each package can have only one
filter tag.

The following tags are also available for an interface filter:

Tag Description Example

specific Specify an actual IP address to include in the
package.

<specific>192.168.1.59</specific>
`

include-
range

Specify a range of IP addresses to include in a
package.

<include-range
begin="192.168.0.1"
end="192.168.0.254"/>`

exclude-
range

Specify a range of IP addresses to exclude in a
package. This will override an include-range tag.

<exclude-range
begin="192.168.0.100"
end="192.168.0.104"/>`

include-
url

Specify a file that contains a list of #IP addresses to
include.

<include-
url>file:/opt/OpenNMS/etc/include
</include-url>`

The following example illustrates collector package attributes that use some of these additional
tags:

<package name="example1" remote="false">①
 <filter>IPADDR != '0.0.0.0'</filter>②
 <include-range begin="1.1.1.1" end="254.254.254.254"/>③
 <include-range begin="::1" end="ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"/>④

① Unique name of the collection package.

② Apply this package to all IP interfaces with a configured IPv4 address (not equal 0.0.0.0)

③ Evaluate IPv4 rule to collect for all IPv4 interfaces in the given range

④ Evaluate IPv6 rule to collect for all IPv6 interfaces in the given range

Service Configuration Attributes

Service configuration attributes define the collector to use and which performance metrics to
collect. Each service is associated with a specific collector; the collector and its related Java class
must appear at the bottom of the collectd-configuration.xml file:

180

<service name="SNMP"①
 interval="300000"②
 user-defined="false"③
 status="on">④
 <parameter key="collection" value="default"/>⑤
 <parameter key="thresholding-enabled" value="true"/>⑥
</service>

<collector service="SNMP" class-name="org.opennms.netmgt.collectd.SnmpCollector"/>⑦

① Service configuration name, which is mapped to a specific collector.

② The interval at which to collect the service (in milliseconds).

③ Marker to say if service is user defined (used for UI purposes).

④ Service is collected only if "on".

⑤ Assign the performance data collection schema named default (found in the corresponding
configuration file for the type of collection, in this case datacollection-config.xml).

⑥ Enable threshold evaluation for metrics provided by this service.

⑦ Run the SnmpCollector implementation for the service named SNMP.

The following table lists service attributes common to all services. For a list of collector-specific
parameters and their default values, refer to the specific collector listed in the Collectors section.

Attribute Description

name Service name

interval Polling interval, in milliseconds (5 minutes by default).

user-defined Set to "true" if user defined the collection source in the UI.

status Indicates that data collection for the service is on or off.

181

Figure 33. Configuration overview for data collection with Collectd

7.1.3. Guidelines for Collector Packages

You can configure multiple packages, and an interface can exist in more than one package. This
gives great flexibility in determining the service levels for a given device.

When IP interfaces match multiple collector packages with the same service configuration, collectd
applies the last collector package on the service:

• Use this "final" collector package as a less-specific, catch-all filter for a default configuration.

OR

• Use it as a more-specific collector package to overwrite the default setting.

Meta-Data-DSL

Metadata-DSL allows you to use dynamic configuration in each parameter value to interpolate
metadata into a parameter. The syntax allows for the use of patterns in an expression, whereby the
metadata is replaced with a corresponding value during the collection process.

During evaluation of an expression the following scopes are available:

• Node metadata

• Interface metadata

• Service metadata

182

#ga-meta-data-dsl

7.2. Configuring Collectors
Collectors collect performance data via specific agents and protocols. This section includes the
following information for each collector:

• collector-specific parameters (used in the collectd-configuration.xml file)

• configuration file(s)

Understanding resource types helps when editing collector-specific configuration
files.

7.2.1. SnmpCollector

The SnmpCollector collects performance data through the SNMP protocol. Configure access to the
SNMP Agent through the SNMP configuration in the Web UI (Admin>Configure SNMP Community Names
by IP Address).

Collector Facts

Class Name org.opennms.netmgt.collectd.SnmpCollector

Package core

Supported on Minion Yes

Collector Parameters

Use these parameters used in the collectd-configuration.xml file.

Table 77. Collector-specific parameters for the SnmpCollector

Parameter Description Requir
ed

Default value

collection The name of the SNMP Collection to use. require
d

default

thresholding-
enabled

Whether collected performance data should be tested
against thresholds.

option
al

true

timeout Timeout in milliseconds to wait for SNMP responses. option
al

SNMP
configuration

SNMP Collection Configuration

Understanding resource types helps when editing collector-specific configuration
files.

Define SNMP Collection in etc/datacollection-config.xml and etc/datacollection.d/*.xml.

183

provisioning/getting-started.pdf#provision-snmp-configuration
provisioning/getting-started.pdf#provision-snmp-configuration

<?xml version="1.0"?>
<datacollection-config rrd-repository="/var/lib/opennms/rrd/snmp/">①
 <snmp-collection name="default"②
 snmpStorageFlag="select">③
 <rrd step="300">④
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>

 <include-collection dataCollectionGroup="MIB2"/>⑤
 <include-collection dataCollectionGroup="3Com"/>
 ...
 <include-collection dataCollectionGroup="VMware-Cim"/>
 </snmp-collection>
</datacollection-config>

① Directory where to persist RRD files on the file system, ignored if NewTS is used as time-series
storage.

② Name of the SNMP data collection referenced in the collection package in collectd-

configuration.xml.

③ Configure SNMP MIB-II interface metric collection behavior: all means collect metrics from all
interfaces, primary only from interface provisioned as primary interface, select only from
manually selected interfaces from the Web UI.

④ RRD archive configuration for this set of performance metrics, ignored when NewTS is used as
time series storage.

⑤ Include device- or application-specific performance metric OIDS to collect.

Figure 34. Configuration overview for SNMP data collection

SnmpCollectorNG

The SnmpCollectorNG provides an alternate implementation to the SnmpCollector that takes
advantages of new APIs in the platform. It is provided as a separate collector while we work to
validate its functionality and run-time characteristics, with the goal of eventually having it replace
the SnmpCollector.

184

Use this new collector by updating existing references from
org.opennms.netmgt.collectd.SnmpCollector to org.opennms.netmgt.collectd.SnmpCollectorNG.

Known caveats include:

• No support for alias type resources

• No support for min/max values

7.2.2. JmxCollector

The JmxCollector collects performance data via JMX. Attributes are extracted from the available
MBeans.

Collector Facts

Class Name org.opennms.netmgt.collectd.Jsr160Collector

Package core

Supported on Minion Yes

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 78. Collector-specific parameters for the Jsr160Collector

Parameter Description Requ
ired

Default value

collection The name of the JMX Collection to use. requi
red

(none)

thresholdin
g-enabled

Whether collected performance data should be tested
against thresholds

optio
nal

true

retry Number of retries optio
nal

3

friendlyNam
e

Name of the path in which the metrics should be
stored

optio
nal

Value of the port, or
'jsr160' if no port is set.

factory The password strategy to use. Supported values are:
STANDARD (for authentication), PASSWORD_CLEAR (same as
STANDARD) and SASL (if secure connection is required).

optio
nal

STANDARD

url The connection url, e.g.,
service:jmx:rmi:localhost:18980. The IP address can
be substituted. Use ${ipaddr} in that case, e.g.,
service:jmx:rmi:${ipaddr}:18980

optio
nal

(none)

185

Parameter Description Requ
ired

Default value

username The username if authentication is required. optio
nal

(none)

password The password if authentication is required. optio
nal

(none)

port Deprecated. JMX port. optio
nal

1099

protocol Deprecated. Protocol used in the JMX connection
string.

optio
nal

rmi

urlPath Deprecated. Path used in JMX connection string. optio
nal

/jmxrmi

rmiServerPo
rt

Deprecated. RMI port. optio
nal

45444

remoteJMX Deprecated. Use an alternative JMX URL scheme. optio
nal

false

The deprecated parameters port, protocol, urlPath, rmiServerPort and remoteJMX
should be replaced with the url parameter. If url is not defined the collector falls
back to legacy mode and the deprecated parameters are used instead to build the
connection url.

If a service requires different configuration, an entry in $OPENNMS_HOME/etc/jmx-
config.xml can overwrite it.

JMX Collection Configuration

Understanding resource types helps when editing collector-specific configuration
files.

Define JMX Collections in etc/jmx-datacollection-config.xml and etc/jmx-datacollection-config.d/.

This snippet provides a collection definition named opennms-poller:

186

<jmx-collection name="opennms-poller">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <mbeans>
 <mbean name="OpenNMS Pollerd" objectname="OpenNMS:Name=Pollerd">
 <attrib name="NumPolls" alias="ONMSPollCount" type="counter"/>
 </mbean>
 </mbeans>
</jmx-collection>

Once added to etc/jmx-datacollection-config.xml you can test it using the collect command
available in the Karaf Shell:

opennms:collect org.opennms.netmgt.collectd.Jsr160Collector 127.0.0.1
collection=opennms-poller port=18980

Generic Resource Type

To support wildcard (*) in objectname, JMX collector supports generic resource types. JMX
configuration requires two changes for this to work:

• Create a custom resource type in etc/resource-types.d/. For example, there is already a
definition in jmx-resource.xml that defines a custom resource for Kafka lag

<resource-types>
 <resourceType name="kafkaLag" label="Kafka Lag"
 resourceLabel="${index}">
 <persistenceSelectorStrategy class=
"org.opennms.netmgt.collection.support.PersistAllSelectorStrategy"/>
 <storageStrategy class=
"org.opennms.netmgt.dao.support.SiblingColumnStorageStrategy">
 <parameter key="sibling-column-name" value="name" />
 </storageStrategy>
 </resourceType>
</resource-types>

• Match the resourceType name as resource-type in MBean definition:

187

<mbean name="org.opennms.core.ipc.sink.kafka.heartbeat" resource-type="kafkaLag"
objectname="org.opennms.core.ipc.sink.kafka:name=OpenNMS.Sink.*.Lag">
 <attrib name="Value" alias="Lag" type="gauge"/>
</mbean>

Resource definition

JMX objectname is the full name of MBean in form of (domain:key=value, key=value, ..). Wildcard
(*) can exist anywhere in the objectname.

Depending on wildcard definition, use SiblingColumnStorageStrategy to extract resource label. If
wildcard exists in the value (usual case), use corresponding key as the sibling-column-name
parameter. For example:
org.apache.activemq:BrokerName=*,Type=Queue,Destination=com.mycompany.myqueue

Here BrokerName can be defined as parameter for SiblingColumnStorageStrategy

 <parameter key="sibling-column-name" value="BrokerName" />

The extracted BrokerNames from the wildcard will be the resource folders in the form of
nodeId/resourceTypeName/{resource-label}

Wildcard may exist in domain as well. For example: org.apache.*:BrokerName=trap, Type=Queue.
Then domain can be defined as the sibling-column-name parameter.

 <parameter key="sibling-column-name" value="domain" />

To use the objectname itself as a resource label, use IndexStorageStrategy as storageStrategy in
resource-type definition.

Third-Party JMX Services

Some Java applications provide their own JMX implementation and require certain libraries to be
present on the classpath, e.g., the Java application server Wildfly. To successfully collect data, you
may need to do the following:

• Place the jmx client lib to the $OPENNMS_HOME/lib folder (e.g., jboss-cli-client.jar)

• Configure the collection accordingly (see above)

• Configure the JMX-Collector in collectd-configuration.xml (see below)

188

Example

<service name="JMX-WILDFLY" interval="300000" user-defined="false" status="on">
 <parameter key="url" value="service:jmx:http-remoting-jmx://${ipaddr}:9990"/>
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="factory" value="PASSWORD-CLEAR"/>
 <parameter key="username" value="admin"/>
 <parameter key="password" value="admin"/>
 <parameter key="rrd-base-name" value="java"/>
 <parameter key="collection" value="jsr160"/>
 <parameter key="thresholding-enabled" value="true"/>
 <parameter key="ds-name" value="jmx-wildfly"/>
 <parameter key="friendly-name" value="jmx-wildfly"/>
</service>
<collector service="JMX-WILDFLY" class-name=
"org.opennms.netmgt.collectd.Jsr160Collector"/>

7.2.3. HttpCollector

The HttpCollector collects performance data via HTTP and HTTPS. Attributes are extracted from the
HTTP responses using a regular expression.

Collector Facts

Class Name org.opennms.netmgt.collectd.HttpCollector

Package core

Supported on Minion Yes

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 79. Collector-specific parameters for the HttpCollector

Parameter Description Requi
red

Default
value

collection The name of the HTTP Collection to use. requir
ed

(none)

thresholding-
enabled

Whether collected performance data should be tested against
thresholds.

option
al

true

port Override the default port in all of the URIs option
al

80

timeout Connection and socket timeout in milliseconds option
al

3000

189

Parameter Description Requi
red

Default
value

retry Number of retries option
al

2

use-system-
proxy

Should the system-wide proxy settings be used? Configure
system proxy settings via system properties

option
al

false

HTTP Collection Configuration

Understanding resource types helps when editing collector-specific configuration
files.

Define HTTP Collections in etc/http-datacollection-config.xml.

This snippet provides a collection definition named opennms-copyright:

<http-collection name="opennms-copyright">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <uris>
 <uri name="login-page">
 <url path="/opennms/login.jsp"
 matches=".*2002\-([0-9]+).*" response-range="100-399" dotall="true" >
 </url>
 <attributes>
 <attrib alias="copyrightYear" match-group="1" type="gauge"/>
 </attributes>
 </uri>
 </uris>
</http-collection>

Once added to etc/http-datacollection-config.xml you can test it using the collect command
available in the Karaf Shell:

opennms:collect org.opennms.netmgt.collectd.HttpCollector 127.0.0.1
collection=opennms-copyright port=8980

7.2.4. JdbcCollector

The JdbcCollector collects performance data via JDBC drivers. Attributes are retrieved using SQL
queries.

190

#ga-opennms-system-properties

Collector Facts

Class Name org.opennms.netmgt.collectd.JdbcCollector

Package core

Supported on Minion Yes (see limitations)

Limitations on Minion

When running on Minion the data sources in opennms-datasources.xml cannot be referenced.
Instead, you must set the JDBC connection settings using the service parameters.

Also, the JDBC driver must be properly loaded in the Minion container (see Installing JDBC drivers
in Minion) By default, only the JDBC driver for PostgreSQL is available.

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 80. Collector-specific parameters for the JdbcCollector

Parame
ter

Description Requi
red

Default value

collecti
on

The name of the JDBC Collection to use. requir
ed

(empty)

data-
source

Use an existing datasource defined in
opennms-datasources.xml

option
al

NO_DATASOURCE_FOUND

driver Driver class name option
al

org.postgresql.Driver

url JDBC URL option
al

jdbc:postgresql://:OPENNMS_JDBC_H
OSTNAME/opennms

user JDBC username option
al

postgres

password JDBC password option
al

(empty string)

JDBC Collection Configuration

Understanding resource types helps when editing collector-specific configuration
files.

Define JDBC Collections in etc/jdbc-datacollection-config.xml.

This snippet provided a collection definition named opennms-stats:

191

<jdbc-collection name="opennms-stats">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <queries>
 <query name="opennmsQuery" ifType="ignore">
 <statement data-source="opennms">
 <queryString>select count(*) as event_count from events;</queryString>
 </statement>
 <columns>
 <column name="event_count" data-source-name="event_count" alias="event_count"
type="GAUGE"/>
 </columns>
 </query>
 </queries>
</jdbc-collection>

Once added to etc/jdbc-datacollection-config.xml you can test it using the collect command
available in the Karaf Shell:

opennms:collect org.opennms.netmgt.collectd.JdbcCollector 127.0.0.1
collection=opennms-stats data-source=opennms

To test this same collection on Minion you must specify the JDBC settings as service attributes, for
example:

opennms:collect -l MINION org.opennms.netmgt.collectd.JdbcCollector 127.0.0.1
collection=opennms-stats driver=org.postgresql.Driver
url=jdbc:postgresql://localhost:5432/opennms user=opennms password=opennms

7.2.5. NSClientCollector

The NSClientCollector collects performance data over HTTP from NSClient++.

Collector Facts

Class Name org.opennms.protocols.nsclient.collector.NSClientCollector

Package opennms-plugin-protocol-nsclient

Supported on Minion Yes

192

Collector Parameters

Use these parameters in the collectd-configuration.xml file).

Table 81. Collector-specific parameters for the NSClientCollector

Paramete
r

Description Require
d

Default
value

collection The name of the NSClient Collection to use. optional default

7.2.6. PrometheusCollector

The PrometheusCollector collects performance metrics via HTTP(S) using the text-based Prometheus
Exposition format. This has been adopted by many applications and is in the process of being
standardized in the OpenMetrics project.

This collector provides tools for parsing and mapping the metrics to the collection model used by
OpenNMS Meridian.

Collector Facts

Class Name org.opennms.netmgt.collectd.prometheus.PrometheusCollector

Package core

Supported on Minion Yes

Collector Parameters

Table 82. Collector-specific parameters for the PrometheusCollector

Paramete
r

Description Require
d

Default value

collection The name of the Prometheus Collection to use required

url HTTP URL to query for the metrics required

timeout HTTP socket and read timeout in milliseconds optional 10000 (10 seconds)

retry Number of retries before failing optional 2

`header-* Optional headers to pass in the HTTP request optional (none)

Prometheus Collector Usage

Let’s demonstrate the usage of the collector with an example running against node_exporter.

Obtain a copy of the appropriate release binary from the node_exporter release page.

Extract and start the service:

193

https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md#text-based-format
https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md#text-based-format
https://openmetrics.io/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter/releases

$ tar xvf node_exporter-0.18.1.linux-amd64.tar.gz
$./node_exporter-0.18.1.linux-amd64/node_exporter
INFO[0000] Starting node_exporter (version=0.18.1, branch=HEAD,
revision=3db77732e925c08f675d7404a8c46466b2ece83e) source="node_exporter.go:156"
INFO[0000] Build context (go=go1.12.5, user=root@b50852a1acba, date=20190604-16:41:18)
source="node_exporter.go:157"
INFO[0000] Enabled collectors: source="node_exporter.go:97"
INFO[0000] - arp source="node_exporter.go:104"
INFO[0000] - bcache source="node_exporter.go:104"
INFO[0000] - bonding source="node_exporter.go:104"
INFO[0000] - conntrack source="node_exporter.go:104"
INFO[0000] - cpu source="node_exporter.go:104"
INFO[0000] - cpufreq source="node_exporter.go:104"
...
INFO[0000] - uname source="node_exporter.go:104"
INFO[0000] - vmstat source="node_exporter.go:104"
INFO[0000] - xfs source="node_exporter.go:104"
INFO[0000] - zfs source="node_exporter.go:104"
INFO[0000] Listening on :9100 source="node_exporter.go:170"

From the Karaf Shell, you can now issue an ad hoc collection request against the node_exporter
process

admin@opennms> opennms:collect
org.opennms.netmgt.collectd.prometheus.PrometheusCollector 127.0.0.1
collection=node_exporter url='http://127.0.0.1:9100/metrics'
NOTE: Some collectors require a database node and IP interface.
 NodeLevelResource[nodeId=0,path=null]
 Group: node_exporter_loadavg
 Attribute[load1:1.26]
 Attribute[load15:1.0]
 Attribute[load5:0.59]
 Group: node_exporter_memory
 Attribute[Active_anon_bytes:1.1776770048E10]
 Attribute[Active_bytes:2.4471535616E10]
 Attribute[Active_file_bytes:1.2694765568E10]

Update the IP addresses in the command as necessary.

Prometheus Collector Configuration

Prometheus collection definitions are maintained in etc/prometheus-datacollection.d/.

Let’s look at an excerpt of the node_exporter collection:

194

<!--
 node_memory_Active 1.3626548224e+10
 node_memory_Active_anon 6.314020864e+09
 node_memory_Active_file 7.31252736e+09
 ...
 node_memory_HugePages_Free 0
 ...
-->
<group name="node_exporter_memory"
 resource-type="node"
 filter-exp="name matches 'node_memory_.*'">

 <numeric-attribute alias-exp="name.substring('node_memory_'.length())"/>
</group>

This group definition matches metrics that start the node_memory_ prefix, extracts the suffix as the
metric name and associates these metrics with the node_exporter_memory group in the node-level
resource.

Expression are written in Spring Expression Language (SpEL). The metric instances are used as the
expression context, which means you have access to the name and label properties.

Here’s another excerpt where we extract metrics grouped by CPU:

<!--
 node_cpu{cpu="cpu0",mode="guest"} 0
 node_cpu{cpu="cpu0",mode="idle"} 16594.88
 ...
 node_cpu{cpu="cpu1",mode="guest"} 0
 node_cpu{cpu="cpu1",mode="idle"} 17790.51
-->
<group name="node_exporter_cpus"
 resource-type="nodeExporterCPU"
 filter-exp="name matches 'node_cpu'"
 group-by-exp="labels[cpu]">

 <numeric-attribute alias-exp="labels[mode]"/>
</group>

This group definition matches metrics called 'node_cpu', groups them by the value of the cpu label
and extracts the name of the mode for the name of the numeric attributes.

7.2.7. TcaCollector

The TcaCollector collects special SNMP data from Juniper TCA Devices.

195

https://docs.spring.io/spring/docs/4.2.x/spring-framework-reference/html/expressions.html

Collector Facts

Class Name org.opennms.netmgt.collectd.tca.TcaCollector

Package opennms-plugin-collector-juniper-tca

Supported on Minion Yes

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 83. Collector-specific parameters for the TcaCollector

Paramete
r

Description Require
d

Default
value

collection The name of the TCA Collection to use. required

7.2.8. VmwareCimCollector

The VmwareCimCollector collects ESXi host and sensor metrics from vCenter.

Collector Facts

Class Name org.opennms.netmgt.collectd.VmwareCimCollector

Package core

Supported on Minion Yes

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 84. Collector-specific parameters for the VmwareCimCollector

Paramete
r

Description Require
d

Default
value

collection The name of the VMWare CIM Collection to use. required

timeout Connection timeout in milliseconds optional

7.2.9. VmwareCollector

The VmwareCollector collects peformance metrics for managed entities from vCenter.

Collector Facts

Class Name org.opennms.netmgt.collectd.VmwareCollector

196

Package core

Supported on Minion Yes

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 85. Collector-specific parameters for the VmwareCollector

Paramete
r

Description Require
d

Default
value

collection The name of the VMWare Collection to use. required

timeout Connection timeout in milliseconds optional

7.2.10. WmiCollector

The WmiCollector collects peformance metrics from Windows systems using Windows Management
Instrumentation (WMI).

Collector Facts

Class Name org.opennms.netmgt.collectd.WmiCollector

Package core

Supported on Minion Yes

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 86. Collector-specific parameters for the WmiCollector

Paramete
r

Description Require
d

Default
value

collection The name of the WMI Collection to use. required

7.2.11. WsManCollector

The WsManCollector collects peformance metrics using the Web Services-Management (WS-
Management) protocol.

Web Services-Management (WS-Management) is a DMTF open standard defining a SOAP-based
protocol for the management of servers, devices, applications and various Web services. Windows
Remote Management (WinRM) is the Microsoft implementation of WS-Management Protocol.

197

Collector Facts

Class Name org.opennms.netmgt.collectd.WsManCollector

Package core

Supported on Minion Yes

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 87. Collector-specific parameters for the WsManCollector

Paramete
r

Description Require
d

Default
value

collection The name of the WS-Man Collection to use. required

WS-Management Setup

Before setting up OpenNMS Meridian to communicate with a WS-Management agent, you should
confirm that it is properly configured and reachable from the OpenNMS Meridian system. If you
need help enabling the WS-Management agent, consult the documentation from the manufacturer.
Here are some resources that could help:

• Installation and Configuration for Windows Remote Management

• Troubleshooting WinRM connection and authentication

We suggest using the Openwsman command line client to validate authentication and connectivity.
Packages are available for most distributions under wsmancli.

For example:

wsman identify -h localhost -P 5985 -u wsman -p secret

Once validated, add the agent-specific details to the OpenNMS Meridian configuration, defined in
the next section.

Troubleshooting and Commands

For troubleshooting there is a set of commands you can use in Powershell verified on Microsoft
Windows Server 2012.

Enable WinRM in PowerShell

Enable-PSRemoting

198

https://msdn.microsoft.com/en-us/library/windows/desktop/aa384372(v=vs.85).aspx
http://www.hurryupandwait.io/blog/understanding-and-troubleshooting-winrm-connection-and-authentication-a-thrill-seekers-guide-to-adventure
https://github.com/Openwsman/openwsman/wiki/openwsman-command-line-client

Set up Firewall for WinRM over HTTP

netsh advfirewall firewall add rule name="WinRM-HTTP" dir=in localport=5985
protocol=TCP action=allow

Set up Firewall for WinRM over HTTPS

netsh advfirewall firewall add rule name="WinRM-HTTPS" dir=in localport=5986
protocol=TCP action=allow

Test WinRM on local Windows Server

winrm id

Show WinRM configuration on Windows Server

winrm get winrm/config

Show listener for configuration on Windows Server

winrm e winrm/config/listener

Test connectivity from a Linux system

nc -z -w1 <windows-server-ip-or-host> 5985;echo $?

Use BasicAuthentication just with WinRM over HTTPS with verifiable certificates
in production environment.

Enable BasicAuthentication

winrm set winrm/config/client/auth '@{Basic="true"}'
winrm set winrm/config/service/auth '@{Basic="true"}'
winrm set winrm/config/service '@{AllowUnencrypted="true"}'

WS-Management Agent Configuration

Understanding resource types helps when editing collector-specific configuration
files.

The agent-specific configuration details are maintained in etc/wsman-config.xml. This file has a
similar structure as etc/snmp-config.xml, which the reader may already be familiar with.

This file is consulted when a connection to a WS-Man Agent is made. If the IP address of the agent is
matched by the range, specific or ip-match elements of a definition, then the attributes on that

199

definition are used to connect to the agent. Otherwise, the attributes on the outer wsman-config
definition are used.

This etc/wsman-config.xml files automatically reload when modified.

Here is an example with several definitions:

<?xml version="1.0"?>
<wsman-config retry="3" timeout="1500" ssl="true" strict-ssl="false" path="/wsman">
 <definition ssl="true" strict-ssl="false" path="/wsman" username="root" password=
"calvin" product-vendor="Dell" product-version="iDRAC 6">
 <range begin="192.168.1.1" end="192.168.1.10"/>
 </definition>
 <definition ssl="false" port="5985" path="/wsman" username="Administrator"
password="P@ssword">
 <ip-match>172.23.1-4.1-255</ip-match>
 <specific>172.23.1.105</specific>
 </definition>
</wsman-config>

Table 88. Collector configuration attributes

Attribute Description Default

timeout HTTP Connection and response timeout in milliseconds. HTTP client
default

retry Number of retries on connection failure. 0

username Username for basic authentication. none

password Password used for basic authentication. none

port HTTP/S port Default for
protocol

max-
elements

Maximum number of elements to retrieve in a single request. no limit

ssl Enable SSL False

strict-ssl Enforce SSL certificate verification. True

path Path in the URL to the WS-Management service. /

product-
vendor

Used to overwrite the detected product vendor. none

product-
version

Used to overwrite the detected product version. none

gss-auth Enables GSS authentication. When enabled a reverse lookup is
performed on the target IP address in order to determine the
canonical host name.

False

200

If you try to connect against Microsoft Windows Server make sure to set specific
ports for WinRM connections. By default Microsoft Windows Server uses port
TCP/5985 for plain text and port TCP/5986 for SSL connections.

WS-Management Collection Configuration

Configuration for the WS-Management collector is stored in etc/wsman-datacollection-config.xml
and etc/wsman-datacollection.d/*.xml.

The contents of these files are automatically merged and reloaded when changed.
The default WS-Management collection looks as follows:

<?xml version="1.0"?>
<wsman-datacollection-config rrd-repository="${install.share.dir}/rrd/snmp/">
 <collection name="default">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>

 <!--
 Include all of the available system definitions
 -->
 <include-all-system-definitions/>
 </collection>
</wsman-datacollection-config>

The magic happens with the <include-all-system-definitions/> element which automatically
includes all of the system definitions into the collection group.

If required, you can include a specific system-definition with <include-system-
definition>sys-def-name</include-system-definition>.

System definitions and related groups can be defined in the root etc/wsman-datacollection-
config.xml file, but it is preferred that be added to a device specific configuration files in etc/wsman-
datacollection-config.d/*.xml.

Avoid modifying any of the distribution configuration files and create new ones to
store you specific details instead.

Here is an example configuration file for a Dell iDRAC:

201

<?xml version="1.0"?>
<wsman-datacollection-config>
 <group name="drac-system"
 resource-uri="http://schemas.dell.com/wbem/wscim/1/cim-
schema/2/root/dcim/DCIM_ComputerSystem"
 resource-type="node">
 <attrib name="OtherIdentifyingInfo" index-of="#IdentifyingDescriptions matches
'.*ServiceTag'" alias="serviceTag" type="String"/>
 </group>

 <group name="drac-power-supply"
 resource-uri="http://schemas.dmtf.org/wbem/wscim/1/*"
 dialect="http://schemas.microsoft.com/wbem/wsman/1/WQL"
 filter="select
InputVoltage,InstanceID,PrimaryStatus,SerialNumber,TotalOutputPower from
DCIM_PowerSupplyView where DetailedState != 'Absent'"
 resource-type="dracPowerSupplyIndex">
 <attrib name="InputVoltage" alias="inputVoltage" type="Gauge"/>
 <attrib name="InstanceID" alias="instanceId" type="String"/>
 <attrib name="PrimaryStatus" alias="primaryStatus" type="Gauge"/>
 <attrib name="SerialNumber" alias="serialNumber" type="String"/>
 <attrib name="TotalOutputPower" alias="totalOutputPower" type="Gauge"/>
 </group>

 <system-definition name="Dell iDRAC (All Version)">
 <rule>#productVendor matches '^Dell.*' and #productVersion matches
'.*iDRAC.*'</rule>
 <include-group>drac-system</include-group>
 <include-group>drac-power-supply</include-group>
 </system-definition>
</wsman-datacollection-config>

System Definitions

Rules in the system definition are written using SpEL expressions.

The expression has access to the following variables in its evaluation context:

Name Type

(root) org.opennms.netmgt.model.OnmsNode

agent org.opennms.netmgt.collection.api.CollectionAgent

productVendor java.lang.String

productVersion java.lang.String

If a particular agent is matched by any of the rules, then the collector will attempt to collect the
referenced groups from the agent.

202

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Group Definitions

Groups are retrieved by issuing an Enumerate command against a particular Resource URI and
parsing the results. The Enumerate commands can include an optional filter in order to filter the
records and attributes that are returned.

 When configuring a filter, you must also specify the dialect.

The resource type used by the group must of be of type node or a generic resource type. Interface
level resources are not supported.

When using a generic resource type, the IndexStorageStrategy cannot be used since records have no
implicit index. Instead, you must use an alternative such as the SiblingColumnStorageStrategy.

If a record includes a multi-valued key, you can collect the value at a specific index with an index-of
expression. This is best demonstrated with an example. Let`s assume we wanted to collect the
ServiceTag from the following record:

<IdentifyingDescriptions>CIM:GUID</IdentifyingDescriptions>
<IdentifyingDescriptions>CIM:Tag</IdentifyingDescriptions>
<IdentifyingDescriptions>DCIM:ServiceTag</IdentifyingDescriptions>
<OtherIdentifyingInfo>45454C4C-3700-104A-8052-C3C01BB25031</OtherIdentifyingInfo>
<OtherIdentifyingInfo>mainsystemchassis</OtherIdentifyingInfo>
<OtherIdentifyingInfo>C8BBBP1</OtherIdentifyingInfo>

Specifying, the attribute name OtherIdentifyingInfo would not be sufficient, since there are
multiple values for that key. Instead, we want to retrieve the value for the OtherIdentifyingInfo key
at the same index where IdentifyingDescriptions is set to DCIM:ServiceTag.

This can be achieved using the following attribute definition:

<attrib name="OtherIdentifyingInfo" index-of="#IdentifyingDescriptions matches
'.*ServiceTag'" alias="serviceTag" type="String"/>

Special Attributes

A group can contain the placeholder attribute ElementCount that, during collection, will be
populated with the total number of results returned for that group. This can be used to threshold
on the number results returned by an enumeration.

203

 <group name="Event-1234"
 resource-uri="http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*"
 dialect="http://schemas.microsoft.com/wbem/wsman/1/WQL"
 filter="select * from Win32_NTLogEvent where LogFile = 'Some-Application-
Specific-Logfile/Operational' AND EventCode = '1234'"
 resource-type="node">
 <attrib name="##ElementCount##" alias="elementCount" type="Gauge"/>
 </group>

7.2.12. XmlCollector

The XmlCollector collects and extracts metrics from XML and JSON documents.

Collector Facts

Class Name org.opennms.protocols.xml.collector.XmlCollector

Package core

Supported on Minion Yes (see limitations)

Limitations on Minion

The following handlers are not currently supported on Minion:

• DefaultJsonCollectionHandler

• Sftp3gppXmlCollectionHandler

• Sftp3gppVTDXmlCollectionHandler

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 89. Collector-specific parameters for the XmlCollector

Paramete
r

Description Requir
ed

Default value

collection The name of the XML
Collection to use.

requir
ed

-

handler-
class

Class that performs the
collection.

option
al

org.opennms.protocols.xml.collector.DefaultXml
CollectionHandler

The available handlers include:

• org.opennms.protocols.xml.collector.DefaultXmlCollectionHandler

• org.opennms.protocols.xml.collector.Sftp3gppXmlCollectionHandler

• org.opennms.protocols.xml.vtdxml.DefaultVTDXmlCollectionHandler

204

• org.opennms.protocols.xml.vtdxml.Sftp3gppVTDXmlCollectionHandler

• org.opennms.protocols.json.collector.DefaultJsonCollectionHandler

• org.opennms.protocols.http.collector.HttpCollectionHandler

XML Collection Configuration

Understanding resource types helps when editing collector-specific configuration
files.

XML Collections are defined in etc/xml-datacollection-config.xml and etc/xml-datacollection/.

This snippet provides a collection definition named xml-opennms-nodes:

<xml-collection name="xml-opennms-nodes">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <xml-source url="http://admin:admin@{ipaddr}:8980/opennms/rest/nodes">
 <request method="GET">
 <parameter name="use-system-proxy" value="true"/>
 </request>
 <import-groups>xml-datacollection/opennms-nodes.xml</import-groups>
 </xml-source>
</xml-collection

The request element can have the following child elements:

Parameter Description Required Default value

timeout The connection and
socket timeout in
milliseconds

optional

retries How often should the
request be repeated in
case of an error?

optional 0

use-system-proxy Should the system-wide
proxy settings be used?
Configure the system
proxy settings via
system properties

optional false

The referenced opennms-nodes.xml file contains:

205

#ga-opennms-system-properties

<xml-groups>
 <xml-group name="nodes" resource-type="node" resource-xpath="/nodes">
 <xml-object name="totalCount" type="GAUGE" xpath="@totalCount"/>
 </xml-group>
</xml-groups>

With the configuration in place, you can test it using the collect command available in the Karaf
Shell:

opennms:collect -n 1 org.opennms.protocols.xml.collector.XmlCollector 127.0.0.1
collection=xml-opennms-nodes

Caveats

The org.opennms.protocols.json.collector.DefaultJsonCollectionHandler requires the fetched
document to be single element of type object to make xpath query work. If the root element is an
array, it will be wrapped in an object, whereas the original array is accessible as /elements.

7.2.13. XmpCollector

The XmpCollector collects peformance metrics via the X/Open Management Protocol API (XMP)
protocol.

Collector Facts

Class Name org.opennms.netmgt.protocols.xmp.collector.XmpCollector

Package opennms-plugin-protocol-xmp

Supported on Minion No

Collector Parameters

Use these parameters in the collectd-configuration.xml file.

Table 90. Collector-specific parameters for the XmpCollector

Paramete
r

Description Require
d

Default
value

collection The name of the XMP Collection to use. required

port The TCP port on which the agent communicates. required

authenUser The username used for authenticating to the agent. optional (none)

timeout The timeout used when communicating with the agent. optional 3000

retry The number of retries permitted when timeout expires. optional 0

206

7.3. Resource Types
Resource types group sets of performance data measurements for persisting, indexing, and display
in the web UI. Each resource type has a unique name, label definitions for display in the UI, and
strategy definitions for archiving the measurements for long-term analysis.

There are two labels for a resource type. The first, label, defines a string to display in the UI. The
second, resourceLabel, defines the template used when displaying each unique group of
measurements name for the resource type.

There are two types of strategy definitions for resource types, persistence selector and storage
strategies. The persistence selector strategy filters the group indexes down to a subset for storage
on disk. The storage strategy is used to convert an index into a resource path label for persistence.
There are two special resource types that do not have a resource-type definition. They are node and
ifIndex.

Resource types can be defined inside files in either $OPENNMS_HOME/etc/resource-types.d or
$OPENNMS_HOME/etc/datacollection, with the latter being specific for SNMP.

Here is the diskIOIndex resource type definition from
$OPENNMS_HOME/etc/datacollection/netsnmp.xml:

<resourceType name="diskIOIndex" label="Disk IO (UCD-SNMP MIB)" resourceLabel=
"${diskIODevice} (index ${index})">
 <persistenceSelectorStrategy class=
"org.opennms.netmgt.collection.support.PersistRegexSelectorStrategy">
 <parameter key="match-expression" value="not(#diskIODevice matches
'^(loop|ram).*')" />
 </persistenceSelectorStrategy>
 <storageStrategy class="org.opennms.netmgt.dao.support.SiblingColumnStorageStrategy
">
 <parameter key="sibling-column-name" value="diskIODevice" />
 <parameter key="replace-all" value="s/^-//" />
 <parameter key="replace-all" value="s/\s//" />
 <parameter key="replace-all" value="s/:\\.*//" />
 </storageStrategy>
</resourceType>

Persistence Selector Strategies

Table 91. Persistence Selector Strategies

Class Description

org.opennms.netmgt.collection.support.PersistAllSelectorStr
ategy

Persist All indexes

org.opennms.netmgt.collection.support.PersistRegexSelector
Strategy

Persist indexes based on JEXL
evaluation

207

PersistRegexSelectorStrategy

The PersistRegexSelectorStrategy class takes a single parameter, match-expression, which defines a
JEXL expressions. On evaulation, this expression should return either true, persist index to storage,
or false, discard data.

Storage Strategies

Table 92. Storage Strategies

Class Storage Path Value

org.opennms.netmgt.collection.support
.IndexStorageStrategy

Index

org.opennms.netmgt.collection.support
.JexlIndexStorageStrategy

Value after JexlExpression evaluation

org.opennms.netmgt.collection.support
.ObjectNameStorageStrategy

Value after JexlExpression evaluation

org.opennms.netmgt.dao.support.Fram
eRelayStorageStrategy

interface label + '.' + dlci

org.opennms.netmgt.dao.support.HostF
ileSystemStorageStrategy

Uses the value from the hrStorageDescr column in the
hrStorageTable, cleaned up for unix filesystems.

org.opennms.netmgt.dao.support.Siblin
gColumnStorageStrategy

Uses the value from an SNMP lookup of OID in sibling-
column-name parameter, cleaned up for unix filesystems.

org.opennms.protocols.xml.collector.X
mlStorageStrategy

Index, but cleaned up for unix filesystems.

IndexStorageStrategy

The IndexStorageStrategy takes no parameters.

JexlIndexStorageStrategy

The JexlIndexStorageStrategy takes two parameters, index-format which is required, and clean-
output which is optional.

Parameter Description

index-format The JexlExpression to evaluate

clean-output Boolean to indicate whether the index value is cleaned up.

If the index value will be cleaned up, then it will have all whitespace, colons, forward and back
slashes, and vertical bars replaced with underscores. All equal signs are removed.

This class can be extended to create custom storage strategies by overriding the updateContext
method to set additional key/value pairs to use in your index-format template.

208

public class ExampleStorageStrategy extends JexlIndexStorageStrategy {

 private static final Logger LOG = LoggerFactory.getLogger(ExampleStorageStrategy
.class);
 public ExampleStorageStrategy() {
 super();
 }

 @Override
 public void updateContext(JexlContext context, CollectionResource resource) {
 context.set("Example", resource.getInstance());
 }
}

ObjectNameStorageStrategy

The ObjectNameStorageStrategy extends the JexlIndexStorageStrategy, so its requirements are the
same. Extra key/values pairs are added to the JexlContext which can then be used in the index-
format template. The original index string is converted to an ObjectName and can be referenced as
${ObjectName}. The domain from the ObjectName can be referenced as ${domain}. All key properties
from the ObjectName can also be referenced by ${key}.

This storage strategy is meant to be used with JMX MBean datacollections where multiple MBeans
can return the same set of attributes. As of OpenNMS Horizon 20, this is only supported using a
HTTP to JMX proxy and using the XmlCollector as the JmxCollector does not yet support indexed
groups.

Given an MBean like java.lang:type=MemoryPool,name=Survivor Space, and a storage strategy like
this:

<storageStrategy class=
"org.opennms.netmgt.collection.support.ObjectNameStorageStragegy">
 <parameter key="index-format" value="${domain}_${type}_${name}" />
 <parameter key="clean-output" value="true" />
</storageStrategy>

Then the index value would be java_lang_MemoryPool_Survivor_Space.

FrameRelayStorageStrategy

The FrameRelayStorageStrategy takes no parameters.

HostFileSystemStorageStrategy

The HostFileSystemStorageStrategy takes no parameters. This class is marked as deprecated, and
can be replaced with:

209

<storageStrategy class="org.opennms.netmgt.dao.support.SiblingColumnStorageStrategy">
 <parameter key="sibling-column-name" value="hrStorageDescr" />
 <parameter key="replace-first" value="s/^-$/_root_fs/" />
 <parameter key="replace-all" value="s/^-//" />
 <parameter key="replace-all" value="s/\\s//" />
 <parameter key="replace-all" value="s/:\\\\.*//" />
</storageStrategy>

SiblingColumnStorageStrategy

Parameter Description

sibling-column-name Alternate string value to use for index

replace-first Regex Pattern, replaces only the first match

replace-all Regex Pattern, replaces all matches

Values for replace-first, and replace-all must match the pattern s/regex/replacement/ or an error
will be thrown.

XmlStorageStrategy

This XmlStorageStrategy takes no parameters. The index value will have all whitespace, colons,
forward and back slashes, and vertical bars replaced with underscores. All equal signs are
removed.

7.4. SNMP Property Extenders
When collecting tabular numeric metrics from a given MIB table, it’s helpful to include one or more
string properties from each conceptual row of the table in question. These properties can be used in
the resourceLabel attribute of the resourceType associated with the collected data. When the string
property exists as a column in the same table that contains the numeric metrics, it’s easy to
associate the string to the correct resource by adding a mibObj with the same instance attribute and
a type of string.

For example, the Cisco ENVMON MIB’s temperature status table contains both a numeric gauge for
the temperature value and a string describing the associated temperature sensor. A partial walk of
this table illustrates this very direct relationship:

ciscoEnvMonTemperat
ureStatusIndex

ciscoEnvMonTemperatureStatusDescr
(.1.3.6.1.4.1.9.9.13.1.3.1.2)

ciscoEnvMonTemperatureStatusValue
(.1.3.6.1.4.1.9.9.13.1.3.1.3)

1 I/O Cont Inlet 22

2 I/O Cont Outlet 23

3 NPE Inlet 22

4 NPE Outlet 24

210

To collect the ciscoEnvMonTemperatureStatusDescr and ciscoEnvMonTemperatureStatusValue columns
within an SNMP data-collection group, all that’s needed is a resourceType and a group to hold the
two mibObj elements corresponding to these two columns. The mibObj aliases are shortened to
maintain compatibility with storage engines that limit the length of column names to 19 characters.

<resourceType name="ciscoEnvMonTemperatureStatusIndex<1>" label="Cisco Temperature"
resourceLabel="${cvmTempStatusDescr} (index ${index})">
 <persistenceSelectorStrategy class=
"org.opennms.netmgt.collection.support.PersistAllSelectorStrategy"/>
 <storageStrategy class="org.opennms.netmgt.collection.support.IndexStorageStrategy
"/>
</resourceType>
...
<group name="cisco-temperature" ifType="all">
 <mibObj oid=".1.3.6.1.4.1.9.9.13.1.3.1.2" instance=
"ciscoEnvMonTemperatureStatusIndex" alias="cvmTempStatusDescr" type="string"/>
 <mibObj oid=".1.3.6.1.4.1.9.9.13.1.3.1.3" instance=
"ciscoEnvMonTemperatureStatusIndex" alias="cvmTempStatusValue" type="gauge"/>
</group>

Even in cases where the string property exists in a separate MIB table, it’s straightforward to
include it as long as the "source" table uses an identical set of index variables. For example, the
ifXTable augments the ifTable, meaning the two tables use the same set of instance identifiers –
namely ifIndex. Whether or not the MIB definition of the second table declares an AUGMENTS
relationship to the first table, objects from tables with this kind of relationship can be mixed in the
same group.

In this contrived configuration example, ifDescr (which is from ifTable) is freely mixed with ifName
and ifAlias (from ifXTable):

<group name="mib2-string-properties-example" ifType="all">
 <mibObj oid=".1.3.6.1.2.1.2.2.1.2" instance="ifIndex" alias="ifDescr" type="string
"/>
 <mibObj oid=".1.3.6.1.2.1.31.1.1.1.1" instance="ifIndex" alias="ifName" type=
"string"/>
 <mibObj oid=".1.3.6.1.2.1.31.1.1.1.18" instance="ifIndex" alias="ifAlias" type=
"string"/>
</group>

Most SNMP property extenders make it possible to include string properties from a "source" MIB
table that is indexed differently from the table containing most of the relevant data. For purposes of
configuring property extenders, the table containing the majority of the data (and into which we
want to include the string properties) is called the target table, and the table containing the string
property is called the source table. Several different extenders are available; selecting the right
one depends on the relationship between the target table and the source table.

A few property extenders also exist whose effect is strictly local to the "target" resource. These
extenders are useful for dealing in partial indices and other similar operations that do not involve

211

looking outside the target MIB table.

SNMP Property Extenders are used in the context of a property element inside an SNMP data-
collection group parent element. The property element, when it appears, is a sibling of any mibObj
elements beneath the same parent group. The instance and alias attributes of the property element
are both required, and serve the same purpose as the same attributes of mibObj. The class-name
attribute of the property element contains the full class name (including package) of the Property
Extender class needed to join the source and target tables. The property element takes a number of
parameter child elements; these parameters are used to configure the property extender class
named in class-name. Each extender class recognizes a different set of parameters.

7.4.1. Cisco CBQoS Property Extender

This property extender is used only in very specific circumstances.

When to Use Cisco CBQoS Property Extender

The Cisco CBQoS Property Extender is designed specifically and exclusively for the purpose of
including string properties across ifXTable and the several MIB tables that make up the Cisco Class-
Based QoS MIB. It is not useful for any other sets of target and source tables.

Configuring Cisco CBQoS Extended Properties

The complex relationships among the various Cisco CBQoS tables are encapsulated in the code of
this property extender class. As a result, this extender takes only a single parameter, target-
property, whose value must be one of policyName, classMapName, interfaceAlias, or interfaceName.

7.4.2. Enum Lookup Property Extender

The Enum Lookup property extender provides a mechanism that works like a lookup table for
values of a local MIB table column.

When to use the Enum Lookup Property Extender

The Enum Lookup property extender may be used to map an enumerated set of integer values to a
corresponding set of human-sensible textual values. For example, the dot1dStpPortTable contains
two integer columns whose values reflect attributes of a port.

212

 dot1dStpPortState OBJECT-TYPE ①
 SYNTAX INTEGER {
 disabled(1),
 blocking(2),
 listening(3),
 learning(4),
 forwarding(5),
 broken(6)
 }
 -- ...

 dot1dStpPortEnable OBJECT-TYPE ②
 SYNTAX INTEGER {
 enabled(1),
 disabled(2)
 }

① Port STP state enumerated type

② Port enablement status enumerated type

This extender enables persisting the values of these enumerated integer columns as text that an
operator can easiliy recognize.

While this extender is intended primarily for translating integer values to more
descriptive ones as shown in the example below, it could also be used to translate
from one set of alphanumeric values to another set.

Configuring the Enum Lookup Property Extender

The Enum Lookup property extender expects zero or more parameters. Only the default-value
parameter has a fixed name; if it is present, its value is used any time a lookup cannot be
completed. If default-value is not provided and a lookup fails, no value will be returned for the
property. The remaining parameters are named for the input values, and their values represent the
output values.

This example shows how to map values of dot1dStpPortState and dot1dStpPortEnable to their textual
equivalents.

213

<resourceType name="dot1dStpPortEntry" label="dot1d STP Port" resourceLabel="${index}
">
 <persistenceSelectorStrategy class=
"org.opennms.netmgt.collection.support.PersistAllSelectorStrategy" />
 <storageStrategy class="org.opennms.netmgt.collection.support.IndexStorageStrategy"
/>
</resourceType>

...

<groups>
 <group name="dot1dStpPortTable" ifType="all">
 <mibObj oid=".1.3.6.1.2.1.17.2.15.1.3" instance="dot1dStpPortEntry" alias=
"dot1dStpPortState" type="string"/> ①
 <mibObj oid=".1.3.6.1.2.1.17.2.15.1.4" instance="dot1dStpPortEntry" alias=
"dot1dStpPortEnable" type="string"/> ②
 <mibObj oid=".1.3.6.1.2.1.17.2.15.1.10" instance="dot1dStpPortEntry" alias=
"dot1dStpPortFwTrans" type="counter" />
 <property instance="dot1dStpPortEntry" alias="dot1dStpPortStateText" class-name=
"org.opennms.netmgt.collectd.EnumLookupPropertyExtender"> ③
 <parameter key="enum-attribute" value="dot1dStpPortState"/>
 <parameter key="1" value="disabled(1)"/>
 <parameter key="2" value="blocking(2)"/>
 <parameter key="3" value="listening(3)"/>
 <parameter key="4" value="learning(4)"/>
 <parameter key="5" value="forwarding(5)"/>
 <parameter key="6" value="broken(6)"/>
 </property>
 <property instance="dot1dStpPortEntry" alias="dot1dStpPortEnableText" class-name=
"org.opennms.netmgt.collectd.EnumLookupPropertyExtender"> ④
 <!-- Note absence of parenthetical numeric values; they are entirely optional
-->
 <parameter key="1" value="enabled"/>
 <parameter key="2" value="disabled"/>
 </property>
 </group>
</groups>

① Port STP state enumerated integer attribute

② Port enablement status enumerated integer attribute

③ Derived port STP state textual attribute dot1dStpPortStateText

④ Derived port enablement status textual attribute dot1dStpPortEnableText

7.4.3. Index Split Property Extender

The Index Split property extender enables extraction of part of a resource’s local instance
identifier.

214

When to use the Index Split Property Extender

The Index Split property extender is useful when collecting data from tables with compound
indices, because it enables extraction of a single index component. For example, the Cisco Airespace
bsnAPIfLoadParametersTable is indexed using the tuple of bsnAPDot3MacAdddress and bsnAPIfSlotId.

bsnAPIfLoadParametersEntry OBJECT-TYPE
 -- ...
 DESCRIPTION
 "An entry (conceptual row) in the Table.
 Entries in this MIB are indexed by
 bsnAPDot3MacAddress and bsnAPIfSlotId"
 INDEX {
 bsnAPDot3MacAddress,
 bsnAPIfSlotId
 } ①

 -- ...

① bsnAPDot3MacAddress is the first component of the compound index for the entry type for
bsnAPIfLoadParametersTable

This extender enables extraction of just the bsnAPIfSlotId component for use in a resource label.

Configuring the Index Split Property Extender

The Index Split property extender expects a single parameter, index-pattern, whose value is a
regular expression. The expression must be general enough to match all possible index values for
the table at hand, and should include one capturing group. The subpattern matched by the
expression’s first capturing group will be returned; any further groups are ignored.

This example shows how to extract just the bsnAPIfSlotId index component as a string property.

<group name="bsnAPIfLoadParametersTable" ifType="all">
 <mibObj oid=".1.3.6.1.4.1.14179.2.2.13.1.4" instance="bsnAPIfLoadParametersEntry"
alias="bsnAPIfLoadNumOfCli" type="integer" />
 <property instance="bsnAPIfLoadParametersEntry" alias="slotNumber" class-name=
"org.opennms.netmgt.collectd.IndexSplitPropertyExtender"> ①
 <parameter key="index-pattern" value="^.+\.(\d+)$" /> ②
 </property>
</group>

① Derived string property slotNumber

② Regular expression; the portion in parentheses is what gets extracted. \d+ means "one or more
decimal digit characters".

7.4.4. Regex Property Extender

The Regex property extender works similarly to the Index Split property extender, with the added

215

capability of importing a string property from a source table.

When to Use the Regex Property Extender

The Regex property extender is useful when some portion of the target MIB table’s index can be
used as an index to the source MIB table. For example, the Cisco Airespace
bsnAPIfLoadParametersTable is indexed using the tuple of bsnAPDot3MacAdddress and bsnAPIfSlotId,
whereas the bsnAPTable is indexed on bsnAPDot3MacAddress alone.

bsnAPIfLoadParametersEntry OBJECT-TYPE
 -- ...
 DESCRIPTION
 "An entry (conceptual row) in the Table.
 Entries in this MIB are indexed by
 bsnAPDot3MacAddress and bsnAPIfSlotId"
 INDEX {
 bsnAPDot3MacAddress,
 bsnAPIfSlotId
 } ①

 -- ...

bsnAPEntry OBJECT-TYPE
 -- ...
 DESCRIPTION
 "An entry in the bsnAPTable."
 INDEX { bsnAPDot3MacAddress } ②
 -- ...

① bsnAPDot3MacAddress is the first component of the compound index for the entry type for
bsnAPIfLoadParametersTable

② bsnAPDot3MacAddress is the sole index for the entry type for bsnAPTable

By extracting just the first index component and using the result as an index into the source MIB
table, it’s possible to import the human-sensible bsnAPName string property from the source MIB
table.

Configuring the Regex Property Extender

The Regex property extender expects three parameters, all of which are required:

Table 93. Regex Property Extender Parameters

Name Description

source-type The name of the resourceType associated with the source MIB table

source-alias The alias name of the string property to be imported from the source MIB table

index-pattern A regular expression containing one matching group

216

The index-pattern expression must meet the same criteria as for the Index Split property extender.
The subpattern matched by its first capturing group will be used as an index into the source MIB
table; any further groups are ignored.

This example shows how to use the value of bsnAPDot3MacAddress as an index into the bsnAPTable.

<resourceType name="bsnAPEntry" label="Cisco Wireless AP" resourceLabel="${bsnAPName}
(index ${index})">
 <persistenceSelectorStrategy class=
"org.opennms.netmgt.collection.support.PersistAllSelectorStrategy" />
 <storageStrategy class="org.opennms.netmgt.collection.support.IndexStorageStrategy"
/>
</resourceType>

<resourceType name="bsnAPIfLoadParametersEntry" label="Cisco Wireless AP Resources"
resourceLabel="${bsnAPName} (index ${index})">
 <persistenceSelectorStrategy class=
"org.opennms.netmgt.collection.support.PersistAllSelectorStrategy" />
 <storageStrategy class="org.opennms.netmgt.collection.support.IndexStorageStrategy"
/>
</resourceType>

<groups>
 <group name="bsnAPTable" ifType="all">
 <mibObj oid=".1.3.6.1.4.1.14179.2.2.1.1.3" instance="bsnAPEntry" alias="bsnAPName"
type="string" /> ①
 </group>

 <group name="bsnAPIfLoadParametersTable" ifType="all">
 <mibObj oid=".1.3.6.1.4.1.14179.2.2.13.1.4" instance="bsnAPIfLoadParametersEntry"
alias="bsnAPIfLoadNumOfCli" type="integer" />
 <property instance="bsnAPIfLoadParametersEntry" alias="bsnAPName" class-name=
"org.opennms.netmgt.collectd.RegexPropertyExtender"> ②
 <parameter key="source-type" value="bsnAPEntry" />
 <parameter key="source-alias" value="bsnAPName" />
 <parameter key="index-pattern" value="^(.+)\.\d+$" /> ③
 </property>
 </group>
</groups>

① Regular string property bsnAPName on the source table

② Extended string property bsnAPName on the target table

③ Regular expression; the portion in parentheses is what gets extracted. \d+ means "one or more
decimal digit characters".

7.4.5. Pointer-Like Index Property Extender

The Pointer-Like Index property extender makes it possible to use the value of an attribute from the
target MIB table as the index into the source MIB table. Unlike the Index Split and Regex extenders,

217

this extender class does not require the target and source MIB tables to share any index
components.

When to Use the Pointer-Like Index Property Extender

The Pointer-Like Index property extender is useful when the target MIB table contains a column
whose value can be used as an index into the source MIB table. For example, the Cisco Process
MIB’s cpmCPUTotalTable has its own index that is not shared with any other tables, but its
cpmCPUTotalPhysicalIndex column contains an integer which can be used as an index into the
entPhysicalTable.

cpmCPUTotalEntry OBJECT-TYPE
 -- ...
 DESCRIPTION
 "Overall information about the CPU load. Entries in this
 table come and go as CPUs are added and removed from the
 system."
 INDEX { cpmCPUTotalIndex } ①
 -- ...

cpmCPUTotalPhysicalIndex OBJECT-TYPE ②
 -- ...
 DESCRIPTION
 "The entPhysicalIndex of the physical entity for which
 the CPU statistics in this entry are maintained.
 The physical entity can be a CPU chip, a group of CPUs,
 a CPU card etc. The exact type of this entity is described by
 its entPhysicalVendorType value. If the CPU statistics
 in this entry correspond to more than one physical entity
 (or to no physical entity), or if the entPhysicalTable is
 not supported on the SNMP agent, the value of this object
 must be zero."
 -- ...

entPhysicalEntry OBJECT-TYPE
 -- ...
 DESCRIPTION
 "Information about a particular physical entity.

 Each entry provides objects (entPhysicalDescr,
 entPhysicalVendorType, and entPhysicalClass) to help an NMS
 identify and characterize the entry, and objects
 (entPhysicalContainedIn and entPhysicalParentRelPos) to help
 an NMS relate the particular entry to other entries in this
 table."
 INDEX { entPhysicalIndex } ③
 -- ...

① The cpmCPUTotalTable entry type is indexed on cpmCPUTotalIndex, which has no meaning outside
this table

218

② The cpmCPUTotalPhysicalIndex column contains a value of entPhysicalIndex corresponding to the
CPU referenced in a given row

③ The entPhysicalTable entry type is indexed on entPhysicalIndex and provides many useful
textual columns.

By treating cpmCPUTotalPhysicalIndex somewhat like a pointer, it’s possible to import string
properties from the entPhysicalTable for use in the resource-label.

Some combinations of Cisco hardware and software appear to use values of
cpmCPUTotalIndex that are directly interchangeable with entPhysicalIndex. This
relationship does not hold across all product lines or software revisions.

Configuring the Pointer-Like Index Property Extender

The Pointer-Like Index property extender expects three parameters, all of which are required:

Table 94. Pointer-Like Index Property Extender Parameters

Name Description

source-type The name of the resourceType associated with the source MIB table

source-attribute The alias name of the string property to be imported from the source MIB
table

target-index-
pointer-column

The alias name of the column in the target MIB table whose value may be
used as an index into the source MIB table

This example shows how to use cpmCPUTotalPhysicalIndex as a pointer-like index into the
entPhysicalTable. The target resource gains a pair of string properties, which we will call
cpmCPUTotalName and cpmCPUTotalDescr.

219

https://en.wikipedia.org/wiki/Pointer_(computer_programming)

<resourceType name="entPhysicalEntry" label="Physical Entity" resourceLabel=
"${entPhysicalName} (${entPhysicalDescr}))">
 <persistenceSelectorStrategy class=
"org.opennms.netmgt.collection.support.PersistAllSelectorStrategy"/>
 <storageStrategy class="org.opennms.netmgt.collection.support.IndexStorageStrategy
"/>
</resourceType>

<resourceType name="cpmCPUTotalEntry" label="Cisco CPU Total" resourceLabel=
"${cpmCPUTotalName} (${cpmCPUTotalDescr})">
 <persistenceSelectorStrategy class=
"org.opennms.netmgt.collection.support.PersistAllSelectorStrategy" />
 <storageStrategy class="org.opennms.netmgt.collection.support.IndexStorageStrategy"
/>
</resourceType>

<groups>
 <group name="entity-physical-table" ifType="all">
 <mibObj oid=".1.3.6.1.2.1.47.1.1.1.1.2" instance="entPhysicalEntry" alias=
"entPhysicalDescr" type="string"/> ①
 <mibObj oid=".1.3.6.1.2.1.47.1.1.1.1.7" instance="entPhysicalEntry" alias=
"entPhysicalName" type="string"/> ②
 </group>

 <group name="cpm-cpu-total" ifType="all">
 <mibObj oid=".1.3.6.1.4.1.9.9.109.1.1.1.1.2" instance="cpmCPUTotalEntry" alias=
"cpmCPUTotalPhysicalIndex" type="string" /> ③
 <mibObj oid=".1.3.6.1.4.1.9.9.109.1.1.1.1.8" instance="cpmCPUTotalEntry" alias=
"cpmCPUTotal5minRev" type="gauge" />
 <property instance="cpmCPUTotalEntry" alias="cpmCPUTotalName" class-name=
"org.opennms.netmgt.collectd.PointerLikeIndexPropertyExtender"> ④
 <parameter key="source-type" value="entPhysicalEntry"/>
 <parameter key="source-attribute" value="entPhysicalName"/> ⑤
 <parameter key="target-index-pointer-column" value="cpmCPUTotalPhysicalIndex"/>
 </property>
 <property instance="cpmCPUTotalEntry" alias="cpmCPUTotalDescr" class-name=
"org.opennms.netmgt.collectd.PointerLikeIndexPropertyExtender"> ⑥
 <parameter key="source-type" value="entPhysicalEntry"/>
 <parameter key="source-attribute" value="entPhysicalDescr"/> ⑦
 <parameter key="target-index-pointer-column" value="cpmCPUTotalPhysicalIndex"/>
 </property>
 </group>
</groups>

<1>, <2> First we collect entPhysicalDescr and entPhysicalName in the source group, which uses a
resource-type associated with the entPhysicalTable <3> Then we collect the pointer-like
cpmCPUTotalPhysicalIndex in the target group, whose resource-type is associated with the
cpmCPUTotalTable <4> We derive cpmCPUTotalName in the target group telling the extender to use the
pointer-like property’s value as an index into the source table, and specify that we want to "pull

220

over" the source attribute entPhysicalName <5> <6> Deriving cpmCPUTotalDescr is almost identical,
except that this time we are pulling over the value of entPhysicalDescr <7>

7.4.6. SNMP Interface Property Extender

The SNMP Interface property extender does much the same job as the Pointer-Like Index property
extender, but it is specialized for importing properties from the ifTable. Resources representing
rows in the ifTable are modeled differently in OpenNMS Meridian compared to other tabular
resource types, and this extender accounts for those differences.

When to Use the SNMP Interface Property Extender

Use the SNMP Interface property extender when the string property you want to import is
associated with a network interface which is represented by a row in the ifTable. For example, the
dot1dBasePortTable has its own index which does not share any components with any other table,
but its dot1dBasePortIfIndex column contains a value that is a valid ifIndex.

 dot1dBasePortEntry OBJECT-TYPE
 -- ...
 DESCRIPTION
 "A list of information for each port of the bridge."
 -- ...
 INDEX { dot1dBasePort } ①
 -- ...

 dot1dBasePortIfIndex OBJECT-TYPE ②
 -- ...
 DESCRIPTION
 "The value of the instance of the ifIndex object,
 defined in IF-MIB, for the interface corresponding
 to this port."
 ::= { dot1dBasePortEntry 2 }
 -- ...

ifEntry OBJECT-TYPE
 -- ...
 DESCRIPTION
 "An entry containing management information applicable to a
 particular interface."
 INDEX { ifIndex } ③
 ::= { ifTable 1 }

① The entry type for dot1dBasePortTable is indexed on dot1dBasePort, which has no significance
outside this table

② But dot1dBasePortTable contains column dot1dBasePortIfIndex, which tells us the ifIndex

corresponding to the physical port underlying to the associated bridge base port

③ ifIndex is the index of the ifTable entry type (and also of the ifXTable entry type)

By using this extender, it’s possible to import string attributes from the ifTable, ifXTable, or

221

another table that augments the ifTable.

Configuring the SNMP Interface Property Extender

The SNMP Interface property extender expects two or three parameters:

Table 95. SNMP Interface Property Extender Parameters

Name Description Requi
red

Default
value

source-attribute The alias name of the string property to be imported
from the source MIB table

requir
ed

–

source-ifindex-
attribute

The name of the column in the source MIB table that
contains a value of ifIndex

option
al

ifIndex

target-ifindex-
pointer-column

The name of the column in the target MIB table that
contains a value of ifIndex

requir
ed

–

This example shows how to use dot1dBasePortIfIndex as a pointer-like index to import ifDescr from
the ifTable, and ifName and ifAlias from the ifXTable, into a trio of new string properties in the
target resource.

222

<resourceType name="dot1dBasePortEntry" label="dot1d Base Port" resourceLabel=
"${index}">
 <persistenceSelectorStrategy class=
"org.opennms.netmgt.collection.support.PersistAllSelectorStrategy" />
 <storageStrategy class="org.opennms.netmgt.collection.support.IndexStorageStrategy"
/>
</resourceType>

<groups>
 <group name="ifTable" ifType="all">
 <mibObj oid=".1.3.6.1.2.1.2.2.1.1" instance="ifIndex" alias="interfaceIndex"
type="string" /> ①
 <mibObj oid=".1.3.6.1.2.1.2.2.1.2" instance="ifIndex" alias="interfaceDescr"
type="string" />
 <mibObj oid=".1.3.6.1.2.1.31.1.1.1.1" instance="ifIndex" alias="interfaceName"
type="string" />
 <mibObj oid=".1.3.6.1.2.1.31.1.1.1.18" instance="ifIndex" alias="interfaceAlias"
type="string" />
 </group>

 <group name="dot1dBasePortTable" ifType="all">
 <mibObj oid=" .1.3.6.1.2.1.17.1.4.1.1" instance="dot1dBasePortEntry" alias=
"dot1dBasePort" type="string" />
 <mibObj oid=" .1.3.6.1.2.1.17.1.4.1.2" instance="dot1dBasePortEntry" alias=
"dot1dBasePortIfIndex" type="string" /> ②
 <mibObj oid=" .1.3.6.1.2.1.17.1.4.1.4" instance="dot1dBasePortEntry" alias=
"d1dBPDelayExDiscard" type="counter" />
 <mibObj oid=" .1.3.6.1.2.1.17.1.4.1.5" instance="dot1dBasePortEntry" alias=
"d1dBPMtuExDiscard" type="counter" />
 <property instance="dot1dBasePortEntry" alias="dot1dBasePortIfDescr" class-name=
"org.opennms.netmgt.collectd.InterfaceSnmpPropertyExtender"> ③
 <parameter key="source-ifindex-attribute" value="interfaceIndex"/>
 <parameter key="source-attribute" value="interfaceDescr"/> ④
 <parameter key="target-ifindex-pointer-column" value="dot1dBasePortIfIndex"/>
 </property>
 <property instance="dot1dBasePortEntry" alias="dot1dBasePortIfName" class-name=
"org.opennms.netmgt.collectd.InterfaceSnmpPropertyExtender"> ⑤
 <parameter key="source-ifindex-attribute" value="interfaceIndex"/>
 <parameter key="source-attribute" value="interfaceName"/> ⑥
 <parameter key="target-ifindex-pointer-column" value="dot1dBasePortIfIndex"/>
 </property>
 <property instance="dot1dBasePortEntry" alias="dot1dBasePortIfAlias" class-name=
"org.opennms.netmgt.collectd.InterfaceSnmpPropertyExtender"> ⑦
 <parameter key="source-ifindex-attribute" value="interfaceIndex"/>
 <parameter key="source-attribute" value="interfaceAlias"/> ⑧
 <parameter key="target-ifindex-pointer-column" value="dot1dBasePortIfIndex"/>
 </property>
 </group>
</groups>

223

① First we collect all of ifIndex, ifDescr, ifName, and ifAlias in a group associated with the ifIndex
source resource-type, using modified names to avoid collisions with internal workings (the
ifIndex type is built in, so we do not need a custom resource-type definition for it)

② Then we collect the pointer-like column dot1dBasePortIfIndex in the target group

③ To derive the dot1dBasePortIfDescr string property, we tell the extender which target attribute
contains the pointer-like value, which source column needs to have a matching value, and that
we want to "pull over" the interfaceDescr property <4> from the source group

④ Deriving dot1dBasePortIfName is almost identical, except that we want the property interfaceName
<6> from the source group instead

⑤ Again with dot1dBasePortIfAlias, we repeat ourselves except that our desired property from the
source group is interfaceAlias <8>

7.5. Administration and Troubleshooting

7.5.1. Collectd Administration

This section describes reference and administrative information associated with collectd.

Table 96. Configuration and log files related to Collectd

File Description

$OPENNMS_HOME/etc/collectd-
configuration.xml

Configuration file for global collectd daemon and collectors
configuration. (See Configuring Collectd.)

$OPENNMS_HOME/logs/collectd.l
og

Log file for all collectors and the global collectd daemon.

$OPENNMS_HOME/etc/snmp-
graph.properties

RRD graph definitions to render performance data measurements
in the UI.

$OPENNMS_HOME/etc/snmp-
graph.properties.d

Directory with RRD graph definitions for devices and applications
to render performance data measurements in the UI.

$OPENNMS_HOME/etc/events/open
nms.events.xml

Event definitions for collectd, i.e., dataCollectionSucceeded, and
dataCollectionFailed.

$OPENNMS_HOME/etc/resource-
types.d

Directory to store generic resource type definitions. (See Resource
Types.)

7.5.2. Shell Commands

A number of Karaf Shell commands are made available to help administer and diagnose issues
related to performance data collection.

To use the commands, log into the Karaf Shell on your system using:

ssh -p 8101 admin@localhost

224

The Karaf shell uses the same credential as the web interface. Users must be
associated with the ADMIN role to access the shell.

In order to keep the session open while executing long-running tasks without any
user input add -o ServerAliveInterval=10 to your ssh command.

Ad hoc collection

The opennms:collect Karaf Shell command can be used to trigger and perform a collection on any of
the available collectors.

The results of the collection (also referred to as the "collection set") will be displayed in the console
after a successful collection. The resulting collection set will not be persisted, nor will any
thresholding be applied.

List all of the available collectors:

opennms:list-collectors

Invoke the SnmpCollector against interface 127.0.0.1 on NODES:n1.

opennms:collect -n NODES:n1 org.opennms.netmgt.collectd.SnmpCollector 127.0.0.1

Invoke the SnmpCollector against interface 127.0.0.1 on NODES:n1 via the MINION location.

opennms:collect -l MINION -n NODES:n1 org.opennms.netmgt.collectd.SnmpCollector
127.0.0.1

 Setting the location on the command line will override the node’s location.

If you see errors caused by RequestTimedOutException`s when invoking a collector
at a remote location, consider increasing the time to live. By default,

`collectd will use the service interval as the time to live.

Invoke the JdbcCollector against 127.0.0.1 while specifying some of the collector parameters.

opennms:collect org.opennms.netmgt.collectd.JdbcCollector 127.0.0.1
collection=PostgreSQL driver=org.postgresql.Driver
url=jdbc:postgresql://OPENNMS_JDBC_HOSTNAME/postgres user=postgres

Some collectors, such as the JdbcCollector, can be invoked without specifying a
node.

Persist a collection :

225

opennms:collect -l MINION -n NODES=n1 -p org.opennms.netmgt.collectd.SnmpCollector
127.0.0.1

-p/--persist option will persist collection set there by introducing an extra
datapoint other than data collected during already configured collection interval.

A complete list of options is available using:

opennms:collect --help

Interpreting the output

After a successful collection, the collection set will be displayed in the following format:

resource a
 group 1
 attribute
 attribute
 group 2
 attribute
resource b
 group 1
 attribute
...

The description of the resources, groups and attribute may differ between collectors. This output is
independent of the persistence strategy that is being used.

Measurements & Resources

The following Karaf Shell commands are made available to help enumerate, view and manage
measurement related resources.

The opennms:show-measurement-resources command can be used to enumerate or lookup resources:

226

admin@opennms> opennms:show-measurement-resources --node NODES:node --no-children

ID: node[NODES:node]
Name: NODES:node
Label: node
Type: Node
Link: element/node.jsp?node=NODES:node
Children:
 node[NODES:node].nodeSnmp[]
 node[NODES:node].interfaceSnmp[lo]
 node[NODES:node].interfaceSnmp[opennms-jvm]
 node[NODES:node].responseTime[192.168.238.140]
 node[NODES:node].responseTime[192.168.39.1]
 node[NODES:node].responseTime[172.17.0.1]
 node[NODES:node].responseTime[127.0.0.1]
...

The opennms:delete-measurement-resources command can be used to delete resources, and all of the
associated metrics:

admin@opennms> opennms:delete-measurement-resources
"node[NODES:node].responseTime[127.0.0.1]"
Deleting measurements and meta-data associated with resource ID
'node[NODES:node].responseTime[127.0.0.1]'...
Done.

The opennms:show-measurements command can be used to render the values of the attributes
(measurements) associated with a particular resource:

admin@opennms> opennms:show-measurements -a ifHCInOctets
"node[NODES:node].interfaceSnmp[lo]"
Resource with ID 'node[NODES:node].interfaceSnmp[lo]' has attributes:
[ifHCOutUcastPkts, ifInDiscards, ifHCInBroadcastPkts, ifHCInOctets, ifHCOutOctets,
ifOutErrors, ifHCOutMulticastPkt, ifHCInUcastPkts, ifInErrors, ifHCInMulticastPkts,
ifHCOutBroadcastPkt, ifOutDiscards]
Limiting attributes to: [ifHCInOctets]

timestamp,ifHCInOctets
Fri Sep 13 13:30:00 EDT 2019,NaN
Fri Sep 13 13:35:00 EDT 2019,NaN
Fri Sep 13 13:40:00 EDT 2019,NaN

The opennms:show-newts-samples command can be used to view the raw samples (collected values)
associated with a particular resource.

227

admin@opennms> opennms:show-newts-samples -a ifHCInOctets
"node[NODES:node].interfaceSnmp[lo]"
Resource with ID 'node[NODES:node].interfaceSnmp[lo]' has attributes:
[ifHCOutUcastPkts, ifInDiscards, ifHCInBroadcastPkts, ifOutErrors, ifHCInOctets,
ifHCOutMulticastPkt, ifHCOutOctets, ifHCInUcastPkts, ifInErrors, ifHCInMulticastPkts,
ifOutDiscards, ifHCOutBroadcastPkt]
Limiting attributes to: [ifHCInOctets]
Fetching samples for Newts resource ID 'snmp:2:lo:mib2-X-interfaces'...
Fri Sep 13 14:31:05 EDT 2019,ifHCInOctets,1271178704.0000

Stress Testing

The opennms:stress-metrics Karaf Shell command can be used to simulate load on the active
persistence strategy, whether it be RRDtool, JRobin, or Newts.

The tool works by generating collection sets, similar to those built when performing data collection,
and sending these to the active persistence layer. By using the active persistence layer, we ensure
that we use the same write path which is used by the actual data collection services.

Generate samples for 10 nodes every 15 seconds and printing the statistic report every 30 seconds:

opennms:stress-metrics -n 10 -i 15 -r 30

While active, the command will continue to generate and persist collection sets. During this time
you can monitor the system I/O and other relevant statistics.

When your done, use CTRL+C to stop the stress tool.

A complete list of options is available using:

opennms:stress-metrics --help

Interpreting the output

The statistics output by the tool can be be interpreted as follows:

numeric-attributes-generated

The number of numeric attributes that were sent to the persistence layer. We have no guarantee
as to whether or not these were actually persisted.

string-attributes-generated

The number of string attributes that were sent to the persistence layer. We have no guarantee as
to whether or not these were actually persisted.

batches

The count is used to indicate how many batches of collection sets (one at every interval) were
sent to the persistence layer. The timers show how much time was spent generating the batch,

228

and sending the batch to the persistence layer.

229

Chapter 8. Thresholding
Thresholding allows you to define limits against network performance metrics of a managed entity
to trigger an event when a value goes above or below the specified limit.

• High

• Low

• Absolute Value

• Relative Change

8.1. How Thresholding Works in OpenNMS Meridian
OpenNMS Meridian uses collectors to implement data collection for a particular protocol or family
of protocols (SNMP, JMX, HTTP, XML/JSON, WS-Management/WinRM, JDBC, etc.). You can specify
configuration for a particular collector in a collection package: essentially the set of instructions
that drives the behavior of the collector.

The collectd daemon gathers and stores performance data from these collectors. This is the data
against which OpenNMS Meridian applies thresholds. Thresholds trigger events when a specified
threshold value is met. You can further create notifications and alarms for threshold events.

8.2. What Triggers a Thresholding Event?
OpenNMS Meridian uses four thresholding algorithms that trigger an event when the datasource
value:

• Low - equals or drops below the threshold value and re-arms when it equals or comes back up
above the re-arm value (e.g., available disk space falls under the specified value)

• High - equals or exceeds the threshold value, and re-arms when it equals or drops below the re-
arm value (e.g., bandwidth use exceeds the specified amount)

• Absolute - changes by the specified amount (e.g., on a fiber-optic link, a change in loss of
anything greater than 3 dB is a problem regardless of what the original or final value is)

• Relative - changes by percent (e.g., available disk space changes more than 5% from the last
poll)

230

These thresholds can be basic (tested against a single value) or an expression (evaluated against
multiple values in an expression).

OpenNMS Meridian applies these algorithms against any performance data (telemetry) collected by
collectd or pushed to telemetryd. This includes, but is not limited to, metrics such as CPU load,
bandwidth, disk space, etc.

The basic walkthrough focuses on how to set simple thresholds using default
values in the OpenNMS Meridian setup. For information on setting and
configuring collectors, collectd, and the collectd-configuration.xml file, see
Performance Management.

8.3. Basic Walk-through – Thresholding
This section describes how to create a basic threshold for a single, system-wide variable: the
number of logged-in users. Our threshold will tell OpenNMS Meridian to create an event when the
number of logged-in users on the device exceeds two, and re-arm when it falls below two.

Before creating a threshold, you need to make sure you are collecting the metric against which you
want to threshold.

8.3.1. Determine You are Collecting Metric

In this case, we have chosen a metric (number of logged-in users) that is collected by default. We
are also using data collected via SNMP. (For information on other collectors, see Collectors.)

1. In the OpenNMS Meridian UI, choose Reports>Resource Graphs.

2. Select one of the listed resources.

3. Under SNMP Node Data, select Node-level Performance Data and choose Graph Selection.

4. Scroll to find the Number of Users graph.

a. You can click the binoculars icon to display only this graph.

8.3.2. Create a Threshold

1. Select <User_Name>>Configure OpenNMS from the top-right menu.

2. Under Performance Measurement, choose Configure Thresholds.

a. A screen with a list of preconfigured threshold groups appears. We will work with netsnmp.
For information on how to create a threshold group, see Creating a Threshold Group.

3. Click Edit beside the netsnmp group.

4. Click Create New Threshold at the bottom of the Basic Thresholds area of the screen.

5. Set the following information and click Save:

Field Value Description

231

performance-data-collection/introduction.pdf

Type high Triggers an event when the
datasource value equals or
exceeds the threshold value,
and re-arms when it equals or
drops below the re-arm value

Datasource hrSystemNumUsers Name of the datasource you
want to threshold against. For
this tutorial, we have provided
the datasource for logged-in
users.

For information on how to
determine a metric’s
datasource, see Determine the
Datasource.

Datasource label leave blank Optional text label. Not
required for this tutorial.

Value 2 The value above which we want
to trigger an event. In this case,
we want to trigger an event
when the number of logged-in
users exceeds two.

Re-arm 2 The value below which we want
the system to re-arm. In this
case, once the number of
logged-in users falls below two.

Trigger 3 The number of consecutive
times the threshold value can
occur before the system triggers
an event. Since our default
polling period is 5 minutes, a
value of 3 means OpenNMS
Meridian would create a
threshold event if there are
more than 2 users for 15
minutes.

Description leave blank Optional text to describe your
threshold.

232

Triggered UEI leave blank A custom uniform event
identifier (UEI) sent into the
events system when the
threshold is triggered. A custom
UEI for each threshold makes it
easier to create notifications. If
left blank, it defaults to the
standard thresholds UEIs.

Re-armed UEI leave blank A custom uniform event
identifier (UEI) sent into the
events system when the
threshold is re-armed.

8.3.3. Testing the Threshold

To test the threshold we just created, log a second person into the node you are monitoring.
Navigate to the Events page. You should see an event that indicates your threshold triggered when
more than one user logged in.

Log out the second user. The Events page should indicate that the system has re-armed.

8.3.4. Creating a Threshold for CPU Usage

This procedure describes how to create an expression-based threshold when the five-minute CPU
load average metric reaches or goes above 70% for two consecutive measurement intervals.
Expression-based thresholds are useful when you need to threshold on a percentage, not the actual
value of the data collected.

Expression-based thresholds work only if the data sources in question lie in the
same directory.

1. Select <User_Name>>Configure OpenNMS from the top-right menu.

2. Under Performance Measurement, choose Configure Thresholds.

3. Click Edit beside the netsnmp group.

4. Click Create New Expression-based Threshold.

5. Fill in the following information:

Field Value Description

Type high Triggers an event when the
datasource value equals or
exceeds the threshold value,
and re-arms when it equals or
drops below the re-arm value

233

Expression ((loadavg5 / 100) /
CpuNumCpus) * 100

Divides the five-minute CPU
load average by 100 (to obtain
the effective load average), which
is then divided by the number of CPUs. This value is
then multiplied by 100 to provide a percentage.

(SNMP does not report in
decimals, which is why the
expression divides the
loadavg5 by 100.)

Datasource type node The type of datasource from
which you are collecting data.

Datasource label leave blank Optional text label. Not
required for this tutorial.

Value 70 Trigger an event when the
five-minute CPU load average
goes above 70%.

Re-arm 50 Re-arm the system when the
five-minute CPU load average
drops below 50%

Trigger 2 The number of consecutive
times the threshold value can
occur before the system
triggers an event. In this case,
when the five-minute CPU load
average goes above 70% for
two consecutive polling
periods.

Description Trigger an alert when the five-
minute CPU load average
metric reaches or goes above
70% for two consecutive
measurement intervals

Optional text to describe your
threshold.

Triggered UEI leave blank See the table in Create a
Threshold for details.

Re-armed UEI leave blank See the table in Create a
Threshold for details.

6. Click Save.

8.3.5. Determining the Datasource

Creating a threshold requires the name of the datasource generating the metrics on which you
want to threshold. Datasource names for the SNMP protocol appear in etc/snmp-

234

graph.properties.d/.

1. To determine the name of the datasource, navigate to the Resource Graphs screen. For example,

a. Reports>Resource Graphs.

b. Select one of the listed resources.

c. Under SNMP Node Data, select Node-level Performance Data and choose Graph Selection.

2. Scroll through the graphs to find the title of the graph that displays the metric on which you
want to threshold. For example, "Number of Processes" or "System Uptime":

3. Go to etc/snmp-graph.properties.d/ and search for the title of the graph (for example, "System
Uptime").

4. Note the name of the datasource, and enter it in the Datasource field when you create your
threshold.

8.3.6. Create a Threshold Group

A threshold group associates a set of thresholds to a service (e.g., thresholds that apply to all Cisco
devices). OpenNMS Meridian includes seven preconfigured, editable threshold groups:

• mib2

235

• cisco

• hrstorage

• netsnmp

• juniper-srx

• netsnmp-memory-linux

• netsnmp-memory-nonlinux

You can edit an existing group (through the UI) or create a new one (in the thresholds.xml file
located in $OPENNMS_HOME/etc/thresholds.xml). Once you create the group, you can then define it in
the thresholds.xml file or define it in the UI.

We will create a threshold group called "demo_group".

1. Type the following in the thresholds.xml file.

<group name="demo_group" rrdRepository="/opt/opennms/share/rrd/snmp/">
</group>

2. Once you have created the group in the thresholds.xml file, switch to the UI, go to the threshold
screen and click Request a reload threshold packages configuration.

a. The group you created should appear in the UI.

3. Click Edit to edit it.

The following is a sample of how the threshold appears in the thresholds.xml file:

<group name="demo_group" rrdRepository="/opt/opennms/share/rrd/snmp/"> ①
 <expression type="high" ds-type="hrStorageIndex" value="90.0"
 rearm="75.0" trigger="2" ds-label="hrStorageDescr"
 filterOperator="or" expression="hrStorageUsed / hrStorageSize * 100.0">
 <resource-filter
field="hrStorageType">^\.1\.3\.6\.1\.2\.1\.25\.2\.1\.4$</resource-filter> ②
 </expression>
</group>

① The name of the group and the directory of the stored data.

② The details of the threshold including type, datasource type, threshold value, rearm value, etc.

8.3.7. Create a Notification on a Threshold Event

A custom UEI for each threshold makes it easier to create notifications.

8.4. Thresholding Service
The Thresholding Service is the component responsible for maintaining the state of the
performance metrics and for generating alarms from these when thresholds are triggered (armed)

236

notificatioins/introduction.pdf

or cleared (unarmed).

The thresholding service listens for and visits performance metrics after they are persisted to the
time series database.

The state of the thresholds are held in memory and pushed to persistent storage only when they are
changed.

8.4.1. Distributed Thresholding with Sentinel

Thresholding for streaming telemetry with telemetryd is supported on Sentinel when using Newts.
When running on Sentinel, the thresholding state can be stored in either Cassandra or PostgreSQL.
Given that Newts already requires Cassandra, we recommend using Casssandra in order to help
minimize the load on PostgreSQL.

Thresholding on Sentinel uses the same configuration files as OpenNMS Meridian and operates
similarly. When a thresholding changes to/from trigger or cleared, and event is published which is
processed by OpenNMS Meridian and the alarm is created or updated.

8.5. Shell Commands
The following shell commands are made available to help debug and manage thresholding.

Enumerate the persisted threshold states using opennms:threshold-enumerate:

admin@opennms> opennms:threshold-enumerate
Index State Key
1 23-127.0.0.1-hrStorageIndex-hrStorageUsed / hrStorageSize * 100.0-
/opt/opennms/share/rrd/snmp-RELATIVE_CHANGE
2 23-127.0.0.1-if-ifHCInOctets * 8 / 1000000 / ifHighSpeed * 100-
/opt/opennms/share/rrd/snmp-HIGH
3 23-127.0.0.1-node-((loadavg5 / 100) / CpuNumCpus) * 100.0-
/opt/opennms/share/rrd/snmp-HIGH
4 23-127.0.0.1-if-ifInDiscards + ifOutDiscards-/opt/opennms/share/rrd/snmp-HIGH

Each state is uniquely identified by a state key and aliased by the given index. Indexes are scoped
to the particular shell session and provided as an alternative to specifying the complete state key in
subsequent commands.

Display state details using opennms:threshold-details:

admin@opennms> opennms:threshold-details 1
multiplier=1.333
lastSample=64.77758166043765
previousTriggeringSample=28.862826722171075
interpolatedExpression='hrStorageUsed / hrStorageSize * 100.0'

237

admin@opennms> opennms:threshold-details 2
exceededCount=0
armed=true
interpolatedExpression='ifHCInOctets * 8 / 1000000 / ifHighSpeed * 100'

 Different types of thresholds will display different properties.

Clear a particular persisted state using opennms:threshold-clear:

admin@opennms> opennms:threshold-clear 2

Or clear all the persisted states with opennms:threshold-clear-all:

admin@opennms> opennms:threshold-clear-all
Clearing all thresholding states....done

238

Chapter 9. Events
Events are central to the operation of the OpenNMS Meridian platform, so it’s critical to have a firm
grasp of this topic.

Whenever something in OpenNMS Meridian appears to work by magic, it’s
probably events working behind the curtain.

9.1. Anatomy of an Event
Events are structured historical records of things that happen in OpenNMS Meridian and the nodes,
interfaces, and services it manages. Every event has a number of fixed fields and zero or more
parameters.

Mandatory Fields

UEI (Universal Event Identifier)

A string uniquely identifying the event’s type. UEIs are typically formatted in the style of a URI,
but the only requirement is that they start with the string uei..

Event Label

A short, static label summarizing the gist of all instances of this event.

Description

A long-form description describing all instances of this event.

Log Message

A long-form log message describing this event, optionally including expansions of fields and
parameters so that the value is tailored to the event at hand.

Severity

A severity for this event type. Possible values range from Cleared to Critical.

Event ID

A numeric identifier used to look up a specific event in the OpenNMS Meridian system.

Notable Optional Fields

Operator Instruction

A set of instructions for an operator to respond appropriately to an event of this type.

Alarm Data

If this field is provided for an event, OpenNMS Meridian will create, update, or clear alarms for
events of that type according to the alarm-data specifics.

9.2. Sources of Events
Events may originate within OpenNMS Meridian itself or from outside.

239

Internally-generated events can be the result of the platform’s monitoring and management
functions (e.g. a monitored node becoming totally unavailable results in an event with the UEI
uei.opennms.org/nodes/nodeDown) or they may act as inputs or outputs of housekeeping processes.

The following subsections summarize the mechanisms by which externally-created events can
arrive.

9.2.1. SNMP Traps

If SNMP-capable devices in the network are configured to send traps to OpenNMS Meridian, these
traps are transformed into events according to pre-configured rules. The Trapd service daemon,
which enables OpenNMS Meridian to receive SNMP traps, is enabled by default.

Disabling the Trapd service daemon will render OpenNMS Meridian incapable of
receiving SNMP traps.

Event definitions are included with OpenNMS Meridian for traps from many vendors' equipment.

Traps forwarded via proxy

When SNMP traps are forwarded through a proxy using SNMPv2c or SNMPv3, preserving the
original source IP address is a challenge due to the lack of an agent-addr field in the TRAP-V2 PDU
used in those protocol versions. RFC 3584 defines an optional varbind snmpTrapAddress

(.1.3.6.1.6.3.18.1.3.0) which can be added to forwarded traps to convey the original source IP
address.

To configure OpenNMS Meridian to honor snmpTrapAddress when present, set use-address-from-
varbind="true" in the top-level element of ${OPENNMS_HOME}/etc/trapd-configuration.xml and restart
OpenNMS Meridian.

Configuration example for using RFC 3584 helper varbinds in forwarded traps

<trapd-configuration<1> snmp-trap-port="162" new-suspect-on-trap="false" use-address-
from-varbind="true"<2>/>

① Top-level trapd-configuration element

② New attribute to enable use of snmpTrapAddress varbind, when present

9.2.2. Syslog Messages

Syslog messages sent over the network to OpenNMS Meridian can be transformed into events
according to pre-configured rules.

The Syslogd service daemon, which enables OpenNMS Meridian to receive syslog
messages over the network, must be enabled for this functionality to work. This
service daemon is disabled by default.

240

https://tools.ietf.org/html/rfc3584#page-42

Parsers

Different parsers can be used to convert the syslog message fields into OpenNMS Meridian event
fields.

Parser Description

org.opennms.netmgt.syslogd.CustomSy
slogParser

Parser that uses a regex statement to parse the syslog
header.

org.opennms.netmgt.syslogd.RadixTre
eSyslogParser

Parser that uses an internal list of grok-style statements to
parse the syslog header.

org.opennms.netmgt.syslogd.SyslogNG
Parser

Parser that strictly parses messages in the default pattern of
syslog-ng.

org.opennms.netmgt.syslogd.Rfc5424S
yslogParser

Parser that strictly parses the RFC 5424 format for syslog
messages.

RadixTreeSyslogParser

The RadixTreeSyslogParser normally uses a set of internally-defined patterns to parse multiple
syslog message formats. If you wish to customize the set of patterns, you can put a new set of
patterns into a syslog-grok-patterns.txt in the etc directory for OpenNMS Meridian.

The patterns are defined in grok-style statements where each token is defined by a
%{PATTERN:semantic} clause. Whitespace in the pattern will match 0…n whitespace characters and
character literals in the pattern will match the corresponding characters. The '%' character literal
must be escaped by using a backslash, ie. '\%'.

The RadixTreeSyslogParser’s grok implementation only supports a limited number
of pattern types. However, these patterns should be sufficient to parse any syslog
message format.

The patterns should be arranged in the file from most specific to least specific since the first pattern
to successfully match the syslog message will be used to construct the OpenNMS Meridian event.

Pattern Description

HOSTNAME String containing only valid hostname characters (alphanumeric plus '.', '-' and '_').

`HOSTNAMEO
RIP

String containing only valid hostname characters or IP address characters (IPv4
or IPv6).

INT Positive integer.

`IPADDRESS String containing only valid IP address characters (IPv4 or IPv6).

MONTH 3-character English month abbreviation.

NOSPACE String that contains no whitespace.

241

Pattern Description

STRING String. Because this matches any character, it must be followed by a delimiter in
the pattern string.

WHITESPACE String that contains only whitespace (spaces and or tabs).

Semantic
Token

Description

day 2-digit day of month (1-31).

facilityPrior
ity

Facility-priority integer.

hostname String hostname (unqualified or FQDN), IPv4 address, or IPv6 address.

hour 2-digit hour of day (0-23).

message Remaining string message.

messageId String message ID.

minute 2-digit minute (0-59).

month 2-digit month (1-12).

parm* String generic parameter where the parameter’s key is the identifier following
"parm" in the semantic token (e.x. parmComponentId maps to a string parameter
with key "ComponentId").

processId String process ID.

processName String process name.

second 2-digit second (0-59).

secondFractio
n

1- to 6-digit fractional second value as a string.

timezone String timezone value.

version Version.

year 4-digit year.

9.2.3. ReST

Posting an event in XML format to the appropriate endpoint in the OpenNMS Meridian ReST API
will cause the creation of a corresponding event, just as with the XML-TCP interface.

9.2.4. XML-TCP

Any application or script can create custom events in OpenNMS Meridian by sending properly-
formatted XML data over a TCP socket.

242

9.2.5. Receiving IBM Tivoli Event Integration Facility Events

OpenNMS can be configured to receive Events sent using the Tivoli Event Integration Facility. These
EIF events are translated into OpenNMS events using preconfigured rules. The resulting UEI are
anchored in the uei.opennms.org/vendor/IBM/EIF/ namespace, with the name of the EIF event class
appended.

A sample event configuration for the OMEGAMON_BASE class is included with OpenNMS.

Configuring the EIF Adapter

Once OpenNMS is started and the Karaf shell is accessible, you can install the EIF Adapter feature
and configure it to listen on a specific interface and port.

 By default the EIF Adapter is configured to listen on TCP port 1828 on all interfaces.

OSGi login, installation, and configuration of the EIF Adapter

[root@localhost /root]# $ ssh -p 8101 admin@localhost
...
opennms> feature:install eif-adapter
opennms> config:edit org.opennms.features.eifadapter
opennms> config:property-set interface 0.0.0.0
opennms> config:property-set port 1828
opennms> config:update

You can check the routes status with the camel:* commands and/or inspect the log with log:tail for
any obvious errors. The feature has a debug level logging that can be used to debug operations.

Documentation on using the OSGi console embedded in OpenNMS and the related
camel commands.

Features installed through the Karaf shell persist only as long as the
${OPENNMS_HOME}/data directory remains intact. To enable the feature more
permanently, add it to the featuresBoot list in
${OPENNMS_HOME}/etc/org.apache.karaf.features.cfg.

You should now be able to configure your EIF forwarders to send to this destination, and their
events will be translated into OpenNMS Events and written to the event bus.

Troubleshooting

If events are not reaching OpenNMS, check whether the event source (EIF Forwarder) is correctly
configured. Check your event destination configuration. In particular review the HOSTNAME and PORT
parameters. Also check that your situations are configured to forward to that EIF destination.

If those appear to be correct verify that the EIF Forwarder can communicate with OpenNMS over
the configured port (default 1828).

243

https://www.ibm.com/support/knowledgecenter/SSSHTQ_7.3.1/com.ibm.netcool_OMNIbus.doc_7.3.1/omnibus/wip/eifsdk/concept/kaa24487.html
https://www.ibm.com/support/knowledgecenter/SSSHTQ_7.3.1/com.ibm.netcool_OMNIbus.doc_7.3.1/omnibus/wip/eifsdk/concept/ecoemst16.html
http://karaf.apache.org/manual/latest/#_using_the_console
http://camel.apache.org/karaf.html

Review the OSGi log with log:tail or the camel:* commands.

9.2.6. TL1 Autonomous Messages

Autonomous messages can be retrieved from certain TL1-enabled equipment and transformed into
events.

The Tl1d service daemon, which enables OpenNMS Meridian to receive TL1
autonomous messages, must be enabled for this functionality to work. This service
daemon is disabled by default. :imagesdir: ../../../images

9.2.7. Sink

Events can also be created by routing them to a specific topic on Kafka / ActiveMQ.

The topic name should be of the form OpenNMS.Sink.Events where OpenNMS is default instance id of
OpenNMS Meridian. The instance id is configurable through a system property
org.opennms.instance.id.

9.3. The Event Bus
At the heart of OpenNMS Meridian lies an event bus. Any OpenNMS Meridian component can
publish events to the bus, and any component can subscribe to receive events of interest that have
been published on the bus. This publish-subscribe model enables components to use events as a
mechanism to send messages to each other. For example, the provisioning subsystem of OpenNMS
Meridian publishes a node-added event whenever a new node is added to the system. Other
subsystems with an interest in new nodes subscribe to the node-added event and automatically
receive these events, so they know to start monitoring and managing the new node if their
configuration dictates. The publisher and subscriber components do not need to have any
knowledge of each other, allowing for a clean division of labor and lessening the programming
burden to add entirely new OpenNMS Meridian subsystems or modify the behavior of existing
ones.

9.3.1. Associate an Event to a given node

There are 2 ways to associate an existing node to a given event prior sending it to the Event Bus:

• Set the nodeId of the node in question to the event.

• For requisitioned nodes, set the _foreignSource and _foreignId as parameters to the event.
Then, any incoming event without a nodeId and these 2 parameters will trigger a lookup on the
DB; if a node is found, the nodeId attribute will be dynamically set into the event, regardless
which method has been used to send it to the Event Bus. :imagesdir: ../../images

9.4. Event Configuration
The back-end configuration surrounding events is broken into two areas: the configuration of
Eventd itself, and the configuration of all types of events known to OpenNMS Meridian.

244

9.4.1. The eventd-configuration.xml file

The overall behavior of Eventd is configured in the file OPENNMS_HOME/etc/eventd-configuration.xml.
This file does not need to be changed in most installations. The configurable items include:

TCPAddress

The IP address to which the Eventd XML/TCP listener will bind. Defaults to 127.0.0.1.

TCPPort

The TCP port number on TCPAddress to which the Eventd XML/TCP listener will bind. Defaults to
5817.

UDPAddress

The IP address to which the Eventd XML/UDP listener will bind. Defaults to 127.0.0.1.

UDPPort

The UDP port number on TCPAddress to which the Eventd XML/UDP listener will bind. Defaults to
5817.

receivers

The number of threads allocated to service the event intake work done by Eventd.

queueLength

The maximum number of events that may be queued for processing. Additional events will be
dropped. Defaults to unlimited.

getNextEventID

An SQL query statement used to retrieve the ID of the next new event. Changing this setting is
not recommended.

socketSoTimeoutRequired

Whether to set a timeout value on the Eventd receiver socket.

socketSoTimeoutPeriod

The socket timeout, in milliseconds, to set if socketSoTimeoutRequired is set to yes.

logEventSummaries

Whether to log a simple (terse) summary of every event at level INFO. Useful when
troubleshooting event processing on busy systems where DEBUG logging is not practical.

9.4.2. The eventconf.xml file and its tributaries

The set of known events is configured in OPENNMS_HOME/etc/eventconf.xml. This file opens with a
<global> element, whose <security> child element defines which event fields may not be
overridden in the body of an event submitted via any Eventd listener. This mechanism stops a
mailicious actor from, for instance, sending an event whose operator-action field amounts to a
phishing attack.

After the <global> element, this file consists of a series of <event-file> elements. The content of

245

each <event-file> element specifies the path of a tributary file whose contents will be read and
incorporated into the event configuration. These paths are resolved relative to the OPENNMS_HOME/etc
directory; absolute paths are not allowed.

Each tributary file contains a top-level <events> element with one or more <event> child elements.
Consider the following event definition:

 <event>
 <uei>uei.opennms.org/nodes/nodeLostService</uei>
 <event-label>OpenNMS-defined node event: nodeLostService</event-label>
 <descr><p>A %service% outage was identified on interface
 %interface% because of the following condition: %parm[eventReason]%.<
/p> <p>
 A new Outage record has been created and service level
 availability calculations will be impacted until this outage is
 resolved.</p></descr>
 <logmsg dest="logndisplay">
 %service% outage identified on interface %interface%.
 </logmsg>
 <severity>Minor</severity>
 <alarm-data reduction-key="%uei%:%dpname%:%nodeid%:%interface%:%service%" alarm-
type="1" auto-clean="false"/>
 </event>

Every event definition has this same basic structure. See Anatomy of an Event for a discussion of
the structural elements.

A word about severities

When setting severities of events, it’s important to consider each event in the context of your
infrastructure as a whole. Events whose severity is critical at the zoomed-in level of a single device
may not merit a Critical severity in the zoomed-out view of your entire enterprise. Since an event
with Critical severity can never have its alarms escalated, this severity level should usually be
reserved for events that unequivocally indicate a truly critical impact to the business. Rock legend
Nigel Tufnel offered some wisdom on the subject.

Replacement tokens

Various tokens can be included in the description, log message, operator instruction and automatic
actions for each event. These tokens will be replaced by values from the current event when the
text for the event is constructed. Not all events will have values for all tokens, and some refer
specifically to information available only in events derived from SNMP traps.

%eventid%

The event’s numeric database ID

%uei%

The Universal Event Identifier for the event.

246

https://www.youtube.com/watch?v=4xgx4k83zzc

%source%

The source of the event (which OpenNMS Meridian service daemon created it).

%descr%

The event description.

%logmsg%

The event logmsg.

%time%

The time of the event.

%shorttime%

The time of the event formatted using DateFormat.SHORT for a completely numeric date/time.

%dpname%

The ID of the Minion (formerly distributed poller) that the event was received on.

%nodeid%

The numeric node ID of the device that caused the event, if any.

%nodelabel%

The node label for the node given in %nodeid% if available.

%nodelocation%

The node location for the node given in %nodeid% if available.

%host%

The host at which the event was generated.

%interface%

The IP interface associated with the event, if any.

%foreignsource%

The Requisition name for the node given in %nodeid if available.

%foreignid%

The Requisition ID for the node given in %nodeid if available.

%ifindex%

The interface’s SNMP ifIndex.

%interfaceresolv%

Does a reverse lookup on the %interface% and returns its name if available.

%service%

The service associated with the event, if any.

247

%severity%

The severity of the event.

%snmphost%

The host of the SNMP agent that generated the event.

%id%

The SNMP Enterprise OID for the event.

%idtext%

The decoded (human-readable) SNMP Enterprise OID for the event (?).

%ifalias%

The interface’s SNMP ifAlias.

%generic%

The Generic trap-type number for the event.

%specific%

The Specific trap-type number for the event.

%community%

The community string for the trap.

%version%

The SNMP version of the trap.

%snmp%

The SNMP information associated with the event.

%operinstruct%

The operator instructions for the event.

%mouseovertext%

The mouse over text for the event.

%tticketid%

The trouble ticket id associated with the event if available.

%primaryinterface%

The primary interface IP address for the node given in %nodeid% if available.

The use of multiple Minions in one location can break the alarm life-cycle for a
some OpenNMS features. To avoid this problem, the %dpname% value can always be
replaced by an empty string by setting org.opennms.netmgt.eventd.cleardpname to
true in the file opennms.properties.

Asset tokens

248

A node may have additional asset records stored for it. You can access these records using the asset
replacement token, which takes the form:

%asset[<token>]%

The asset field <token>'s value, or "Unknown" if it does not exist.

Hardware tokens

A node may have additional hardware details stored for it. You can access these details using the
hardware replacement token, which takes the form:

%hardware[<token>]%

The hardware field <token>'s value.

Parameter tokens

Many events carry additional information in parameters (see Anatomy of an Event). These
parameters may start life as SNMP trap variable bindings, or varbinds for short. You can access
event parameters using the parm replacement token, which takes several forms:

%parm[all]%

Space-separated list of all parameter values in the form parmName1="parmValue1"

parmName2="parmValue2" and so on.

%parm[values-all]%

Space-separated list of all parameter values (without their names) associated with the event.

%parm[names-all]%

Space-separated list of all parameter names (without their values) associated with the event.

%parm[<name>]%

Will return the value of the parameter named <name> if it exists.

%parm[##]%

Will return the total number of parameters as an integer.

%parm[#<num>]%

Will return the value of parameter number <num> (one-indexed).

%parm[name-#<num>]%

Will return the name of parameter number <num> (one-indexed).

The structure of the eventconf.xml tributary files

The ordering of event definitions is very important, as an incoming event is matched against them
in order. It is possible and often useful to have several event definitions which could match variant
forms of a given event, for example based on the values of SNMP trap variable bindings.

The tributary files included via the <event-file> tag have been broken up by vendor. When
OpenNMS Meridian starts, each tributary file is loaded in order. The ordering of events inside each
tributary file is also preserved.

249

The tributary files listed at the very end of eventconf.xml contain catch-all event definitions. When
slotting your own event definitions, take care not to place them below these catch-all files;
otherwise your definitions will be effectively unreachable.

A few tips

• To save memory and shorten startup times, you may wish to remove event definition files that
you know you do not need.

• If you need to customize some events in one of the default tributary files, you may wish to make
a copy of the file containing only the customized events, and slot the copy above the original;
this practice will make it easier to maintain your customizations in case the default file changes
in a future release of OpenNMS Meridian.

9.4.3. Reloading the event configuration

After making manual changes to OPENNMS_HOME/etc/eventconf.xml or any of its tributary files, you
can trigger a reload of the event configuration by issuing the following command on the OpenNMS
Meridian server:

OPENNMS_HOME/bin/send-event.pl uei.opennms.org/internal/reloadDaemonConfig -p
'daemonName Eventd'

9.5. Debugging
When debugging events, it may be helpful to lower the minimum severity at which Eventd will log
from the default level of WARN. To change this setting, edit OPENNMS_HOME/etc/log4j2.xml and locate
the following line:

 <KeyValuePair key="eventd" value="WARN" />

Changes to log42.xml will be take effect within 60 seconds with no extra action needed. At level
DEBUG, Eventd will log a verbose description of every event it handles to
OPENNMS_HOME/logs/eventd.log. On busy systems, this setting may create so much noise as to be
impractical. In these cases, you can get terse event summaries by setting Eventd to log at level INFO
and setting logEventSummaries="yes" in OPENNMS_HOME/etc/eventd-configuration.xml. Note that
changes to eventd-configuration.xml require a full restart of OpenNMS Meridian.

9.5.1. Karaf Shell

The opennms:show-event-config command can be used to render the event definition for one or
more event UEIs (matching a substring) to XML. This command is useful for displaying event
definitions which may not be easily accessible on disk, or verifying that particular events were
actually loaded.

250

$ ssh -p 8101 admin@localhost
...
admin@opennms()> opennms:show-event-config -u uei.opennms.org/alarms

251

Chapter 10. Alarms
OpenNMS Meridian has the ability to monitor the state of problems with its managed entities (ME),
their resources, the services they provide, as well as the applications they host; or more simply, the
Network. In OpenNMS Meridian, the state of these problems are characterized as Alarms.

In the beginning, there were Events

Before Alarmd was created, OpenNMS' Events (or messages) were used not only as interprocess
communication messages (IPC), but also as indications of problems in the network. Even today,
OpenNMS Events still carry problem state attributes such as: Acknowledgement and Severity.
However, these attributes have long since been functionally deprecated now that Alarms are used
as the indicator for problems in the network, (see also Situations and Business Services).

A significant change occurred with the release of Horizon 23.0.0 (H23). Prior to
H23 and since the introduction of Alarms in OpenNMS, Alarmd was designed and
configured to track the state of a problem using two Alarms; a Down and an Up
Alarm. Now, OpenNMS is designed with the intention to use a single Alarm to track
the state of a problem. The old behavior can be re-enabled by setting the system
property org.opennms.alarmd.legacyAlarmState = true.

10.1. Single Alarm Tracking Problem States
First occurrence of a Service Down problem (SNMP), Alarm instantiated

The Service Down Event from the Poller (via clicking on Alarm count)

Alarm is cleared immediately (no longer creating separate Alarm for Normal state)

Both Service Down and Service restored Events from the Poller

The Second occurence of the Service Down problem (SNMP), Alarm reduced

252

Both Service Down Events and the previous Service restored Event from the Poller

The Alarm is again cleared immediately (notice counter doesn’t increment)

Both Service Down and restored Events

10.2. Alarm Service Daemon
Alarmd, the Alarm Service Daemon, has the very simple task of processing Events representing
problems in the Network. It either instantiates a new alarm for tracking a problem’s state or
reducing a reoccurring Event of an existing problem into the same Alarm. (Also known as Alarm de-
duplication)

Prior to OpenNMS Horizon version 23.0.0 (H23), Alarmd had no configuration. With the release of
H23, Drools is now imbedded directly inline with Alarmd’s Event processing function. This provides
users with a more robust infrastructure for the effective management of workflow and problem
states in the Network. Business rules now replace the function of the ''Automations'' that were
previously defined in Vacuumd’s configuration. You will find these new business rules in the
etc/alarmd/drools-rules.d/ folder.

$OPENNMS_ETC/.drools-rules.d/

alarmd.drl

253

10.3. Configuring Alarms
Since Alarmd instantiates Alarms from Events, defining Alarms in OpenNMS Meridian entails
defining an additional XML element of an Event indicating a problem or resolution in the Network.
This additional element is the "alarm-data" element.

Any Event that is marked as "donotpersist" in the logmsg element’s "dest" attribute,
will not be processed as an Alarm.

254

alarm-data Schema Definition (XSD)

<element name="alarm-data">
 <annotation>
 <documentation>This element is used for converting events into
alarms.</documentation>
 </annotation>
 <complexType>
 <sequence>
 <element ref="this:update-field" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attribute name="reduction-key" type="string" use="required" />
 <attribute name="alarm-type" use="required" >
 <simpleType>
 <restriction base="int">
 <minInclusive value="1"/>
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="clear-key" type="string" use="optional" />
 <attribute name="auto-clean" type="boolean" use="optional" default="false" />
 <attribute name="x733-alarm-type" type="this:x733-alarm-type" use="optional" />
 <attribute name="x733-probable-cause" type="int" use="optional" />
 </complexType>
</element>

<element name="update-field">
 <complexType>
 <attribute name="field-name" type="string" use="required" />
 <attribute name="update-on-reduction" type="boolean" use="optional" default="true"
/>
 <attribute name="value-expression" type="string" use="optional" default="" />
 </complexType>
</element>

<simpleType name="x733-alarm-type">
 <restriction base="string" >
 <pattern value=
"CommunicationsAlarm|ProcessingErrorAlarm|EnvironmentalAlarm|QualityOfServiceAlarm|Equ
ipmentAlarm|IntegrityViolation|SecurityViolation|TimeDomainViolation|OperationalViolat
ion|PhysicalViolation" />
 </restriction>
</simpleType>

NOTE See also: Anatomy of an Event

The reduction-key

The critical attribute when defining the alarm-data of an Event, is the reduction-key. This attribute
can contain literal strings as well as references to properties (fields and parameters) of the Event.
The purpose of the reduction-key is to uniquely identify the signature of a problem and, as such, is

255

used to reduce (de-duplicate) Events so that only one problem is instantiated. Most commonly, the
event’s identifier (UEI) is used as the left most (least significant) portion of the reduction-key,
followed by other properties of the Event from least to most significant and, traditionally, separated
with the literal ':'.

Example 1. Multi-part reduction-key

<event>
 <uei>uei.opennms.org/nodes/nodeDown</uei>
...
 <alarm-data reduction-key="%uei%:%dpname%:%nodeid%" alarm-type="1" auto-clean=
"false"/>
</event>

Example 2. Least Significant reduction-key Attribute

Decreasing the significance of the reduction-key is a way to aggregate, for
example, all nodes down in to a single alarm. However, there are caveats:

<event>
 <uei>uei.opennms.org/nodes/nodeDown</uei>
 <alarm-data reduction-key="%uei%" alarm-type="1"/>
</event>

With this reduction-key, a single alarm would be instantiated for all nodes that were
determined by the Poller to be down. There would be a single alarm with the count
representing the number of nodes down. However, the UEI uei.opennms.org/nodes/nodeUp
would not be a good ''pair wise'' reduction-key for resolving this alarm as it would take only a
single ''node up'' to clear all nodes down tracked with this single alarm configuration.

The alarm-type attribute

The second most critical attribute is the alarm-type. There are currently three types of alarms:
problem (1), resolution (2), and notification (3). The alarm-type attribute helps Alarmd with pair-
wise resolution… the matching of resolution events to problem events.

The clear-key attribute

This attribute is used in the pair-wise correlation feature of Alarmd. When configuring a resolution
Alarm, set this attribute to match the reduction-key of a the corresponding problem Alarm.

The auto-clean attribute

This attribute instructs Alarmd to only retain the most recent Event reduced into an alarm. For
alarms that are super chatty, this is a way to reduce the size of the most recent Events in the
database.

256

Do not use this feature with Alarms that have pair-wise correlation (matching
problems with resolutions).

The update-field element

Use this element to override Alarmd’s default behavior for which some fields are updated during
reduction. The Alarm fields that are currently allowed to be controlled this way are: .Bulleted *
distpoller * ipaddr * mouseover * operinstruct * severity * descr * acktime * ackuser

With the new single alarm behavior in H23, if an Alarm transitions from an alarm-
type 2 back to alarm-type 1 the Severity will be set to the most Event’s value.

Reduction (de-duplication) of Alarms

Alarmd is designed to reduce multiple occurrences of an Alarm into a single alarm.

Pairwise Correlation

Alarmd is also intrinsically designed to automatically match resolving events with an existing
Alarm. Alarms with matching resolutions with problems (Ups with Downs), should be indicated
with the alarm-type attribute. .Bulleted * alarm-type="1" (problem alarm) * alarm-type="2"
(resolving alarm) * alarm-type="3" (notification alarm… alarm with no resolution such as SNMP
Authentication Failures)

Instantiate new Alarms for existing cleared problem

Also new in H23, a global property setting that controls behavior of alarm
reduction of currently cleared Alarms.

Create a properties file called alarmd.properties in the $OPENNMS_ETC/opennms.properties.d/
folder and add the following property set to true:

Alarmd Properties
#
Enable this property to force Alarmd to create new alarms when an problem re-occurs
and the
existing Alarm is in a "Cleared" state.
#
Default: false
#org.opennms.alarmd.newIfClearedAlarmExists = false
org.opennms.alarmd.newIfClearedAlarmExists = true

Now, with this property set, when a repeat incident occurs and the current state of the Alarm
tracking the problem is "Cleared", instead of restating the current Alarm to it’s default severity and
incrementing the counter, a new instance of the Alarm will be created. .New node down Alarm
with existing cleared Alarm

257

What happens is that Alarmd will alter the existing Alarm’s reductionKey to be unique. Thus
preventing it from ever again being reused for a reoccurring problem in the Network (the literal
":ID:" and the alarm ID is appended to the reductionKey).

Altered reductionKey

Re-enable legacy dual Alarm state behavior

Now in H23, a global property setting can set to re-enable the legacy dual Alarm
behavior.

Create a properties file called alarmd.properties in the $OPENNMS_ETC/opennms.properties.d/
folder and add the following property set to true:

Alarmd Properties
Enable this property to have the traditional dual alarm handling of alarms state
for Alarm pairwise correlation.
Default: false
#org.opennms.alarmd.legacyAlarmState = false
org.opennms.alarmd.legacyAlarmState = true

 Setting legacyAlarmState will nullify newIfClearedAlarmExists

10.4. Alarm Notes
OpenNMS Meridian creates an Alarm for issues in the network. Working with a few people in a
team, it is helpful to share information about a current Alarm. Alarm Notes can be used to assign
comments to a specific Alarm or a whole class of Alarms. . The figure Alarm Detail View shows the
component to add these information in Memos to the Alarm.

Alarm Detail View

258

The Alarm Notes allows to add two types of notes on an existing Alarm or Alarm Class:

• Sticky Memo: A user defined note for a specific instance of an Alarm. Deleting the Alarm will
also delete the sticky memo.

• Journal Memo: A user defined note for a whole class of alarms based on the resolved reduction
key. The Journal Memo will be shown for all Alarms matching a specific reduction key. Deleting
an Alarm doesn’t remove the Journal Memo, they can be removed by pressing the "Clear" button
on an Alarm with the existing Journal Memo.

If an Alarm has a sticky and/or a Journal Memo it is indicated with two icons on the "Alarm list
Summary" and "Alarm List Detail".

10.5. Alarm Sounds
Often users want an audible indication of a change in alarm state. The OpenNMS Meridian alarm
list page has the optional ability to generate a sound either on each new alarm or (more
annoyingly) on each change to an alarm event count on the page.

The figure Alarm Sounds View shows the alarm list page when alarms sounds are enabled.

Alarm Sounds View

259

By default the alarm sound feature is disabled. System Administrators must activate the sound
feature and also set the default sound setting for all users. However users can modify the default
sound setting for the duration of their logged-in session using a drop down menu with the following
options:

• Sound off: no sounds generated by the page.

• Sound on new alarm: sounds generated for every new alarm on the page.

• Sound on new alarm count: sounds generated for every increase in alarm event count for
alarms on the page.

10.6. Flashing Unacknowledged Alarms
By default OpenNMS Meridian displays the alarm list page with acknowledged and unacknowledged
alarms listed in separate search tabs. In a number of operational environments it is useful to see all
of the alarms on the same page with unacknowledged alarms flashing to indicate that they haven’t
yet been noticed by one of the team. This allows everyone to see at a glance the real time status of
all alarms and which alarms still need attention.

The figure Alarm Sounds View also shows the alarm list page when flashing unacknowledged
alarms are enabled. Alarms which are unacknowledged flash steadily. Alarms which have been
acknowledged do not flash and also have a small tick beside the selection check box. All alarms can
be selected to be escalated, cleared, acknowledged and unacknowledged.

10.7. Configuring Alarm Sounds and Flashing
By default OpenNMS Meridian does not enable alarm sounds or flashing alarms. The default
settings are included in opennms.properties. However rather than editing the default
opennms.properties file, the system administrator should enable these features by creating a new
file in opennms.properties.d and applying the following settings;

${OPENNMS_HOME}/etc/opennms.properties.d/alarm.listpage.properties

260

Configuration properties related to Alarm sound and flashing visualization

Alarm List Page Options
Several options are available to change the default behaviour of the Alarm List
Page.
<opennms url>/opennms/alarm/list.htm
#
The alarm list page has the ability to generate a sound either on each new alarm
or (more annoyingly) on each change to an alarm event count on the page.
#
Turn on the sound feature. Set true and Alarm List Pages can generate sounds in the
web browser.
opennms.alarmlist.sound.enable=true
#
Set the default setting for how the Alarm List Pages generates sounds. The default
setting can be
modified by users for the duration of their logged-in session using a drop down menu
.
off = no sounds generated by the page.
newalarm = sounds generated for every new alarm in the page
newalarmcount = sounds generated for every increase in alarm event count for
alarms on the page
#
opennms.alarmlist.sound.status=off

By default the alarm list page displays acknowledged and unacknowledged alarms in
separate search tabs
Some users have asked to be able to see both on the same page. This option allows
the alarm list page
to display acknowledged and unacknowledged alarms on the same list but
unacknowledged alarms
flash until they are acknowledged.
#
opennms.alarmlist.unackflash=true

The sound played is determined by the contents of the following file ${OPENNMS_HOME}/jetty-
webapps/opennms/sounds/alert.wav

If you want to change the sound, create a new wav file with your desired sound, name it alert.wav
and replace the default file in the same directory.

10.8. Alarm History
The Alarm History feature integrates with Elasticsearch to provide long term storage and maintain
a history of alarm state changes.

When enabled, alarms are indexed in Elasticsearch when they are created, deleted, or when any of
the "interesting" fields on the alarm are updated (more on this below.)

Alarms are indexed in such a fashion that allows operators to answer the following questions:

261

1. What were all the state changes of a particular alarm?

2. What was the last known state of an alarm at a given point in time?

3. Which alarms were present (i.e. not deleted) on the system at a given point in time?

4. Which alarms are currently present on the system?

A simple REST API is also made available for the purposes of evaluating the results, verifying the
data that is stored and providing examples on how to query the data.

10.8.1. Requirements

This feature requires Elasticsearch 7.x.

10.8.2. Setup

Alarm history indexing can be enabled as follows:

First, login to the Karaf shell of your OpenNMS Meridian instance and configure the Elasticsearch
client settings to point to your Elasticsearch cluster. See Elasticsearch Integration Configuration for
a complete list of available options.

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.alarms.history.elastic
admin@opennms()> config:property-set elasticUrl http://es:9200
admin@opennms()> config:update

Next, install the opennms-alarm-history-elastic feature from that same shell using:

admin@opennms()> feature:install opennms-alarm-history-elastic

In order to ensure that the feature continues to be installed as subsequent restarts, add opennms-
alarm-history-elastic to the featuresBoot property in the
${OPENNMS_HOME}/etc/org.apache.karaf.features.cfg.

10.8.3. Alarm indexing

When alarms are initially created, we push a document to Elasticsearch that includes all of the
alarm fields as well as additional details on some of the related objects (i.e. the node.)

In order to avoid pushing a new document every time a new event is reduced on to an existing
alarm, we only push a new document when (at least) one of these conditions are met:

1. We have not recently pushed a document for that alarm. (See alarmReindexDurationMs.)

2. The severity of the alarm has changed.

3. The alarm has been acknowledged or unacknowledged.

262

4. Either of the associated sticky or journal memos have changed.

5. The state of the associated ticket has changed.

6. The alarm has been associated with, or removed, from a situation.

7. A related alarm has been added or removed from the situation.

To change this behaviour and push a new document for every change, you can set
indexAllUpdates to true.

When alarms are deleted, we push a new document that contains the alarm id, reduction key, and
deletion time.

The following table describes a subset of the fields in the alarm document:

Field Description

@first_event_tim
e

Timestamp in milliseconds associated with the first event that triggered this
alarm.

@first_event_tim
e

Timestamp in milliseconds associated with the last event that triggered this
alarm.

@update_time Timestamp in milliseconds at which the document was created.

@deleted_time Timestamp in milliseconds when the alarm was deleted.

id Database ID associated with the alarm.

reduction_key Key used to reduce events on to the alarm.

severity_label Severity of the alarm.

severity_id Numerical ID used to represent the severity.

10.8.4. Options

In addition to those mentioned in Elasticsearch Integration Configuration, the following properties
can be set in ${OPENNMS_HOME}/etc/org.opennms.features.alarms.history.elastic.cfg:

Property Description Requi
red

defaul
t

indexAllUpdates Index every alarm update, including simple event reductions. option
al

false

alarmReindexDur
ationMs

Number of milliseconds to wait before re-indexing an alarm if
nothing "interesting" has changed.

option
al

360000
0

lookbackPeriodM
s

Number of milliseconds to go back when searching for alarms. option
al

604800
000

263

Property Description Requi
red

defaul
t

batchIndexSize Maximum number of records inserted in a single batch insert. option
al

200

bulkRetryCount Number of retries until a bulk operation is considered failed. option
al

3

taskQueueCapaci
ty

Maximum number of tasks to hold in memory. option
al

5000

264

Chapter 11. Notifications

11.1. Introduction
OpenNMS Meridian uses notifications to make users aware of an event. Common notification
methods are email and paging, but notification mechanisms also exist for:

• Browser based desktop notifications

• Arbitrary HTTP GET and POST operations

• Arbitrary external commands

• Asterisk call origination

• IRCcat Internet Relay Chat bot

• SNMP Traps

• Slack, Mattermost, and other API-compatible team chat platforms

• Twitter, GNU Social, and other API-compatible microblog services

• User-provided scripts in any JSR-223 compatible language

• XMPP

The notification daemon Notifd creates and sends notifications according to configured rules when
selected events occur in OpenNMS Meridian.

11.2. Getting Started
The status of notifications is indicated by an icon at the top right of the web UI’s navigation bar.
OpenNMS Meridian installs with notifications globally disabled by default.

11.2.1. Enabling Notifications

To enable notifications in OpenNMS Meridian, log in to the web UI as a user with administrator
privileges. Hover over the user icon and click the Configure OpenNMS link. The controls for global
notification status appear in the top-level configuration menu as Notification Status. Click the On
radio button and then the Update button. Notifications are now globally enabled.

The web workflow above is functionally equivalent to editing the notifd-

configuration.xml file and setting status="on" in the top-level notifd-configuration
element. This configuration file change is picked up on the fly with no need to
restart or send an event.

11.2.2. Configuring Destination Paths

To configure notification destination paths in OpenNMS Meridian, navigate to Configure OpenNMS
and, in the Event Management section, choose Configure Notifications. In the resulting dialog choose
Configure Destination Paths.

265

The destination paths configuration is stored in the destinationPaths.xml file.
Changes to this file are picked up on the fly with no need to restart or send an
event.

11.2.3. Configuring Event Notifications

To configure notifications for individual events in OpenNMS Meridian, navigate to Configure
OpenNMS and, in the Event Management section, choose _Configure Notifications. Then choose
Configure Event Notifications.

The event notification configuration is stored in the notifications.xml file.
Changes to this file are picked up on the fly with no need to restart or send an
event.

The filter rule configured in notifications.xml, for ex: <rule>IPADDR !=

'0.0.0.0'</rule> is not strict by default. That means if there is any event that is not
associated with any node/interface, it would not validate rule and by default
notification would be saved. The rule can be changed to be strict i.e. <rule
strict="true">IPADDR != '0.0.0.0'</rule> then the rule will always be evaluated
and if there is no node/interface associated with event, notification wouldn’t be
saved.

By default, OpenNMS executes the destination path of all notifications matching
the event’s uei. You can configure OpenNMS to only execute the destination path of
the first matching notification by editing the notifd-configuration.xml file and
setting match-all="false" in the top-level notifd-configuration element. This
configuration file change is picked up on the fly with no need to restart or send an
event.

11.3. Concepts
Notifications are how OpenNMS Meridian informs users about an event that happened in the
network, without the users having to log in and look at the UI. The core concepts required to
understand notifications are:

• Events and UEIs

• Users, Groups, and On-Call Roles

• Duty Schedules

• Destination Paths

• Notification Commands

These concepts fit together to form an Event Notification Definition. Also related, but presently only
loosely coupled to notifications, are Alarms and Acknowledgments.

266

11.3.1. Events and UEIs

As discussed in the chapter on Events, events are central to the operation of OpenNMS Meridian.
Almost everything that happens in the system is the result of, or the cause of, one or more events;
Every notification is triggered by exactly one event. A good understanding of events is therefore
essential to a working knowledge of notifications.

Every event has a UEI (Uniform Event Identifier), a string uniquely identifying the event’s type.
UEIs are typically formatted in the style of a URI, but the only requirement is that they start with
the string uei.. Most notifications are triggered by an exact UEI match (though they may also be
triggered with partial UEI matches using regular expression syntax).

11.3.2. Users, Groups, and On-Call Roles

Users are entities with login accounts in the OpenNMS Meridian system. Ideally each user
corresponds to a person. They are used to control access to the web UI, but also carry contact
information (e-mail addresses, phone numbers, etc.) for the people they represent. A user may
receive a notification either individually or as part of a Group or On-Call Role. Each user has several
technology-specific contact fields, which must be filled if the user is to receive notifications by the
associated method.

Groups are lists of users. In large systems with many users it is helpful to organize them into
Groups. A group may receive a notification, which is often a more convenient way to operate than
on individual user. Groups allow to assign a set of users to On Call Roles to build more complex
notification workflows.

How to create or modify membership of Users in a Group

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Groups

4. Create a new Group with Add new group or modify an existing Group by clicking the Modify
icon next to the Group

5. Select User from Available Users and use the >> to add them to the Currently in Group or
select the users in the Currently in Group list and use << to remove them from the list.

6. Click Finish to persist and apply the changes

The order of the Users in the group is relevant and is used as the order for
Notifications when this group is used as Target in a Destination Path.

How to delete a Group

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Groups

267

4. Use the trash bin icon next to the Group to delete

5. Confirm delete request with OK

On-Call Roles are an overlay on top of groups, designed to enable OpenNMS Meridian to target the
appropriate user or users according to a calendar configuration. A common use case is to have
System Engineers in On-Call rotations with a given schedule. The On-Call Roles allow to assign a
predefined Duty Schedule to an existing Group with Users. For each On-Call Role a User is assigned
as a Supervisor to be responsible for the group of people in this On-Call Role.

How to assign a Group to an On-Call Role

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure On-Call Roles

4. Use Add New On-Call Role and set a Name for this On-Call Role, assign an existing Group and
give a meaningful description

5. Click Save to persist

6. Define a Duty Schedule in the calendar for the given date by click on the Plus (+) icon of the day
and provide a notification time for a specific User from the associated Group

7. Click Save to persist the Schedule

8. Click Done to apply the changes

11.3.3. Duty Schedules

Every User and Group may have a Duty Schedule, which specifies that user’s (or group’s) weekly
schedule for receiving notifications. If a notification should be delivered to an individual user, but
that user is not on duty at the time, the notification will never be delivered to that user. In the case
of notifications targeting a user via a group, the logic differs slightly. If the group is on duty at the
time the notification is created, then all users who are also on duty will be notified. If the group is
on duty, but no member user is currently on duty, then the notification will be queued and sent to
the next user who comes on duty. If the group is off duty at the time the notification is created, then
the notification will never be sent.

11.3.4. Destination Paths

A Destination Path is a named, reusable set of rules for sending notifications. Every destination path
has an initial step and zero or more escalation steps.

Each step in a destination path has an associated delay which defaults to zero seconds. The initial
step’s delay is called the initial delay, while an escalation step’s delay is simply called its delay.

Each step has one or more targets. A target may be a user, a group, an on-call role, or a one-off e-
mail address.

268

While it may be tempting to use one-off e-mail addresses any time an individual
user is to be targeted, it’s a good idea to reserve one-off e-mail addresses for
special cases. If a user changes her e-mail address, for instance, you’ll need to
update in every destination path where it appears. The use of one-off e-mail
addresses is meant for situations where a vendor or other external entity is
assisting with troubleshooting in the short term.

When a step targets one or more groups, a delay may also be specified for each group. The default
is zero seconds, in which case all group members are notified simultaneously. If a longer delay is
set, the group members will be notified in alphabetical order of their usernames.

Avoid using the same name for a group and a user. The destination path
configuration does not distinguish between users and groups at the step level, so
the behavior is undefined if you have both a user and a group named admin. It is
for this reason that the default administrators group is called Admin (with a capital
A) — case matters.

Within a step, each target is associated with one or more notification commands. If multiple
commands are selected, they will execute simultaneously.

Each step also has an auto-notify switch, which may be set to off, on, or auto. This switch specifies
the logic used when deciding whether or not to send a notice for an auto-acknowledged notification
to a target that was not on duty at the time the notification was first created. If off, notices will
never be sent to such a target; if on, they will always be sent; if auto, the system employs heuristics
aimed at "doing the right thing".

11.3.5. Notification Commands

A Notification Command is a named, reusable execution profile for a Java class or external program
command used to convey notices to targets. The following notification commands are included in
the default configuration:

callHomePhone, callMobilePhone, and callWorkPhone

Ring one of the phone numbers configured in the user’s contact information. All three are
implemented using the in-process Asterisk notification strategy, and differ only in which contact
field is used.

ircCat

Conveys a notice to an instance of the IRCcat Internet Relay Chat bot. Implemented by the in-
process IRCcat notification strategy.

javaEmail and javaPagerEmail

By far the most commonly used commands, these deliver a notice to a user’s email or pagerEmail
contact field value. By configuring a user’s pagerEmail contact field value to target an email-to-
SMS gateway, SMS notifications are trivially easy to configure. Both are implemented using the
in-process JavaMail notification strategy.

269

microblogDM, microblogReply, and microblogUpdate

Sends a notice to a user as a direct message, at a user via an at-reply, or to everybody as an
update via a microblog service with a Twitter v1-compatible API. Each command is implemented
with a separate, in-process notification strategy.

numericPage and textPage

Sends a notice to a user’s numeric or alphanumeric pager. Implemented as an external
command using the qpage utility.

xmppGroupMessage and xmppMessage

Sends a message to an XMPP group or user. Implemented with the in-process XMPP notification
strategy.

Notification commands are customizable and extensible by editing the notificationCommands.xml
file.

Use external binary notification commands sparingly to avoid fork-bombing your
OpenNMS Meridian system. Originally, all notification commands were external.
Today only the numericPage and textPage commands use external programs to do
their work.

11.4. Bonus Notification Methods
A handful of newer notification methods are included in OpenNMS Meridian but currently require
manual steps to activate.

11.4.1. Mattermost

If your organization uses the Mattermost team communications platform, you can configure
OpenNMS Meridian to send notices to any Mattermost channel via an incoming webhook. You must
configure an incoming webhook in your Mattermost team and do a bit of manual configuration to
your OpenNMS Meridian instance.

First, add the following bit of XML to the notificationCommands.xml configuration file (no
customization should be needed):

270

<command binary="false">
 <name>mattermost</name>
 <execute>org.opennms.netmgt.notifd.MattermostNotificationStrategy</execute>
 <comment>class for sending messages to a Mattermost team channel for
notifications</comment>
 <argument streamed="false">
 <switch>-subject</switch>
 </argument>
 <argument streamed="false">
 <switch>-tm</switch>
 </argument>
</command>

Then create a new file called mattermost.properties in the opennms.properties.d directory with the
following contents (customizing values as appropriate):

org.opennms.netmgt.notifd.mattermost.webhookURL=https://mattermost.example.com/hooks/b
f980352b5f7232efe721dbf0626bee1

Restart OpenNMS so that the mattermost.properties file will be loaded. Your new mattermost
notification command is now available for use in a destination path.

Additional Options

The following table lists optional properties that you may use in mattermost.properties to customize
your Mattermost notifications.

To improve the layout, the property names have been shortened to their final
component; you must prepend org.opennms.netmgt.notifd.mattermost. when using
them.

Table 97. Additional available parameters for the Mattermost notification strategy

Parame
ter

Description Requ
ired

Default
value

Example

channel Specify a channel or private group other than the
one targeted by the webhook

optio
nal

Webhook
default

NetOps

username The username to associate with the notification
posts

optio
nal

None OpenNMS_Bot

iconEmoj
i

An emoji sequence to use as the icon for the
notification posts

optio
nal

No icon :metal:

iconURL The URL of an image to use as the icon for the
notification posts

optio
nal

No icon https://example.or
g/assets/icon.png

271

https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://example.org/assets/icon.png

Parame
ter

Description Requ
ired

Default
value

Example

useSyste
mProxy

Should the system wide proxy settings be used?
The system proxy settings can be configured via
system properties

optio
nal

true true

Some of the optional configuration parameters are incompatible with some
versions of Mattermost. For instance, the channel option is known not to work with
Mattermost 3.7.0.

For more information on incoming webhooks in Mattermost, see Mattermost Integration Guide.

11.4.2. Slack Notifications

If your organization uses the Slack team communications platform, you can configure OpenNMS
Meridian to send notices to any Slack channel via an incoming webhook. You must configure an
incoming webhook in your Slack team and do a bit of manual configuration to your OpenNMS
Meridian instance.

First, add the following bit of XML to the notificationCommands.xml configuration file (no
customization should be needed):

<command binary="false">
 <name>slack</name>
 <execute>org.opennms.netmgt.notifd.SlackNotificationStrategy</execute>
 <comment>class for sending messages to a Slack team channel for
notifications</comment>
 <argument streamed="false">
 <switch>-subject</switch>
 </argument>
 <argument streamed="false">
 <switch>-tm</switch>
 </argument>
</command>

Then create a new file called slack.properties in the opennms.properties.d directory with the
following contents (customizing values as appropriate):

org.opennms.netmgt.notifd.slack.webhookURL=https://hooks.slack.com/services/AEJ7IIYAI/
XOOTH3EOD/c3fc4a662c8e07fe072aeeec

Restart OpenNMS so that the slack.properties file will be loaded. Your new slack notification
command is now available for use in a destination path.

272

#ga-opennms-system-properties
https://docs.mattermost.com/developer/webhooks-incoming.html

Additional Options

The following table lists optional properties that you may use in slack.properties to customize your
Slack notifications.

To improve the layout, the property names have been shortened to their final
component; you must prepend org.opennms.netmgt.notifd.slack. when using
them.

Table 98. Additional parameters for the Slack notification strategy

Parame
ter

Description Requ
ired

Default
value

Example

channel Specify a channel or private group other than the
one targeted by the webhook

optio
nal

Webhook
default

NetOps

username The username to associate with the notification
posts

optio
nal

None OpenNMS_Bot

iconEmoj
i

An emoji sequence to use as the icon for the
notification posts

optio
nal

No icon :metal:

iconURL The URL of an image to use as the icon for the
notification posts

optio
nal

No icon https://example.or
g/assets/icon.png

useSyste
mProxy

Should the system wide proxy settings be used?
The system proxy settings can be configured via
system properties

optio
nal

true true

For more information on incoming webhooks in Slack, see Slack API.

273

https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://example.org/assets/icon.png
#ga-opennms-system-properties
https://api.slack.com/incoming-webhooks

Chapter 12. Provisioning

12.1. Introduction
The introduction of OpenNMS version 1.8 empowers enterprises and services providers like never
before with a new service daemon for maintaining the managed entity inventory in OpenNMS. This
new daemon, Provisiond, unifies all previous entity control mechanisms available in 1.6 (Capsd and
the Importer), into a new and improved, massively parallel, policy based provisioning system.
System integrators should note, Provisiond comes complete with a RESTFul Web Service API for easy
integration with external systems such as CRM or external inventory systems as well as an adapter
API for interfacing with other management systems such as configuration management.

OpenNMS 1.0, introduced almost a decade ago now, provided a capabilities scanning daemon,
Capsd, as the mechanism for provisioning managed entities. Capsd, deprecated with the release of
1.8.0, provided a rich automatic provisioning mechanism that simply required an IP address to seed
its algorithm for creating and maintaining the managed entities (nodes, interfaces, and IP based
services). Version 1.2 added and XML-RPC API as a more controlled (directed) strategy for
provisioning services that was mainly used by non telco based service providers (i.e. managed
hosting companies). Version 1.6 followed this up with yet another and more advanced mechanism
called the Importer service daemon. The Importer provided large service providers with the ability
to strictly control the OpenNMS entity provisioning with an XML based API for completely defining
and controlling the entities where no discovery and service scanning scanning was feasible.

The Importer service improved OpenNMS' scalability for maintaining managed entity databases by
an order of magnitude. This daemon, while very simple in concept and yet extremely powerful and
flexible provisioning improvement, has blazed the trail for Provisiond. The Importer service has
been in production for 3 years in service provider networks maintaining entity counts of more than
50,000 node level entities on a single instances of OpenNMS. It is a rock solid provisioning tool.

Provisiond begins a new era of managed entity provisioning in OpenNMS.

12.2. Concepts
Provisioning is a term that is familiar to service providers (a.k.a. operators, a.k.a. telephone
companies) and OSS systems but not so much in the non OSS enterprises.

Provisiond receives "requests" for adding managed entities via 2 basic mechanisms, the OpenNMS
Meridian traditional "New Suspect" event, typically via the Discovery daemon, and the import
requisition (XML definition of node entities) typically via the Provisioning Groups UI. If you are
familiar with all previous releases of OpenNMS, you will recognize the New Suspect Event based
Discovery to be what was previously the Capsd component of the auto discovery behavior. You will
also recognize the import requisition to be of the Model Importer component of OpenNMS.
Provisiond now unifies these two separate components into a massively parallel advanced policy
based provisioning service.

274

12.2.1. Terminology

The following terms are used with respect to the OpenNMS Meridian provisioning system and are
essential for understanding the material presented in this guide.

Entity

Entities are managed objects in OpenNMS Meridian such as Nodes, IP interfaces, SNMP Interfaces,
and Services.

Foreign Source and Foreign ID

The Importer service from 1.6 introduced the idea of foreign sources and foreign IDs. The Foreign
Source uniquely identifies a provisioning source and is still a basic attribute of importing node
entities into OpenNMS Meridian. The concept is to provide an external (foreign) system with a way
to uniquely identify itself and any node entities that it is requesting (via a requisition) to be
provisioned into OpenNMS Meridian.

The Foreign ID is the unique node ID maintained in foreign system and the foreign source uniquely
identifies the external system in OpenNMS Meridian.

OpenNMS Meridian uses the combination of the foreign source and foreign ID become the unique
foreign key when synchronizing the set of nodes from each source with the nodes in the OpenNMS
Meridian DB. This way the foreign system doesn’t have to keep track of the OpenNMS Meridian
node IDs that are assigned when a node is first created. This is how Provisiond can decided if a node
entity from an import requisition is new, has been changed, or needs to be deleted.

Foreign Source Definition

Additionally, the foreign source has been extended to also contain specifications for how entities
should be discovered and managed on the nodes from each foreign source. The name of the foreign
source has become pervasive within the provisioning system and is used to simply some of the
complexities by weaving this name into:

• the name of the provisioning group in the Web-UI

• the name of the file containing the persisted requisition (as well as the pending requisition if it
is in this state)

• the foreign-source attribute value inside the requisition (obviously, but, this is pointed out to
indicate that the file name doesn’t necessarily have to equal the value of this attribute but is
highly recommended as an OpenNMS Meridian best practice)

• the building attribute of the node defined in the requisition (this value is called “site” in the
Web-UI and is assigned to the building column of the node’s asset record by Provisiond and is
the default value used in the Site Status View feature)

Import Requisition

Import requisition is the terminology OpenNMS Meridian uses to represent the set of nodes,
specified in XML, to be provisioned from a foreign source into OpenNMS Meridian. The requisition
schema (XSD) can be found at the following location. http://xmlns.opennms.org/xsd/config/model-

275

http://xmlns.opennms.org/xsd/config/model-import

import

Auto Discovery

Auto discovery is the term used by OpenNMS Meridian to characterize the automatic provisioning
of nodes entities. Currently, OpenNMS Meridian uses an ICMP ping sweep to find IP address on the
network. Auto-discovery-with-detectors will allow defining specific detectors for auto discovery to
succeed. For the IPs that succeed and that are not currently in the DB, OpenNMS Meridian
generates a new suspect event. When this event is received by Provisiond, it creates a node and it
begins a node scan based on the default foreign source definition.

Directed Discovery

Provisiond takes over for the Model Importer found in version 1.6 which implemented a unique,
first of its kind, controlled mechanism for specifying managed entities directly into OpenNMS
Meridian from one or more data sources. These data sources often were in the form of an in-house
developed inventory or stand-alone provisioning system or even a set of element management
systems. Using this mechanism, OpenNMS Meridian is directed to add, update, or delete a node
entity exactly as defined by the external source. No discovery process is used for finding more
interfaces or services.

Enhanced Directed Discovery

Directed discovery is enhanced with the capability to scan nodes that have been directed nodes for
entities (interfaces.

Policy-Based Discovery

The phrase policy-based directed discovery, is a term that represents the latest step in OpenNMS
Meridian provisioning evolution and best describes the new provisioning architecture now in
OpenNMS Meridian for maintaining its inventory of managed entities. This term describes the
control that is given over the Provisioning system to OpenNMS Meridian users for managing the
behavior of the NMS with respect to the new entities that are being discovered. Current behaviors
include persistence, data collection, service monitoring, and categorization policies.

12.2.2. Addressing Scalability

The explosive growth and density of the IT systems being deployed today to support not traditional
IP services is impacting management systems like never before and is demanding from them
tremendous amounts of scalability. The scalability of a management system is defined by its
capacity for maintaining large numbers of managing entities coupled with its efficiency of
managing the entities.

Today, It is not uncommon for OpenNMS Meridian deployments to find node entities with tens of
thousands of physical interfaces being reported by SNMP agents due to virtualization (virtual hosts,
interfaces, as well as networks). An NMS must be capable of using the full capacity every resource
of its computing platform (hardware and OS) as effectively as possible in order to manage these
environments. The days of writing scripts or single threaded applications will just no longer be able
to do the work required an NMS when dealing with the scalability challenges facing systems and

276

http://xmlns.opennms.org/xsd/config/model-import
#ga-provisioning-auto-discovery-detectors]

systems administrators working in this domain.

Parallelization and Non-Blocking I/O

Squeezing out every ounce of power from a management system’s platform (hardware and OS) is
absolutely required to complete all the work of a fully functional NMS such as OpenNMS Meridian.
Fortunately, the hardware and CPU architecture of a modern computing platform provides multiple
CPUs with multiple cores having instruction sets that include support for atomic operations. While
these very powerful resources are being provided by commodity systems, it makes the complexity
of developing applications to use them vs. not using them, orders of magnitude more complex.
However, because of scalability demands of our complex IT environments, multi-threaded NMS
applications are now essential and this has fully exposed the complex issues of concurrency in
software development.

OpenNMS Meridian has stepped up to this challenge with its new concurrency strategy. This
strategy is based on a technique that combines the efficiency of parallel (asynchronous) operations
(traditionally used by most effectively by single threaded applications) with the power of a fully
current, non-blocking, multi-threaded design. The non-blocking component of this new
concurrency strategy added greater complexity but OpenNMS Meridian gained orders of
magnitude in increased scalability.

Java Runtimes, based on the Sun JVM, have provided implementations for
processor based atomic operations and is the basis for OpenNMS Meridian’ non-
blocking concurrency algorithms.

Provisioning Policies

Just because you can, doesn’t mean you should! Because the massively parallel operations being
created for Provisiond allows tremendous numbers of nodes, interfaces, and services to be very
rapidly discovered and persisted, doesn’t mean it should. A policy API was created for Provisiond
that allows implementations to be developed that can be applied to control the behavior of
Provisiond. The 1.8 release includes a set of flexible provisioning policies that control the
persistence of entities and their attributes constrain monitoring behavior.

When nodes are imported or re-scanned, there is, potentially, a set of zero or more provisioning
policies that are applied. The policies are defined in the foreign source’s definition. The policies for
an auto-discovered node or nodes from provisioning groups that don’t have a foreign source
definition, are the policies defined in the default foreign source definition.

The Default Foreign Source Definition

Contained in the libraries of the Provisioning service is the "template" or default foreign source.
The template stored in the library is used until the OpenNMS Meridian admin user alters the
default from the Provisioning Groups WebUI. Upon edit, this template is exported to the OpenNMS
Meridian etc/ directory with the file name: default-foreign-source.xml.

277

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<foreign-source date-stamp="2009-10-16T18:04:12.844-05:00"
 name="default"
 xmlns=
"http://xmlns.opennms.org/[http://xmlns.opennms.org/xsd/config/foreign-source">
 <scan-interval>1d</scan-interval>
 <detectors>
 <detector class="org.opennms.netmgt.provision.detector.datagram.DnsDetector"
name="DNS"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.FtpDetector" name
="FTP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.HttpDetector"
name="HTTP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.HttpsDetector"
name="HTTPS"/>
 <detector class="org.opennms.netmgt.provision.detector.icmp.IcmpDetector" name=
"ICMP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.ImapDetector"
name="IMAP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.LdapDetector"
name="LDAP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.NrpeDetector"
name="NRPE"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.Pop3Detector"
name="POP3"/>
 <detector class="
org.opennms.netmgt.provision.detector.radius.RadiusAuthDetector" name="Radius"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.SmtpDetector"
name="SMTP"/>
 <detector class="org.opennms.netmgt.provision.detector.snmp.SnmpDetector" name=
"SNMP"/>
 <detector class="org.opennms.netmgt.provision.detector.ssh.SshDetector" name=
"SSH"/>
 </detectors>
 <policies/>
</foreign-source>

Automatic Rescanning

The default foreign source defines a scan-interval of 1d, which will cause all nodes in the
requisition to be scanned daily. You may set the scan interval using any combination of the
following signifiers:

• w: Weeks

• d: Days

• h: Hours

• m: Minutes

• s: Seconds

278

• ms: Milliseconds

For example, to rescan every 6 days and 53 minutes, you would set the scan-interval to 6d 53m.

Don’t forget, for the new scan interval to take effect, you will need to import the requisition one
more time so that the foreign source becomes active.

Disabling Rescan

For a large number of devices, you may want to set the scan-interval to 0 to disable automatic
rescan altogether. OpenNMS Meridian will not attempt to rescan the nodes in the requisition unless
you trigger a manual (forced) rescan through the web UI or Provisioning ReST API.

12.3. Getting Started
An NMS is of no use until it is setup for monitoring and entities are added to the system. OpenNMS
Meridian installs with a base configuration with a configuration that is sufficient get service level
monitoring and performance management quickly up and running. As soon as managed entities
are provisioned, the base configuration will automatically begin monitoring and reporting.

Generally speaking, there are two methods of provisioning in OpenNMS Meridian: Auto Discovery
and Directed Discovery. We’ll start with Auto Discovery, but first, we should quickly review the
configuration of SNMP so that newly discovered devices can be immediately scanned for entities as
well as have reporting and thresholding available.

12.3.1. Provisioning the SNMP Configuration

OpenNMS Meridian requires SNMP configuration to be properly setup for your network in order to
properly understand Network and Node topology as well as to automatically enable performance
data collection. Network topology is updated as nodes (a.k.a. devices or hosts) are provisioned.
Navigate to the Admin/Configure SNMP Community Names by IP address as shown below.

Configuring SNMP community names

279

Provisiond includes an option to add community information in the Single Node
provisioning interface. This, is equivalent of entering a single IP address in the
screen with the convenience of setting the community string at the same time a
node is provisioned. See the Quick Node Add feature below for more details about
this capability.

This screen sets up SNMP within OpenNMS Meridian for agents listening on IP addresses 10.1.1.1
through 10.254.254.254. These settings are optimized into the snmp-configuration.xml file.
Optimization means that the minimal configuration possible will be written. Any IP addresses
already configured that are eclipsed by this range will be removed. Here is the resulting
configuration.

Sample snmp-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<snmp-config
xmlns="http://xmlns.opennms.org/xsd/config/snmp[http://xmlns.opennms.org/xsd/config/sn
mp]"
port="161" retry="3" timeout="800" read-community="public"

version="v1" max-vars-per-pdu="10">

<definition retry="1" timeout="2000"

read-community="public" version="v2c">

<specific>10.12.23.32</specific>

</definition>

</snmp-config>

However, If an IP address is then configured that is within the range, the range will be split into two
separate ranges and a specific entry will be added. For example, if a configuration was added
through the same UI for the IP: 10.12.23.32 having the community name public, then the resulting
configuration will be:

280

<?xml version="1.0" encoding="UTF-8"?>
<snmp-config xmlns="http://xmlns.opennms.org/xsd/config/snmp"
 port="161"
 retry="3"
 timeout="800"
 read-community="public"
 version="v1"
 max-vars-per-pdu="10">

 <definition retry="1" timeout="2000" read-community="YrusoNoz" version="v2c">
 <range begin="10.1.1.1" end="10.12.23.31"/>
 <range begin="10.12.23.33" end="10.254.254.254"/>
 </definition>

 <definition retry="1" timeout="2000" read-community="public" version="v2c">
 <specific>10.12.23.32</specific>
 </definition>
</snmp-config>

the bold IP addresses show where the range was split and the specific with
community name "public" was added.

Now, with SNMP configuration provisioned for our 10 networks, we are ready to begin adding
nodes. Our first example will be to automatically discover and add all managed entities (nodes, IP
interfaces, SNMP Interfaces, and Monitored IP based Services). We will then give an example of
how to be more directed and deliberate about your discovery by using Provisioning Groups.

Automatically discovered entities are analyzed, persisted to the relational data store, and then
managed based on the policies defined in the default foreign source definition. This is very similar
to the way that entities were previously handled by the (now obsolete) Capsd daemon but with
finer grained sense of control.

12.3.2. Automatic Discovery

Currently in OpenNMS Meridian, the ICMP is used to automatically provision node entities into
OpenNMS Meridian. This functionality has been in OpenNMS since its 1.0 release, however, in 1.8, a
few of the use cases have been updated with Provisiond’s replacement of Capsd.

Separation of Concerns

Version 1.8 Provisiond separates what was called Capsd scanning in to 3 distinct phases: entity
scanning, service detection, and node merging. These phases are now managed separately by
Provisiond. Immediately following the import of a node entity, tasks are created for scanning a
node to discover the node entity’s interfaces (SNMP and IP). As interfaces are found, they are
persisted and tasks are scheduled for service detection of each IP interface.

For auto discovered nodes, a node merging phase is scheduled; Nodes that have been directly
provisioned will not be included in the node merging process. Merging will only occur when 2

281

automatically discovered nodes appear to be the same node.

the use case and redesign of node merging is still an outstanding issue with the
1.8.0 release

12.3.3. Enhanced Directed Discovery

This new form of provisioning first appears in OpenNMS with version 1.8 and the new Provisiond
service. It combines the benefits of the Importer’s strictly controlled methodology of directed
provisioning (from version 1.6) with OpenNMS’ robustly flexible auto discovery. Enhanced Directed
discovery begins with an enhanced version of the same import requisition used in directed
provisioning and completes with a policy influenced persistence phase that sorts though the details
of all the entities and services found during the entity and service scanning phase.

If you are planning to use this form of provisioning, it important to understand the conceptual
details of how Provisiond manages entities it is directed to provision. This knowledge will enable
administrators and systems integrators to better plan, implement, and resolve any issues involved
with this provisioning strategy.

Understanding the Process

There are 3 phases involved with directing entities to be discovered: import, node scan, and service
scan. The import phase also has sub phases: marshal, audit, limited SNMP scan, and re-parent.

Marshal and Audit Phases

It is important to understand that the nodes requisitioned from each foreign source are managed as
a complete set. Nodes defined in a requisition from the foreign source CRM and CMDB, for example,
will be managed separately from each other even if they should contain exactly the same node
definitions. To OpenNMS Meridian, these are individual entities and they are managed as a set.

Requisitions are referenced via a URL. Currently, the URL can be specified as one of the following
protocols: FILE, HTTP, HTTPS, and DNS. Each protocol has a protocol handler that is used to stream
the XML from a foreign source, i.e. http://inv.corp.org/import.cgi?customer=acme or
file:/opt/opennms/etc/imports/acme.xml. The DNS protocol is a special handler developed for
Provisioning sets of nodes as a foreign-source from a corporate DNS server. See DNS Protocol
Handler for details.

Upon the import request (either on schedule or on demand via an Event) the requisition is
marshaled into Java objects for processing. The nodes defined in the requisition represent what
OpenNMS Meridian should have as the current set of managed entities from that foreign source.
The audit phase determines for each node defined (or not defined) in the requisition which are to
be processed as an Add, Update, or Delete operation during the Import Phase. This determination is
made by comparing the set foreign IDs of each node in the requisition set with the set of foreign IDs
of currently managed entities in OpenNMS Meridian.

The intersection of the IDs from each set will become the Update operations, the extra set of foreign
IDs that are in the requisition become the Add operations, and the extra set of foreign IDs from the
managed entities become the Delete operations. This implies that the foreign IDs from each foreign

282

http://inv.corp.org/import.cgi?customer=acme

source must be unique.

Naturally, the first time an import request is processed from a foreign source there will be zero (0)
node entities from the set of nodes currently being managed and each node defined in the
requisition will become an Add Operation. If a requisition is processed with zero (0) node
definitions, all the currently managed nodes from that foreign source will become Delete
operations (all the nodes, interfaces, outages, alarms, etc. will be removed from OpenNMS
Meridian).

When nodes are provisioned using the Provisioning Groups Web-UI, the requisitions are stored on
the local file system and the file protocol handler is used to reference the requisition. Each
Provisioning Group is a separate foreign source and unique foreign IDs are generated by the Web-
UI. An MSP might use Provisioning Groups to define the set of nodes to be managed by customer
name where each customer’s set of nodes are maintained in a separate Provisioning Group.

Import Phase

The import phase begins when Provisiond receives a request to import a requisition from a URL.
The first step in this phase is to load the requisition and marshal all the node entities defined in the
requisition into Java objects.

If any syntactical or XML structural problems occur in the requisition, the entire import is
abandoned and no import operations are completed.

Once the requisition is marshaled, the requisition nodes are audited against the persisted node
entities. The set of requisitioned nodes are compared with a subset of persisted nodes and this
subset is generated from a database query using the foreign source defined in the requisition. The
audit generates one of three operations for each requisition node: insert, update, delete based on
each requisitioned node’s foreign ID. Delete operations are created for any nodes that are not in the
requisition but are in the DB subset, update operations are created for requisition nodes that match
a persisted node from the subset (the intersection), and insert operations are created from the
remaining requisition nodes (nodes in the requisition that are not in the DB subset).

If a requisition node has an interface defined as the Primary SNMP interface, then during the
update and insert operations the node will be scanned for minimal SNMP attribute information.
This scan find the required node and SNMP interface details required for complete SNMP support
of the node and only the IP interfaces defined in the requisition.

this not the same as Provisiond SNMP discovery scan phases: node scan and
interface scan.

Node Scan Phase

Where directed discovery leaves off and enhanced directed discovery begins is that after all the
operations have completed, directed discovery is finished and enhanced directed discovery takes
off. The requisitioned nodes are scheduled for node scans where details about the node are
discovered and interfaces that were not directly provisioned are also discovered. All physical
(SNMP) and logical (IP) interfaces are discovered and persisted based on any Provisioning Policies
that may have been defined for the foreign source associated with the import requisition.

283

Service Scan (detection) Phase

Additionally, the new Provisiond enhanced directed discovery mechanism follows interface
discovery with service detection on each IP interface entity. This is very similar to the Capsd plugin
scanning found in all former releases of OpenNMS except that the foreign source definition is used
to define what services should be detected on these interfaces found for nodes in the import
requisition.

12.4. Import Handlers
The new Provisioning service in OpenNMS Meridian is continuously improving and adapting to the
needs of the community.

One of the most recent enhancements to the system is built upon the very flexible and extensible
API of referencing an import requisition’s location via a URL. Most commonly, these URLs are files
on the file system (i.e. file:/opt/opennms/etc/imports/<my-provisioning-group.xml>) as requisitions
created by the Provisioning Groups UI. However, these same requisitions for adding, updating, and
deleting nodes (based on the original model importer) can also come from URLs. For example a
requisition can be retrieving the using HTTP protocol: http://myinventory.server.org/nodes.cgi

In addition to the standard protocols supported by Java, we provide a series of custom URL
handlers to help retrieve requisitions from external sources.

12.4.1. Generic Handler

The generic handler is made available using URLs of the form: requisition://type?param=1;param=2

Using these URLs various type handlers can be invoked, both locally and via a Minion.

In addition to the type specific parameters, the following parameters are supported:

Table 99. General parameters

Paramet
er

Description Requir
ed

Default
value

location The name of location at which the handler should be run optiona
l

Default

ttl The maximum number of miliseconds to wait for the handler
when ran remotely

optiona
l

20000

See the relevant sections bellow for additional details on the support types.

The opennms:show-import command available via the Karaf Shell can be used to show the results of
an import (without persisting or triggering the import):

opennms:show-import -l MINION http url=http://127.0.0.1:8000/req.xml

284

http://myinventory.server.org/nodes.cgi

12.4.2. File Handler

Examples:

Simple

file:///path/to/my/requisition.xml

Using the generic handler

requisition://file?path=/path/to/my/requisition.xml;location=MINION

12.4.3. HTTP Handler

Examples:

Simple

http://myinventory.server.org/nodes.cgi

Using the generic handler

requisition://http?url=http%3A%2F%2Fmyinventory.server.org%2Fnodes.cgi

 When using the generic handler, the URL should be "URL encoded".

12.4.4. DNS Handler

The DNS handler requests a Zone Transfer (AXFR) request from a DNS server. The A records are
recorded and used to build an import requisition. This is handy for organizations that use DNS
(possibly coupled with an IP management tool) as the data base of record for nodes in the network.
So, rather than ping sweeping the network or entering the nodes manually into OpenNMS Meridian
Provisioning UI, nodes can be managed via 1 or more DNS servers.

The format of the URL for this new protocol handler is: dns://<host>[:port]/<zone>[/<foreign-
source>/][?expression=<regex>]

DNS Import Examples:

Simple

dns://my-dns-server/myzone.com

This URL will import all A records from the host my-dns-server on port 53 (default port) from zone
"myzone.com" and since the foreign source (a.k.a. the provisioning group) is not specified it will
default to the specified zone.

285

Using a Regular Expression Filter

dns://my-dns-server/myzone.com/portland/?expression=^por-.*

This URL will import all nodes from the same server and zone but will only manage the nodes in
the zone matching the regular expression ^port-.* and will and they will be assigned a unique
foreign source (provisioning group) for managing these nodes as a subset of nodes from within the
specified zone.

If your expression requires URL encoding (for example you need to use a ? in the expression) it
must be properly encoded.

dns://my-dns-server/myzone.com/portland/?expression=^por[0-9]%3F

You can use the location parameter to assign a single location to all nodes in this requisition:

dns://my-dns-server/myzone.com/portland/?location=Raleigh

By preceding a ~ you can specify a properly encoded regular expression to determine the location
based on the host entries. In the following, for example, we want to derive the location based on the
subdomain. We use the regular expression ^(?:.\.|)(.?)\.hs-fulda\.de\.$ with exactly one
capturing group:

dns://my-dns-server/hs-
fulda.de/?location=~%5E%28%3F%3A.%2A%5C.%7C%29%28.%2A%3F%29%5C.hs-fulda%5C.de%5C.%24

This will associate nodes for the host entries foo.e46.hs-fulda.de. and bar.e46.hs-fulda.de. to the
location e46 while hosts like aaa.g51.hs-fulda.de and bbb.g51.hs-fulda.de will be assigned location
g51.

You can use online tools like https://www.urlencoder.org to en- and decode your
parameters.

DNS Setup

Currently, the DNS server requires to be setup to allow a zone transfer from the OpenNMS Meridian
server. It is recommended that a secondary DNS server is running on OpenNMS Meridian and that
the OpenNMS Meridian server be allowed to request a zone transfer. A quick way to test if zone
transfers are working is:

dig -t AXFR @<dnsServer> <zone>

Configuration

The configuration of the Provisoning system has moved from a properties file (model-
importer.properties) to an XML based configuration container. The configuration is now extensible

286

https://www.urlencoder.org

to allow the definition of 0 or more import requisitions each with their own cron based schedule
for automatic importing from various sources (intended for integration with external URL such as
http and this new dns protocol handler.

A default configuration is provided in the OpenNMS Meridian etc/ directory and is called:
provisiond-configuration.xml. This default configuration has an example for scheduling an import
from a DNS server running on the localhost requesting nodes from the zone, localhost and will be
imported once per day at the stroke of midnight. Not very practical but is a good example.

<?xml version="1.0" encoding="UTF-8"?>
 <provisiond-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.opennms.org/xsd/config/provisiond-configuration"
 foreign-source-dir="/opt/opennms/etc/foreign-sources"
 requistion-dir="/opt/opennms/etc/imports"
 importThreads="8"
 scanThreads="10"
 rescanThreads="10"
 writeThreads="8" >

 <!--http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
 Field Name Allowed Values Allowed Special Characters
 Seconds 0-59 , - * / Minutes 0-59 , - * / Hours 0-23 , - * /
 Day-of-month1-31, - * ? / L W C Month1-12 or JAN-DEC, - * /
 Day-of-Week1-7 or SUN-SAT, - * ? / L C # Year (Opt)empty, 1970-2099, - * /
 -->

 <requisition-def import-name="localhost"
 import-url-resource="dns://localhost/localhost">

 <cron-schedule>0 0 0 * * ? *</cron-schedule> <!-- daily, at midnight -->
 </requisition-def>
</provisiond-configuration>

Configuration Reload

Like many of the daemon configuration in the 1.7 branch, the configurations are reloadable
without having to restart OpenNMS Meridian, using the reloadDaemonConfig uei:

/opt/opennms/bin/send-event.pl
uei.opennms.org/internal/reloadDaemonConfig --parm 'daemonName Provisiond'

This means that you don’t have to restart OpenNMS Meridian every time you update the
configuration.

12.5. Provisioning Examples
Here are a few practical examples of enhanced directed discovery to help with your understanding
of this feature.

287

12.5.1. Basic Provisioning

This example adds three nodes and requires no OpenNMS Meridian configuration other than
specifying the node entities to be provisioned and managed in OpenNMS Meridian.

Defining the Nodes via the Web-UI

Using the Provisioning Groups Web-UI, three nodes are created given a single IP address. Navigate
to the Admin Menu and click Provisioning Groups Menu from the list of Admin options and create
the group Bronze.

Creating a new Provisioning Group

Clicking the Add New Group button will create the group and will redisplay the page including this
new group among the list of any group(s) that have already been created.

At this point, the XML structure for holding the new provisioning group (a.k.a. an
import requisition) has been persisted to the '$OPENNMS_ETC/imports/pending'
directory.

Clicking the Edit link will bring you to the screen where you can begin the process of defining node
entities that will be imported into OpenNMS Meridian. Click the Add Node button will begin the
node entity creation process fill in the node label and click the Save button.

Creating a new Node definition in the Provisioning Group

288

At this point, the provisioning group contains the basic structure of a node entity but it is not
complete until the interface(s) and interface service(s) have been defined. After having clicked the
Save button, as we did above presents, in the Web-UI, the options Add Interface, Add Node Category,
and Add Node Asset. Click the Add Interface link to add an interface entity to the node.

Adding an Interface to the node definition

Enter the IP address for this interface entity, a description, and specify the Primary attribute as P
(Primary), S (Secondary), N (Not collected), or C (Collected) and click the save button. Now the node
entity has an interface for which services can be defined for which the Web-UI now presents the
Add Service link. Add two services (ICMP, SNMP) via this link.

A complete node definition with all required elements defined.

Now the node entity definition contains all the required elements necessary for importing this
requisition into OpenNMS Meridian. At this point, all the interfaces that are required for the node
should be added. For example, NAT interfaces should be specified there are services that they
provide because they will not be discovered during the Scan Phase.

Two more node definitions will be added for the benefit of this example.

The completed requisition for the example Bronze Provisioning Group

This set of nodes represents an import requisition for the Bronze provisioning group. As this
requisition is being edited via the WebUI, changes are being persisted into the OpenNMS Meridian
configuration directory '$OPENNMS_etc/imports/' pending as an XML file having the name
bronze.xml.

289

The name of the XML file containing the import requisition is the same as the
provisioning group name. Therefore naming your provisioning group without the
use of spaces makes them easier to manage on the file system.

Click the Done button to return to the Provisioning Groups list screen. The details of the “Bronze”
group now indicates that there are 3 nodes in the requisition and that there are no nodes in the DB
from this group (a.k.a. foreign source). Additionally, you can see that time the requisition was last
modified and the time it last imported are given (the time stamps are stored as attributes inside the
requisition and are not the file system time stamps). These details are indicative of how well the DB
represents what is in the requisition.

You can tell that this is a pending requisition for 2 reasons: 1) there are 3 nodes
defined and 0 nodes in the DB, 2) the requisition has been modified since the last
import (in this case never).

Import the Nodes

In this example, you see that there are 3 nodes in the pending requisition and 0 in the DB. Click the
Import button to submit the requisition to the provisioning system (what actually happens is that
the Web-UI sends an event to the Provisioner telling it to begin the Import Phase for this group).

Do not refresh this page to check the values of these details. To refresh the details
to verify the import, click the Provisioning Groups bread crumb item.

You should be able to immediately verify the importation of this provisioning group because the
import happens very quickly. Provisiond has several threads ready for processing the import
operations of the nodes defined in this requisition.

A few SNMP packets are sent and received to get the SNMP details of the node and the interfaces
defined in the requisition. Upon receipt of these packets (or not) each node is inserted as a DB
transaction.

The nodes are now added to OpenNMS Meridian and are under management.

290

Following the import of a node with thousands of interfaces, you will be able to refresh the
Interface table browser on the Node page and see that interfaces and services are being discovered
and added in the background. This is the discovery component of directed discovery.

Adding a Node

To direct that another node be added from a foreign source (in this example the Bronze
Provisioning Group) simply add a new node definition and re-import. It is important to remember
that all the node definitions will be re-imported and the existing managed nodes will be updated, if
necessary.

Changing a Node

To direct changes to an existing node, simply add, change, or delete elements or attributes of the
node definition and re- import. This is a great feature of having directed specific elements of a node
in the requisition because that attributes will simply be changed. For example, to change the IP
address of the Primary SNMP interface for the node, barbrady.opennms.org, just change the
requisition and re-import.

Each element in the Web-UI has an associated Edit icon Click this icon to change the IP address for
barbrady.opennms.org, click save, and then Click the Done button.

Changing the IP address of barbrady.opennms.org from 10.1.1.2 to 192.168.1.1

The Web-UI will return you to the Provisioning Groups screen where you will see that there are the
time stamp showing that the requisition’s last modification is more recent that the last import time.

The Provisioning Group must be re-imported

This provides an indication that the group must be re-imported for the changes made to the

291

requisition to take effect. The IP Interface will be simply updated and all the required events
(messages) will be sent to communicate this change within OpenNMS Meridian.

The IP interface for barbrady.opennms.org is immediately updated

Deleting a Node

Barbrady has not been behaving, as one might expect, so it is time to remove him from the system.
Edit the provisioning group, click the delete button next to the node barbrady.opennms.org, click the
Done button.

Bronze Provisioning Group definition indicates a node has been removed and requires an import to
delete the node entity from the OpenNMS Meridian system

Click the Import button for the Bronze group and the Barbrady node and its interfaces, services,
and any other related data will be immediately deleted from the OpenNMS Meridian system. All the
required Events (messages) will be sent by Provisiond to provide indication to the OpenNMS
Meridian system that the node Barbrady has been deleted.

Barbrady has been deleted

Deleting all the Nodes

There is a convenient way to delete all the nodes that have been provided from a specific foreign
source. From the main Admin/Provisioning Groups screen in the Web-UI, click the Delete Nodes
button. This button deletes all the nodes defined in the Bronze requisition. It is very important to
note that once this is done, it cannot be undone! Well it can’t be undone from the Web-UI and can
only be undone if you’ve been good about keeping a backup copy of your '$OPENMS_ETC/' directory

292

tree. If you’ve made a mistake, before you re-import the requisition, restore the Bronze.xml
requisition from your backup copy to the '$OPENNMS_ETC/imports' directory.

All node definitions have been removed from the Bronze requisition. The Web-UI indicates an import is
now required to remove them from OpenNMS Meridian.

Clicking the Import button will cause the Audit Phase of Provisiond to determine that all the nodes
from the Bronze group (foreign source) should be deleted from the DB and will create Delete
operations. At this point, if you are satisfied that the nodes have been deleted and that you will no
longer require nodes to be defined in this Group, you will see that the Delete Nodes button has now
changed to the Delete Group button. The Delete Group button is displayed when there are no nodes
entities from that group (foreign source) in OpenNMS Meridian.

When no node entities from the group exist in OpenNMS Meridian, then the Delete Group button is
displayed.

12.5.2. Advanced Provisioning Example

In the previous example, we provisioned 3 nodes and let Provisiond complete all of its import
phases using a default foreign source definition. Each Provisioning Group can have a separate
foreign source definition that controls:

• The rescan interval

• The services to be detected

• The policies to be applied

This example will demonstrate how to create a foreign source definition and how it is used to
control the behavior of Provisiond when importing a Provisioning Group/foreign source requisition.

First let’s simply provision the node and let the default foreign source definition apply.

The node definition used for the Advanced Provisioning Example

293

Following the import, All the IP and SNMP interfaces, in addition to the interface specified in the
requisition, have been discovered and added to the node entity. The default foreign source
definition has no polices for controlling which interfaces that are discovered either get persisted or
managed by OpenNMS Meridian.

Logical and Physical interface and Service entities directed and discovered by Provisiond.

294

295

Service Detection

As IP interfaces are found during the node scan process, service detection tasks are scheduled for
each IP interface. The service detections defined in the foreign source determines which services
are to be detected and how (i.e. the values of the parameters that parameters control how the
service is detected, port, timeout, etc.).

Applying a New Foreign Source Definition

This example node has been provisioned using the Default foreign source definition. By navigating
to the Provisioning Groups screen in the OpenNMS Meridian Web-UI and clicking the Edit Foreign
Source link of a group, you can create a new foreign source definition that defines service detection
and policies. The policies determine entity persistence and/or set attributes on the discovered
entities that control OpenNMS Meridian management behaviors.

When creating a new foreign source definition, the default definition is used as a template.

296

In this UI, new Detectors can be added, changed, and removed. For this example, we will remove
detection of all services accept ICMP and DNS, change the timeout of ICMP detection, and a new
Service detection for OpenNMS Meridian Web-UI.

Custom foreign source definition created for NMS Provisioning Group (foreign source).

Click the Done button and re-import the NMS Provisioning Group. During this and any subsequent
re-imports or re- scans, the OpenNMS Meridian detector will be active, and the detectors that have
been removed will no longer test for the related services for the interfaces on nodes managed in
the provisioning group (requisition), however, the currently detected services will not be removed.
There are 2 ways to delete the previously detected services:

1. Delete the node in the provisioning group, re-import, define it again, and finally re-import again

2. Use the ReST API to delete unwanted services. Use this command to remove each unwanted
service from each interface, iteratively:

curl -X DELETE -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/nodes/6/ipinterfaces/172.16.1.1/services/DNS

297

There is a sneaky way to do #1. Edit the provisioning group and just change the
foreign ID. That will make Provisiond think that a node was deleted and a new
node was added in the same requisition! Use this hint with caution and an full
understanding of the impact of deleting an existing node.

Provisioning with Policies

The Policy API in Provisiond allow you to control the persistence of discovered IP and SNMP
Interface entities and Node Categories during the Scan phase.

Matching IP Interface Policy

The Matching IP Interface policy controls whether discovered interfaces are to be persisted and if
they are to be persisted, whether or not they will be forced to be Managed or Unmanaged.

Continuing with this example Provisioning Group, we are going to define a few policies that:

1. Prevent discovered 10 network addresses from being persisted

2. Force 192.168 network addresses to be unmanaged

From the foreign source definition screen, click the Add Policy button and the definition of a new
policy will begin with a field for naming the policy and a drop down list of the currently installed
policies. Name the policy no10s, make sure that the Match IP Interface policy is specified in the class
list and click the Save button. This action will automatically add all the parameters required for the
policy.

The two required parameters for this policy are action and matchBehavior.

The action parameter can be set to DO_NOT_PERSIST, Manage, or UnManage.

Creating a policy to prevent persistence of 10 network IP interfaces.

The DO_NOT_PERSIST action does just what it indicates, it prevents discovered IP interface entities
from being added to OpenNMS Meridian when the matchBehavior is satisfied. The Manage and
UnManage values for this action allow the IP interface entity to be persisted by control whether or
not that interface should be managed by OpenNMS Meridian.

The matchBehavior action is a boolean control that determines how the optional parameters will
be evaluated. Setting this parameter’s value to ALL_PARAMETERS causes Provisiond to evaluate
each optional parameter with boolean AND logic and the value ANY_PARAMETERS will cause OR
logic to be applied.

Now we will add one of the optional parameters to filter the 10 network addresses. The Matching IP
Interface policy supports two additional parameters, hostName and ipAddress. Click the Add
Parameter link and choose ipAddress as the key. The value for either of the optional parameters can
be an exact or regular expression match. As in most configurations in OpenNMS Meridian where

298

regular expression matching can be optionally applied, prefix the value with the ~ character.

Example Matching IP Interface Policy to not Persist 10 Network addresses

Any subsequent scan of the node or re-imports of NMS provisioning group will force this policy to
be applied. IP Interface entities that already exist that match this policy will not be deleted. Existing
interfaces can be deleted by recreating the node in the Provisioning Groups screen (simply change
the foreign ID and re-import the group) or by using the ReST API:

curl -X DELETE -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/nodes/6/ipinterfaces/10.1.1.1

The next step in this example is to define a policy that sets discovered 192.168 network addresses to
be unmanaged (not managed) in OpenNMS Meridian. Again, click the Add Policy button and let’s
call this policy noMgt192168s. Again, choose the Mach IP Interface policy and this time set the
action to UNMANAGE.

Policy to not manage IP interfaces from 192.168 networks

 The UNMANAGE behavior will be applied to existing interfaces.

Matching SNMP Interface Policy

Like the Matching IP Interface Policy, this policy controls the whether discovered SNMP interface
entities are to be persisted and whether or not OpenNMS Meridian should collect performance
metrics from the SNMP agent for Interface’s index (MIB2 IfIndex).

In this example, we are going to create a policy that doesn’t persist interfaces that are AAL5 over
ATM or type 49 (ifType). Following the same steps as when creating an IP Management Policy, edit
the foreign source definition and create a new policy. Let’s call it: noAAL5s. We’ll use Match SNMP
Interface class for each policy and add a parameter with ifType as the key and 49 as the value.

Matching SNMP Interface Policy example for Persistence and Data Collection

299

At the appropriate time during the scanning phase, Provisiond will evaluate the
policies in the foreign source definition and take appropriate action. If during the
policy evaluation process any policy matches for a “DO_NOT_PERSIST” action, no
further policy evaluations will happen for that particular entity (IP Interface,
SNMP Interface).

Node Categorization Policy

With this policy, nodes entities will automatically be assigned categories. The policy is defined in
the same manner as the IP and SNMP interface polices. Click the Add Policy button and give the
policy name, cisco and choose the Set Node Category class. Edit the required category key and set
the value to Cisco. Add a policy parameter and choose the sysObjectId key with a value
~^\.1\.3\.6\.1\.4\.1\.9\..*.

Example: Node Category setting policy

Script Policy

This policy allows to use Groovy scripts to modify provisioned node data. These scripts have to be
placed in the OpenNMS Meridian etc/script-policies directory. An example would be the change
of the node’s primary interface or location. The script will be invoked for each matching node. The
following example shows the source code for setting the 192.168.100.0/24 interface to PRIMARY while
all remaining interfaces are set to SECONDARY. Furthermore the node’s location is set to Minneapolis.

300

import org.opennms.netmgt.model.OnmsIpInterface;
import org.opennms.netmgt.model.monitoringLocations.OnmsMonitoringLocation;
import org.opennms.netmgt.model.PrimaryType;

for(OnmsIpInterface iface : node.getIpInterfaces()) {
 if (iface.getIpAddressAsString().matches("^192\\.168\\.100\\..*")) {
 LOG.warn(iface.getIpAddressAsString() + " set to PRIMARY")
 iface.setIsSnmpPrimary(PrimaryType.PRIMARY)
 } else {
 LOG.warn(iface.getIpAddressAsString() + " set to SECONDARY")
 iface.setIsSnmpPrimary(PrimaryType.SECONDARY)
 }
}

node.setLocation(new OnmsMonitoringLocation("Minneapolis", ""));

return node;

New Import Capabilities

Several new XML entities have been added to the import requisition since the introduction of the
OpenNMS Importer service in version 1.6. So, in addition to provisioning the basic node, interface,
service, and node categories, you can now also provision asset data.

Provisiond Configuration

The configuration of the Provisioning system has moved from a properties file (model-
importer.properties) to an XML based configuration container. The configuration is now extensible
to allow the definition of 0 or more import requisitions each with their own Cron based schedule
for automatic importing from various sources (intended for integration with external URL such as
HTTP and this new DNS protocol handler.

A default configuration is provided in the OpenNMS Meridian etc/ directory and is called:
provisiond-configuration.xml. This default configuration has an example for scheduling an import
from a DNS server running on the localhost requesting nodes from the zone, localhost and will be
imported once per day at the stroke of midnight. Not very practical but is a good example.

301

<?xml version="1.0" encoding="UTF-8"?>
 <provisiond-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.opennms.org/xsd/config/provisiond-configuration"
 foreign-source-dir="/opt/opennms/etc/foreign-sources"
 requistion-dir="/opt/opennms/etc/imports"
 importThreads="8"
 scanThreads="10"
 rescanThreads="10"
 writeThreads="8" >
 <!--
 http://www.quartz-scheduler.org/documentation/quartz-
1.x/tutorials/crontrigger[http://www.quartz-scheduler.org/documentation/quartz-
1.x/tutorials/crontrigger]
 Field Name Allowed Values Allowed Special Characters
 Seconds 0-59 , - * / Minutes 0-59 , - * / Hours 0-23 , - * /
 Day-of-month1-31, - * ? / L W C Month1-12 or JAN-DEC, - * /
 Day-of-Week1-7 or SUN-SAT, - * ? / L C # Year (Opt)empty, 1970-2099, - * /
 -->

 <requisition-def import-name="NMS"
 import-url-resource="file://opt/opennms/etc/imports/NMS.xml">
 <cron-schedule>0 0 0 * * ? *</cron-schedule> <!-- daily, at midnight -->
 </requisition-def>
</provisiond-configuration>

Configuration Reload

Like many of the daemon configurations in the 1.7 branch, Provisiond’s configuration is re-loadable
without having to restart OpenNMS. Use the reloadDaemonConfig uei:

/opt/opennms/bin/send-event.pl uei.opennms.org/internal/reloadDaemonConfig --parm
'daemonName Provisiond'

This means that you don’t have to restart OpenNMS Meridian every time you update the
configuration!

Provisioning Asset Data

The Provisioning Groups Web-UI had been updated to expose the ability to add Node Asset data in
an import requisition. Click the Add Node Asset link and you can select from a drop down list all the
possible node asset attributes that can be defined.

302

After an import, you can navigate to the Node Page and click the Asset Info link and see the asset
data that was just provided in the requisition.

External Requisition Sources

Because Provisiond takes a URL as the location service for import requisitions, OpenNMS Meridian
can be easily extended to support sources in addition to the native URL handling provided by Java:
file://, http://, and https://. When you configure Provisiond to import requisitions on a schedule you
specify using a URL Resource. For requisitions created by the Provisioning Groups WebUI, you can
specify a file based URL.

 <need further documentation>

Provisioning Nodes from DNS

The new Provisioning service in OpenNMS Meridian is continuously improving and adapting to the
needs of the community. One of the most recent enhancements to the system is built upon the very
flexible and extensible API of referencing an import requisition’s location via a URL. Most
commmonly, these URLs are files on the file system (i.e. file:/opt/opennms/etc/imports/<my-
provisioning-group.xml>) as requisitions created by the Provisioning Groups UI. However, these
same requistions for adding, updating, and deleting nodes (based on the original model importer)
can also come from URLs specifying the HTTP protocol: http://myinventory.server.org/nodes.cgi)

Now, using Java’s extensible protocol handling specification, a new protocol handler was created so
that a URL can be specified for requesting a Zone Transfer (AXFR) request from a DNS server. The A

303

http://myinventory.server.org/nodes.cgi

records are recorded and used to build an import requisition. This is handy for organizations that
use DNS (possibly coupled with an IP management tool) as the data base of record for nodes in the
network. So, rather than ping sweeping the network or entering the nodes manually into OpenNMS
Meridian Provisioning UI, nodes can be managed via 1 or more DNS servers. The format of the URL
for this new protocol handler is:

dns://<host>[:port]/<zone>[/<foreign-source>/][?expression=<regex>]

Simple Example

dns://my-dns-server/myzone.com

This will import all A records from the host my-dns-server on port 53 (default port) from zone
myzone.com and since the foreign source (a.k.a. the provisioning group) is not specified it will
default to the specified zone.

Using a Regular Expression Filter

You can also specify a subset of the A records from the zone transfer using a regular expression:

dns://my-dns-server/myzone.com/portland/?expression=^por-.*

This will import all nodes from the same server and zone but will only manage the nodes in the
zone matching the regular expression ^port-.* and will and they will be assigned a unique foreign
source (provisioning group) for managing these nodes as a subset of nodes from within the
specified zone.

URL Encoding

If your expression requires URL encoding (for example you need to use a ? in the expression) it
must be properly encoded.

dns://my-dns-server/myzone.com/portland/?expression=^por[0-9]%3F

DNS Setup

Currently, the DNS server requires to be setup to allow a zone transfer from the OpenNMS Meridian
server. It is recommended that a secondary DNS server is running on OpenNMS Meridian and that
the OpenNMS Meridian server be allowed to request a zone transfer. A quick way to test if zone
transfers are working is:

dig -t AXFR @<dn5Server> <zone>

12.6. Adapters
The OpenNMS Meridian Provisiond API also supports Provisioning Adapters (plugins) for

304

integration with external systems during the provisioning Import phase. When node entities are
added, updated, deleted, or receive a configuration management change event, OpenNMS Meridian
will call the adapter for the provisioning activities with integrated systems.

Currently, OpenNMS Meridian supports the following adapters:

12.6.1. DDNS Adapter

The Opposite end of Provisiond integration from the DNS Requisition Import, is the DDNS adapter.
This adapter uses the dynamic DNS protocol to update a DNS system as nodes are provisioned into
OpenNMS Meridian. To configure this adapter, edit the opennms.properties file and set the
importer.adapter.dns.server property:

importer.adapter.dns.server=192.168.1.1

12.6.2. RANCID Adapter

Integration has been integrated with RANCID though this new API.

 <More documentation needed>

 Maps (soon to be moved to Mapd) <documentation required>

 WiMax-Link (soon to be moved to Linkd) <documentation required>

12.7. Meta-Data assigned to Nodes
A requisition can contain arbitrary meta-data for each node, interface and service it contains.
During provisioning, the meta-data is copied to the model and persisted in the database.

The Requisition UI allows to edit the meta-data defined in a requisition. The edit function in the
Requisition UI is limited to only edit the context called requisition by intention. All other contexts
are reserved for future use by other provisioning-adapters and similar applications like asset-data.

While provisioning a requisition, the meta-data from the requisition is transferred to the database
and assigned to the nodes, interfaces and services accordingly.

12.7.1. User defined contexts

If there is a requirement to add more contexts not managed by OpenNMS Meridian, the context
name must be prefixed by X-. Any third-party software must take care to choose a context name
which is unique enough to not conflict with other software.

12.8. Integrating with Provisiond
The ReST API should be used for integration from other provisioning systems with OpenNMS

305

#ga-meta-data

Meridian. The ReST API provides an interface for defining foreign sources and requisitions.

12.8.1. Provisioning Groups of Nodes

Just as with the WebUI, groups of nodes can be managed via the ReST API from an external system.
The steps are:

1. Create a Foreign Source (if not using the default) for the group

2. Update the SNMP configuration for each node in the group

3. Create/Update the group of nodes

12.8.2. Example

Step 1 - Create a Foreign Source

If policies for this group of nodes are going to be specified differently than the default policy, then a
foreign source should be created for the group. Using the ReST API, a foreign source can be
provided. Here is an example:

The XML can be imbedded in the curl command option -d or be referenced from a
file if the @ prefix is used with the file name as in this case.

The XML file: customer-a.foreign-source.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<foreign-source date-stamp="2009-10-12T17:26:11.616-04:00" name="customer-a" xmlns=
"http://xmlns.opennms.org/xsd/config/foreign-source">
 <scan-interval>1d</scan-interval>
 <detectors>
 <detector class="org.opennms.netmgt.provision.detector.icmp.IcmpDetector"
name="ICMP"/>
 <detector class="org.opennms.netmgt.provision.detector.snmp.SnmpDetector"
name="SNMP"/>
 </detectors>
 <policies>
 <policy class=
"org.opennms.netmgt.provision.persist.policies.MatchingIpInterfacePolicy" name="no-
192-168">
 <parameter value="UNMANAGE" key="action"/>
 <parameter value="ALL_PARAMETERS" key="matchBehavior"/>
 <parameter value="~^192\.168\..*" key="ipAddress"/>
 </policy>
 </policies>
</foreign-source>

Here is an example curl command used to create the foreign source with the above foreign source
specification above:

306

curl -v -u admin:admin -X POST -H 'Content-type: application/xml' -d '@customer-
a.foreign-source.xml' http://localhost:8980/opennms/rest/foreignSources

Now that you’ve created the foreign source, it needs to be deployed by Provisiond. Here an the
example using the curl command to deploy the foreign source:

curl -v -u admin:admin
http://localhost:8980/opennms/rest/foreignSources/pending/customer-a/deploy -X PUT

The current API doesn’t strictly follow the ReST design guidelines and will be
updated in a later release.

Step 2 - Update the SNMP configuration

The implementation only supports a PUT request because it is an implied "Update" of the
configuration since it requires an IP address and all IPs have a default configuration. This request is
is passed to the SNMP configuration factory in OpenNMS Meridian for optimization of the
configuration store snmp-config.xml. This example changes the community string for the IP address
10.1.1.1 to yRuSonoZ.

 Community string is the only required element

curl -v -X PUT -H "Content-Type: application/xml" -H "Accept: application/xml" -d
<snmp-
info><community>yRuSonoZ</community><port>161</port><retries>1</retries><timeout>2000<
/timeout><version>v2c</version></snmp-info>" -u admin:admin
http://localhost:8980/opennms/rest/snmpConfig/10.1.1.1

Step 3 - Create/Update the Requisition

This example adds 2 nodes to the Provisioning Group, customer-a. Note that the foreign-source
attribute typically has a 1 to 1 relationship to the name of the Provisioning Group requisition. There
is a direct relationship between the foreign- source attribute in the requisition and the foreign
source policy specification. Also, typically, the name of the provisioning group will also be the same.
In the following example, the ReST API will automatically create a provisioning group based on the
value foreign-source attribute specified in the XML requisition.

307

curl -X POST -H "Content-Type: application/xml" -d "<?xml version="1.0" encoding="UTF-
8"?><model-import xmlns="http://xmlns.opennms.org/xsd/config/model-import" date-
stamp="2009-03-07T17:56:53.123-05:00" last-import="2009-03-07T17:56:53.117-05:00"
foreign-source="customer-a"><node node-label="p-brane" foreign-id="1" ><interface ip-
addr="10.0.1.3" descr="en1" status="1" snmp-primary="P"><monitored-service service-
name="ICMP"/><monitored-service service-name="SNMP"/></interface><category
name="Production"/><category name="Routers"/></node><node node-label="m-brane"
foreign-id="1" ><interface ip-addr="10.0.1.4" descr="en1" status="1" snmp-
primary="P"><monitored-service service-name="ICMP"/><monitored-service service-
name="SNMP"/></interface><category name="Production"/><category
name="Routers"/></node></model-import>" -u admin:admin
http://localhost:8980/opennms/rest/requisitions

A provisioning group file called etc/imports/customer-a.xml will be found on the OpenNMS
Meridian system following the successful completion of this curl command and will also be visible
via the WebUI.

Add, Update, Delete operations are handled via the ReST API in the same manner
as described in detailed specification.

12.9. Provisioning Single Nodes (Quick Add Node)
Adding a Node to a Current Requisition

Often, it is requested that a single node add/update be completed for an already defined
provisioning group. There is a ReST API for the Add Node implementation found in the OpenNMS
Meridian Web-UI. For this to work, the provisioning group must already exist in the system even if
there are no nodes defined in the group.

1. Create a foreign source (if required)

2. Specify SNMP configuration

3. Provide a single node with the following specification

12.10. Fine Grained Provisioning Using provision.pl
provision.pl provides an example command-line interface to the provisioning-related OpenNMS
Meridian REST API endpoints.

The script has many options but the first 3 optional parameters are described here:

 You can use --help to the script to see all the available options.

--username (default: admin)
--password (default: admin)
--url (default: http://localhost:8980/opennms/rest)

308

12.10.1. Create a new requisition

provision.pl provides easy access to the requisition REST service using the requisition option:

${OPENNMS_HOME}/bin/provision.pl requisition customer1

This command will create a new, empty (containing no nodes) requisition in OpenNMS Meridian.

The new requisition starts life in the pending state. This allows you to iteratively build the
requisition and then later actually import the nodes in the requisition into OpenNMS Meridian.
This handles all adds/changes/deletes at once. So, you could be making changes all day and then at
night either have a schedule in OpenNMS Meridian that imports the group automatically or you can
send a command through the REST service from an outside system to have the pending requisition
imported/reimported.

You can get a list of all existing requisitions with the list option of the provision.pl script:

${OPENNMS_HOME}/bin/provision.pl list

Create a new Node

${OPENNMS_HOME}/bin/provision.pl node add customer1 1 node-a

This command creates a node element in the requisition customer1 called node-a using the script’s
node option. The node’s foreign-ID is 1 but it can be any alphanumeric value as long as it is unique
within the requisition. Note the node has no interfaces or services yet.

Add an Interface Element to that Node

${OPENNMS_HOME}/bin/provision.pl interface add customer1 1 127.0.0.1

This command adds an interface element to the node element using the interface option to the
provision.pl command and it can now be seen in the pending requisition by running provision.pl
requisition list customer1.

Add a Couple of Services to that Interface

${OPENNMS_HOME}/bin/provision.pl service add customer1 1 127.0.0.1 ICMP
${OPENNMS_HOME}/bin/provision.pl service add customer1 1 127.0.0.1 SNMP

This adds the 2 services to the specified 127.0.0.1 interface and is now in the pending requisition.

309

Set the Primary SNMP Interface

${OPENNMS_HOME}/bin/provision.pl interface set customer1 1 127.0.0.1 snmp-primary P

This sets the 127.0.0.1 interface to be the node’s Primary SNMP interface.

Add a couple of Node Categories

${OPENNMS_HOME}/bin/provision.pl category add customer1 1 Routers
${OPENNMS_HOME}/bin/provision.pl category add customer1 1 Production

This adds the two categories to the node and is now in the pending requisition.

These categories are case-sensitive but do not have to be already defined in OpenNMS Meridian.
They will be created on the fly during the import if they do not already exist.

Setting Asset Fields on a Node

${OPENNMS_HOME}/bin/provision.pl asset add customer1 1 serialnumber 9999

This will add value of 9999 to the asset field: serialnumber.

Deploy the Import Requisition (Creating the Group)

${OPENNMS_HOME}/bin/provision.pl requisition import customer1

This will cause OpenNMS Meridian Provisiond to import the pending customer1 requisition. The
formerly pending requisition will move into the deployed state inside OpenNMS Meridian.

Deleting a Node from a Requisition

Very much the same as the add, except that a single delete command and a re-import is required.
What happens is that the audit phase is run by Provisiond and it will be determined that a node has
been removed from the requisition and the node will be deleted from the DB and all services will
stop activities related to it.

${OPENNMS_HOME}/bin/provision.pl node delete customer1 1 node-a
${OPENNMS_HOME}/bin/provision.pl requisition import customer1

This completes the life cycle of managing a node element, iteratively, in a import requisition.

12.11. Yet Other API Examples
List the Nodes in a Provisioning Group

The provision.pl script doesn’t supply this feature but you can get it via the REST API. Here is an

310

example using curl:

#!/bin/bash
REQ=$1
curl -X GET -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/requisitions/$REQ 2>/dev/null | xmllint --format -

12.12. SNMP Profiles
SNMP Profiles are prefabricated sets of SNMP configuration which are automatically "fitted"
against eligible IP addresses at provisioning time. Each profile may have a unique label and an
optional filter expression. If the filter expression is present, it will be evaluated to check whether a
given IP address or reverse-lookup hostname passes the filter. A profile with a filter expression will
be fitted to a given IP address only if the filter expression evaluates true against that IP address.

SNMP profiles can be added to snmp-config.xml to enable automatic fitting of SNMP interfaces.

Sample snmp-config.xml with profiles

<snmp-config xmlns="http://xmlns.opennms.org/xsd/config/snmp" write-community="
private" read-community="public" timeout="800" retry="3">
 <definition version="v1" ttl="6000">
 <specific>127.0.0.1</specific>
 </definition>
 <profiles>
 <profile version="v1" read-community="horizon" timeout="10000">
 <label>profile1</label>
 </profile>
 <profile version="v1" ttl="6000">
 <label>profile2</label>
 <filter>iphostname LIKE '%opennms%'</filter>
 </profile>
 <profile version="v1" read-community="meridian">
 <label>profile3</label>
 <filter>IPADDR IPLIKE 172.1.*.*</filter>
 </profile>
 </profiles>
</snmp-config>

In the above config,

1. profile1 doesn’t have a filter expression. This profile will be tried for every interface.

2. profile2 has a filter expression that compares iphostname (the hostname resulting from a
reverse DNS lookup of the IP address being fitted) against a preconfigured value. This profile’s
SNMP parameters will be fitted only against IP addresses whose hostname contains the string
opennms.

3. profile3 has an IPLIKE expression that matches all interfaces in the range specified in the filter.

311

This profile’s SNMP parameters will be fitted only against IP addresses in the range specified by
the IPLIKE expression.

Profiles will be tried in the order they are configured. The first match that
produces a successful SNMP GET-REQUEST on the scalar instance of sysObjectID will
be saved by Provisiond as the SNMP configuratoin definition to use for all future
SNMP operations against the fitted IP address.

 default as profile label is reserved for default SNMP config.

Fit a SNMP profile

The opennms:snmp-fit Karaf shell command finds a matching profile for a given IP address and
prints out the resulting config.

Matching or "fitting" an SNMP profile should be understood as passing the profile’s filter expression
and success in getting the scalar sysObjectID instance.

$ ssh -p 8101 admin@localhost
...
admin@opennms()> opennms:snmp-fit -l MINION -s 172.1.1.105 ①
admin@opennms()> opennms:snmp-fit 172.1.1.106 profile1 ②

① searches the profiles that fit the IP address 172.1.1.105 at location Minion and saves the resulting
configuration as a definition for future use.

② checks whether the profile with label profile1 is a fit for IP address 172.1.1.106. If it succeeds, it
prints out the resulting agent config, but does not save any definition.

Remove an IP address from definition.

The opennms:snmp-remove-from-definition Karaf shell command removes an IP address from the
system-wide SNMP configuration definitions.

$ ssh -p 8101 admin@localhost
...
admin@opennms()> opennms:snmp-remove-from-definition -l MINION 172.1.0.255

This removes IP address 172.1.0.255 at location MINION from the system-wide SNMP configuration
so that this IP address can be fitted to a new profile. This command might be useful when an IP
address formerly assigned to an SNMPv2c-capable switch is reassigned to an SNMPv3-capable load
balancer.

Using SNMP profiles in Snmp Detector

By default SnmpDetector doesn’t use SNMP profiles. Add property useSnmpProfiles and set it to true
in order to use SNMP Profiles.

312

12.13. Auto Discovery with Detectors
Currently OpenNMS Meridian uses ICMP ping sweep to find IP address on the network. The IP
Ranges and specifics can be defined in discovery-configuration.xml as shown below.

Sample discovery configuration

<discovery-configuration xmlns="http://xmlns.opennms.org/xsd/config/discovery"
packets-per-second="1"
 initial-sleep-time="30000" restart-sleep-time="86400000" retries="1"
timeout="2000">
 <!-- see examples/discovery-configuration.xml for options -->
 <specific>10.0.0.5</specific>
 <include-range>
 <begin>192.168.0.1</begin>
 <end>192.168.0.254</end>
 </include-range>
 <include-url>file:/opt/opennms/etc/include.txt</include-url>
</discovery-configuration>

Auto Discovery with Detectors allows users to specify the services that needs to be detected apart
from ICMP ping for the IP Addresses to be discovered. Only when specified detectors succeeds, auto
discovery will send new suspect event.

Sample Configuration with detectors is shown below.

313

Sample discovery configuration with detectors

<discovery-configuration xmlns="http://xmlns.opennms.org/xsd/config/discovery"
packets-per-second="1"
 initial-sleep-time="30000" restart-sleep-time="86400000" retries="1"
timeout="2000">

 <definition location="MINION" foreign-source="ApexOffice">

 <detectors>
 <detector name="reverse-dns-lookup" class-name=
"org.opennms.netmgt.provision.detector.rdns.ReverseDNSLookupDetector"/>
 <detector name="SNMP" class-name=
"org.opennms.netmgt.provision.detector.snmp.SnmpDetector">
 <parameter key="timeout" value="5000"/>
 <parameter key="ttl" value="120000"/>
 </detector>
 </detectors>

 <specific>10.0.0.5</specific>

 <include-range>
 <begin>192.168.0.1</begin>
 <end>192.168.0.254</end>
 </include-range>

 <exclude-range>
 <begin>192.168.0.120</begin>
 <end>192.168.0.125</end>
 </exclude-range>

 <include-url>file:/opt/opennms/etc/include.txt</include-url>

 </definition>

</discovery-configuration>

In above configuration, specifics and ranges are moved into definition with SNMP and reverse-dns-
lookup detectors. When all of the detectors succeeeds at a given location, then only the specific IP
Address considered to be discovered.

A definition without any detectors will fall back to ICMP ping for discovery.

12.14. Service Detectors
Service detectors allow to bind a service to an interface automatically if it is detected during
provisioning of a requisition.

314

12.14.1. Meta-Data-DSL

Service detectors can leverage dynamic configuration by using the Meta-Data-DSL in each possible
parameter.

During evaluation of an expression the following scopes are available:

• Node meta-data

• Interface meta-data

12.14.2. HTTP Detector

This detector is used to find and assigns services based on HTTP.

Detector facts

Implementation org.opennms.netmgt.provision.detector.simple.HttpDetector

Configuration and Usage

Table 100. Parameters for the HTTP detector

Paramet
er

Description Requi
red

Default
value

checkRetC
ode

If set to true only HTTP status codes that are the same or lower than
the value of maxRetCode pass.

option
al

false

maxRetCod
e

Highest HTTP response code that passes. maxRetCode is only
evaluated if checkRetCode is set to true.

option
al

399

port Port to query . option
al

80

url Url to query option
al

/

timeout Timeout in milliseconds to wait for a response. option
al

2000

Please note: The Http Detector makes only one http request and doesn’t follow redirects.

Example Configuration

315

#ga-meta-data-dsl

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<foreign-source date-stamp="2010-06-29T13:15:30.494+02:00" name="test" xmlns=
"http://xmlns.opennms.org/xsd/config/foreign-source">
 <scan-interval>1d</scan-interval>
 <detectors>
 <detector class="org.opennms.netmgt.provision.detector.simple.HttpDetector" name=
"http8080">
 <parameter key="port" value="8080"/>
 <parameter key="url" value="index2.html" />
 <parameter key="maxRetCode" value="200"/>
 <parameter key="checkRetCode" value="true"/>
 </detector>
 </detectors>
 <policies/>
</foreign-source>

12.14.3. HTTPS Detector

This detector is used to find and assigns services based on HTTPS.

Detector facts

Implementation org.opennms.netmgt.provision.detector.simple.HttpsDetector

Configuration and Usage

Parameters for the HTTPS detector

The parameters are the same as for the HTTP detector

12.14.4. SNMP Detector

This detector is used to find and assigns services based on SNMP. The detector binds a service with
a given Service Name when a particular SNMP OID as scalar or table matches a given criteria.

Detector facts

Implementation org.opennms.netmgt.provision.detector.snmp.SnmpDetector

Configuration and Usage

Table 101. Parameters for the SNMP detector

Paramete
r

Description Requi
red

Default
value

oid SNMP OID for scalar or table to detect the service. requir
ed

.1.3.6.1.2.1

.1.2.0

316

Paramete
r

Description Requi
red

Default
value

retry Number of retries to detect the service. option
al

agent config

timeout Timeout in milliseconds to wait for a response from the SNMP
agent.

option
al

agent config

vbvalue expected return value to detect the service; if not specified the
service is detected if the SNMP OID returned any kind of valid
value. The vbvalue is evaluated as Java Regular Expression.

option
al

-

hex Set true if the data is from type HEX-String. option
al

false

isTable Set true if detector should evaluate SNMP tables. option
al

false

matchType Set match type to evaluate the expected value in the SNMP table.
EXIST: the expected vbalue is ignored, service detected if the
given table under OID exist
ALL: all values in the table must match against expected vbalue
to detect service
ANY: at least one value in the table must match against expected
vbalue to detect service
NONE: None of the values should match against expected value
to detect service

option
al

EXIST

useSnmpPro
files

Set true if detector should use SNMP profiles to detect SNMP
service.

option
al

false

ttl Time to live in milliseconds to wait for a response from the
Minion.

option
al

20000

Example for SNMP scalar value

We have Dell server farm and want to monitor the global server status provided by the
OpenManage Server Administrator. Global status is provided by a scalar OID
.1.3.6.1.4.1.674.10892.1.200.10.1.2.1. The service should be automatically detected if the server
supports this OID.

For provisioning we have a requisition named Server which contains all server of our data center.
A Detector with the name Dell-OMSA-Global-State for this requisition is created with the following
parameter:

Table 102. Parameters for the SNMP detector

Paramete
r

Value

Name Dell-OMSA-Global-State

317

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Paramete
r

Value

oid .1.3.6.1.4.1.674.10892.1.200.10.1.2.1

When the requisition Server is synchronized the service Dell-OMSA-Global-State will be detected in
case they support the given SNMP OID.

Example using SNMP tables

We have a HP server farm and want to monitor the status of logical drives over SNMP provided
from HP Insight Manager. The status for logical drives is provided in a SNMP Table under
.1.3.6.1.4.1.232.3.2.3.1.1.4. The service should be automatically assigned to all servers exposing
the given SNMP OID.

For provisioning we have a requisition named Server which contains all server of our data center.
A Detector with the name HP-Insight-Drive-Logical for this requisition is created with the following
parameter:

Table 103. Parameters for the SNMP
detector

Paramete
r

Value

Name HP-Insight-Drive-Logical

oid .1.3.6.1.4.1.232.3.2.3.1.1.4

isTable true

When the requisition Server is synchronized the service HP-Insight-Drive-Logical will be detected in
case they support the given SNMP OID table.

12.14.5. WS-Man Detector

The WS-Management detector attempts to connect to the agent defined in wsman-config.xml and
issues an Identify command. If the Identify command is successful, the service is marked as
detected and the product details returned by the command are optionally stored in the asset fields
(see details bellow.)

Detector facts

Implementation org.opennms.netmgt.provision.detector.wsman.WsManDetector

Configuration and Usage

Table 104. Parameters for the <DETECTOR-NAME-HERE>

318

Paramet
er

Description Requir
ed

Default
value

updateAss
ets

Stores the product vendor and product version in the vendor and
modelNumber asset fields

false true

Examples

If a valid response to the Identify command is received, the product vendor and product version
are stored in the vendor and modelNumber fields of the associated node`s assets table.

For example, a Windows Server 2008 machine returns:

Product Vendor Microsoft Corporation

Product Version OS: 6.1.7601 SP: 1.0 Stack: 2.0

If these assets field are being used for another purpose, this behavior can be disabled by settings
the updateAssets parameters to false in the detector configuration of the appropriate foreign
source.

Some agents may respond to the Identify command with generic identities such as
Openwsman 2.0.0. These values can be overridden by specifying the product-vendor
and product-version attributes in wsman-config.xml.

Example detector configuration:

<detector name="WS-Man" class=
"org.opennms.netmgt.provision.detector.wsman.WsManDetector">
 <parameter key="updateAssets" value="true"/>
</detector>

The response is logged as DEBUG information in provisiond.log and looks like the following:

319

ID: 3
Response-Code: 200
309Encoding: UTF-8
Content-Type: application/soap+xml;charset=UTF-8
Headers: {Content-Length=[787], content-type=[application/soap+xml;charset=UTF-8],
Date=[Mon, 08 Feb 2016 14:21:20 GMT], Server=[Microsoft-HTTPAPI/2.0]}
Payload:
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xml:lang="en-US">
 <s:Header/>
 <s:Body>
 <wsmid:IdentifyResponse xmlns:wsmid=
"http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd">
 <wsmid:ProtocolVersion>
http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd</wsmid:ProtocolVersion>
 <wsmid:ProductVendor>Microsoft Corporation</wsmid:ProductVendor>①
 <wsmid:ProductVersion>OS: 6.2.9200 SP: 0.0 Stack: 3.0</wsmid:ProductVersion>②
 <wsmid:SecurityProfiles>

<wsmid:SecurityProfileName>http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/
basic</wsmid:SecurityProfileName>

<wsmid:SecurityProfileName>http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/
spnego-kerberos</wsmid:SecurityProfileName>
 </wsmid:SecurityProfiles>
 </wsmid:IdentifyResponse>
 </s:Body>
</s:Envelope>

① ProductVendor: Stored to the asset field vendor

② ProductVersion: Stored in the asset field modelNumber

The information of the asset fields are used in the System Definition Rule to decide
which performance metrics will be gathered from Collectd.

12.14.6. WS-Man WQL Detector

The WS-Management WQL detector attempts to connect to the agent defined in wsman-config.xml
and issues a WQL query. If the query successfully returns one or more items, the service is marked
as detected. The WS-Man WQL detector can be used to define arbitrary services based on WQL
filter results.

Detector facts

Implementation org.opennms.netmgt.provision.detector.wsman.WsManWQLDetector

Configuration and Usage

Table 105. Parameters for the <DETECTOR-NAME-HERE>

320

Parame
ter

Description Requi
red

Default value

resource
Uri

A resourceUri consists of a prefix and a
path to a resource.

yes http://schemas.microsoft.com/wbem/
wsman/1/wmi/root/cimv2/*

wql A query using the WQL filter dialect yes none

serviceN
ame

A custom service name to identify this
service

no WsManWQLService

Examples

Example detector configuration:

<detector name="WinRM" class=
"org.opennms.netmgt.provision.detector.wsman.WsManWQLDetector">
 <parameter key="resourceUri" value=
"http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*"/>
 <parameter key="serviceName" value="WinRM"/>
 <parameter key="wql" value="select Name,Status from Win32_Service where Name =
'WinRM' and StartMode='Auto' and Status = 'OK'"/>
</detector>

The response is logged as DEBUG information in provisiond.log and looks like the following:

321

http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/*

ID: 167
Response-Code: 200
Encoding: UTF-8
Content-Type: application/soap+xml;charset=UTF-8
Headers: {Content-Length=[975], content-type=[application/soap+xml;charset=UTF-8],
Date=[Thu, 02 Aug 2018 20:34:33 GMT], Server=[Microsoft-HTTPAPI/2.0]
Payload: <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a=
"http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:n=
"http://schemas.xmlsoap.org/ws/2004/09/enumeration" xmlns:w=
"http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" xml:lang="en-US">
 <s:Header>
 <a:Action>
http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateResponse</a:Action>
 <a:MessageID>uuid:2298892C-575F-4722-82F6-C77F9E8B1A4F</a:MessageID>
 <a:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</a:To>
 <a:RelatesTo>urn:uuid:3c63e4d5-890c-4706-854b-876bf3b35b99</a:RelatesTo>
 </s:Header>
 <s:Body>
 <n:EnumerateResponse>
 <n:EnumerationContext/>
 <w:Items>
 <w:XmlFragment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:w=
"http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" xmlns:m=
"http://schemas.microsoft.com/wbem/wsman/1/wsman.xsd">
 <Name>WinRM</Name>
 <Status>OK</Status>
 </w:XmlFragment>
 </w:Items>
 <w:EndOfSequence/>
 </n:EnumerateResponse>
 </s:Body>
</s:Envelope>

12.14.7. Reverse-DNS-Lookup Detector

This detector tries to detect if a given IP Address can be found in PTR records.

Detector facts

Implementation org.opennms.netmgt.provision.detector.rdns.ReverseDNSLookupDetector

Configuration and Usage

Parameters for the Reverse-DNS-Lookup Detector

Reverse DNS Lookup Detector doesn’t take any parameters.

322

Examples

Reverse-DNS-Lookup Detector can be used in auto discovery with detectors to discover IP Addresses
that only resolve FQDN.

323

#ga-provisioning-auto-discovery-detectors

Chapter 13. Business Service Monitoring
While OpenNMS Meridian detects issues in your network by device, interface or service, the
Business Service Monitoring (BSM) takes it one step further. The BSM components allows you to
monitor and model high level Business Services (BS) and helps quickly identify the most critical
problems affecting these. With the BSM feature it is possible to model a high level BS context
around the technical Service Monitors provided in OpenNMS Meridian. To indicate which BS is
affected by events at the technical Service Monitors level, a BS Operational Status is calculated.

As an example, let’s assume a company runs an online store. Customers enter through a login
system, select items, place them in the shopping cart and checkout using a payment system. The
whole service is provided by a few web servers and access data from databases. To monitor the
status of the databases, a SQL service monitor on each database server is configured. For testing the
web servers a HTTP service monitor is used for each of them. Covering the overall functionality a
Page Sequence Monitor (PSM) is used to test the login, shop and payment workflow through the
provided web portal. A possible representation of the whole system hierarchy is shown in figure
Example scenario for a web shop.

Example scenario for a web shop

To be able to model this scenarios the BSM functions can be used. The Business Service Monitoring
(BSM) feature includes the following components:

• Business Service Monitoring Daemon (BSMD): Maintains and drives the state of all BS

• Business Service Editor: Web application which allows you to create, update or delete BS

• Topology View for Business Services: Visual representation of the Business Service Hierarchy as a
component of the Topology User Interface.

• BSM ReST API: ReST based API to create, read, update or delete BS

324

13.1. Business Service Hierarchy
BS can depend on each other and build together a Business Service Hierarchy. It can be visualized
using the Topology User Interface with the Business Services View. The Operational Status of a BS is
ultimately calculated from Alarms and their Severity. To define the class of Alarms a Reduction Key
is used and is represented as an Edge of a BS. Giving more granularity than just Up or Down, the
Operational Status uses the Severities, i.e. Normal, Warning, Minor, Major, Critical.

Based on the hierarchy, the Operational Status is calculated with Map and Reduce Functions. A Map
Function influences which Severity from the Edge is used as an input to the BS. A Reduce Function is
used to consolidate the Severities from all Edges of a BS and uses them as inputs and reduces them
into a single Severity, which is the Operational Status.

The Topology User Interface allows users to traverse Business Service Hierarchies using the Semantic
Zoom Level (SZL). The Semantic Zoom Level (SZL, pronounced as 'sizzle') defines how many
Neighbors are shown related to the elements which are in Focus. The number can be interpreted as
how many Hops from the Focus should be shown on the Topology User Interface.

Figure 35. Business Service Hierarchy components

① A top-level Business Service which depends on other Business Services, Monitored Services and
Alarms (referenced by Reduction Key)

② Business Service as child an the Operational Status is used as input for the top-level Business
Service

③ IP Service Edge used as an input with auto generated Reduction Keys for node down, interface
down and node lost service

④ Reduction Key Edge used as an input to the top-level BS, which references just a node lost service
of a Page Sequence Monitor for the user login

To add or remove an additional selected BS or Edge to Focus use in the context menu Add To Focus
or Remove From Focus. If you want to have a specific _BS or Edge as a single focus use Set as Focal

325

Point. The Eye icon highlights all elements in the Topology UI which are set to Focus.

13.2. Operational status
Every Business Service maintains an Operational Status that represents the overall status calculated
by the Map and Reduce Functions from the Edges. The Operational Status uses the Severities known
from Events and Alarms.

Table 106. Operational Status representation

Name Numerica
l code

Color /
Code

Description

Critical 7 Purple /
#c00

This event means that a severe service affecting event has
occurred.

Major 6 Red / #f30 Indicates serious disruption or malfunction of a service or
system.

Minor 5 Orange /
#f90

Used for troubles that have not immediate effect on service or
system performance.

Warning 4 Yellow /
#fc0

An event has occurred that may require action. This severity
can also be used to indicate a condition that should be noted
(logged) but does not require immediate action.

Normal 3 Dark green
/ #360

Informational message. No action required.

Cleared 2 Grey / #eee This severity is reserved for use in alarms to indicate that an
alarm describes a self-clearing error condition has been
corrected and service is restored. This severity should never be
used in event definitions. Please use "Normal" severity for
events that clear an alarm.

Indetermi
nate

1 Light green
/ #990

No Severity could be associated with this event.

If a Business Service changes its Operational Status an OpenNMS event of the type
uei.opennms.org/bsm/serviceOperationalStatusChanged is generated and sent to the OpenNMS Event
Bus. In case the Operational Status changed from Normal to a higher Severity an Event of the type
uei.opennms.org/bsm/serviceProblem is generated and has the Severity of the BS. When the BS goes
back to normal a Event of the type uei.opennms.org/bsm/serviceProblemResolved is generated.

The Service Problem and Service Problem Resolved events can be used for
notifications or ticketing integration.

The log message of the events have the following information:

• Business Service Name: businessServiceName

• Business Service Identifier: id

326

• Previous Severity Identifier: prevSeverityId

• Previous Severity Label: prevSeverityLabel

• New Severity Identifier: newSeverityId

• New Severity Label: newSeverityLabel

 The BSM events are not associated to a Node, Interface or Service.

13.3. Root Cause and Impact Analysis
The Root Cause operation can be used to quickly identify the underlying Reduction Keys as Edges
that contribute to the current Operational Status of an element. The Impact Analysis operation,
converse to the Root Cause operation, can be used to identify all of the BS affected by a given
element. Both of these options are available in the context menu of the Topology User Interface
when visualizing BS.

The following example shows how to identify the Root Cause of the critical status of the Shop
service. Use the Context Menu on the BS to investigate the Root Cause shown in figure View before
performing Root Cause Analysis.

View before performing Root Cause Analysis

The Topology UI sets only elements to Focus which are the reason for the Operational Status of the
selected BS. In figure View after performing Root Cause Analysis the Page Sequence Monitor which
tests the user login is down and has set the BS to a critical status.

View after performing Root Cause Analysis

327

Similar to identifying a root cause for a BS it is also possible to identfy which Business Services from
a specific Edge are affected. Use the Context Menu on a specific Edge element and select Impact
Analysis shown in figure View before performing Impact Analysis.

View before performing Impact Analysis

In figure View after performing Impact Analysis the Business Services for Login, Shop and Payment
are affected if this HTTP service is unavailable.

View after performing Impact Analysis

328

For the reason the service PSM Shop is introducing the critical status for the
Business Service Shop, the HTTP service has no impact on the Operational Status of
the PSM Shop and is not shown.

13.4. Simulation Mode
To visualize if the configured behavior works as expected, the Simulation Mode can be used to
manually set an Alarm status of an Edge element. The Operational Status is calculated with the
given Map and Reduce Functions. This allows users to validate and tune their Business Service
Hierarchies until the desired status propagation is achieved.

In order to enter Simulation Mode, open the Business Service View in the Topology User Interface
and toggle the Simulation Mode option in the Simulate menu at the top of the screen. The Info Panel
on the left hand side allows to set the Severity of the selected Edge element. In figure BSM
Simulation Mode the Menu and Severity setting is shown.

BSM Simulation Mode

329

 The Info Panel can be hidden with the Arrow button in the top left corner.

In the Simulate menu there are Inherite State and Reset State as options available. With Inherite
State the current Severities and Operational Status from monitoring is used for the Simulation Mode.
By selecting Reset State all states will be set to Normal for simulation.

13.5. Share View
In some cases it is useful to share a specific view on a Business Service Hierarchy. For this reason
the menu function Share can be used and generates a link for the current view and can be copied
and sent to another user. In figure Share Business Service View the Share menu item was used and
a link is generated. The link can be used with Copy & Paste and sent to another user to have access
to exactly the same configured _Business Service View.

Share Business Service View

330

The user receiving the link needs an account in OpenNMS to be able to see the
Business Service View.

13.6. Change Icons
Each element in the Business Service View has an icon which is assigned to a BS or an Edge. To be
able to customize the Business Service View the icons for each element can be changed. Select the
element in the Business Service View and choose Change Icon from the Context Menu. As shown in
figure Change Icon for Business Service or Edges select the the new icon for the selected element
and click Ok to permanently assign the new icon to the element.

Change Icon for Business Service or Edges

It is also possible create custom Icon Sets which is described in the Business Service Monitoring
section of the Developer Guide.

13.7. Business Service Definition
The status of Service Monitors and any kind of Alarm can be used to drive the Operational Status of
a BS. A BS is defined with the following components:

• Business Service Name: A unique name used to identify the BS

• Edges: A set of elements on which this BS relies which can include other BS, or Reduction Keys.

• Reduce Function: Function used to aggregate the Operational Status from all the Edges. Specific
functions may take additional parameters.

• Attributes: Optional key/value pairs that can be used to tag or enrich the Busines Service with
additional information.

Each Business Service can contain a list of optional key/value attributes. These can be used to
identify or tag the BS, and may be reference in other workflows. These attributes do not affect the

331

dependencies or the status calculation of the BS.

 Attributes can be used to filter BS in Ops Board dashlets.

The Business Service Editor is used to manage and model the Business Services and their hierarchy.
It is required to have administrative permissions and is available in "Login Name → Configure
OpenNMS → Manage Business Services" in the Service Monitoring section.

Managing Business Services with the Business Service Editor

① Create a new Business Service definition

② Collapse tree view for all Business Services in the view

③ Expand tree view for all Business Services in the view

④ Reload all Business Services in the view with current Business Services from the system

⑤ Reload the Business Service Monitoring Daemon to use the Business Service definition as
configured

⑥ Business Service dependency hierarchy as tree view

⑦ Show the current Business Service with dependencies in the Topology UI

⑧ Edit and delete existing Business Service defintions

As shown in figure Managing Business Services with the Business Service Editor the Business
Services can be created or changed. The hierarchy is created by assigning an existing Business
Service as Child Service.

13.8. Edges
Edges map the Alarm status monitoring with OpenNMS

The following types can be used:

332

• Child Service: A reference to an existing Business Service on which to depend

• IP Service: A convenient way to refer to the alarms that can be generated by a monitored IP
Service. This will automatically provided edges for the nodeLostService, interfaceDown and
nodeDown reductions keys of the specified service.

• Reduction Key: A resolved Reduction Key used to refer to a specific Alarm, e.g. generated by a
SNMP Trap or Threshold violation

• Application: A reference to an existing application. This will automatically provide edges for the
nodeLostService, interfaceDown and nodeDown reductions keys of the defined services of this
application.

If you need help determining the reduction key used by alarm, trigger the alarm in
question and pull the reduction key from the Alarm details page.

All edge types have the following parameters:

• Map Function: The associated Map Function for this Edge

• Weight: The relative Weight of this edge. Used by certain Reduce Functions.

Both IP Service and Reduction Key type edges also support a Friendly Name parameter which gives
the user control on how the edge is labeled in the Topology User Interface. The editor changing the
Edge attributes is shown in figure Editor to add Business Service Edges.

Editor to add Business Service Edges

13.8.1. Child Services

To create a hierarchy of Business Services they need to be created first. The hierarchy is build by
selecting the Business Service as_Child Service_ as dependency.

13.8.2. IP Services

The IP Service is a predefined set of Reduction Keys which allows easily to assign a specific
Monitored Service to the given BS. As an example you have multiple Servers with a Monitored
Service SMTP and you want to model a BS named Mail Communication. If just the Reduction Key for
a nodeLostService is assgined, the BS would not be affected in case the IP Interface or the whole
Node goes down. OpenNMS generates Alarms with different UEI which needs to be assigned to the
BS as well. To make it easier to model this use case the IP Service generates the following Reduction

333

Keys automatically:

• uei.opennms.org/nodes/nodeLostService:%nodeId%:%ipAddress%:%serviceName%: Matches Alarms
when the given Monitored Service goes down

• uei.opennms.org/nodes/interfaceDown:%nodeId%:%ipAddress%: Matches Alarms when the given IP
Interface of the Monitored Service goes down

• uei.opennms.org/nodes/nodeDown:%nodeId%: Matches Alarms when the given Node of the
Monitored Service goes down

13.8.3. Custom Reduction Key

The Reduction Key edge is used to refer to specific instance of alarms. When an alarm with the
given Reduction Key is present, the alarms' severity will be used to calculate the Operational Status
of the BS. To give a better explanation a Friendly Name can be set and is used in the Business Service
View. The format of the Reduction Key is build by a set of attributes as a key separated by : and
enclosed in %, i.e (%attribute%:%attribute%).

Example of a Reduction Key for a specific nodeLostService

%uei.opennms.org/nodes/nodeLostService%:%nodeId%:%ipAddress%:%serviceName%

13.8.4. Application

Already defined Applications can be used in Business Service topologies. An Application itself
defines a set of Monitored Services - each of these generate nodeLostService, interfaceDown and
nodeDown reduction keys automatically.

13.9. Map Functions
The Map Functions define how the Severity of the edge will be used in the Reduce Function of the
parent when calculating the Operational Status.

The available Map Functions are:

Table 107. Calculation of the Operational Status with Map Functions

Name Description

Identity Use the same Severity as Operational Status of the BS

Increase Increase the Severity by one level and use it as Operational Status of the BS

Decrease Decrease the Severity by one level and use it as Operational Status of the BS

SetTo Set the Operational Status to a constant Severity value

Ignore The input of the Edge is ignored for Operational Status calculation

334

13.10. Reduce Functions
A Reduce Function is used to aggregate the Operational Status for the BS. The Alarm Severity from
the Edges are used as input for the Reduce Function. For this operation the following Reduce
Functions are available:

Table 108. Status calculation Reduce Functions

Name Description

Highest Severity Uses the value of the highest severity, Weight is ignored.

Threshold Uses the highest severity found more often than the given threshold, e.g. 0.26
can also be seen as 26%, which means at least 2 of 4 Alarms need to be raised
to change the BS.

Highest Severity
Above

Uses the highest severity greater than the given threshold severity.

335

Name Description

Exponential
Propagation

This reduce function computes the sum of the given child severities based on
a base number. For this computation the severities are mapped to numbers:

WARNING=0, MINOR=1, MAJOR=2, CRITICAL=3

All other severities are ignored.

For the aggregation the following formula will be used to compute the
resulting Business Service severity from its n child entities based on the base
number b:

severity = |__log_{b}(sum_(i=1)^n b^(ch\ildSeverity_{i}))__|

In summary the base value defines how many items of a severity x will result
in a severity x+1. Results lower as 0 are treated as NORMAL and results higher
than 3 are treated as CRITICAL. If all input values are of severity
INDETERMINATE, the result is INDETERMINATE.

For example if the Business Service depends on four child entities with the
severities WARNING, WARNING, NORMAL and NORMAL and the base defined
by the number 2 the following computation will be made:

severity = |__log_{2}(2^{0} + 2^{0} + 0 + 0)__| = |__log_{2}(1 + 1 + 0

+ 0)__| = |__log_{2}(2)__| = |__1__| = 1

which corresponds to the severity MINOR. The same computation with the
base value of 3 results in:

severity = |__log_{3}(3^{0} + 3^{0} + 0 + 0)__| = |__log_{3}(1 + 1 + 0

+ 0)__| = |__log_{3}(2)__| = |__0.63__| = 0

which means WARNING.

The following table shows the status calculation with Edges assigned to an IP Service. The IP-Service
is driven by the monitoring of the ICMP service for three Web Server. In the table below you find a
configuration where Web Server 3 is weighted 3 times higher than the other and a threshold of 0.33
(33%) is configured.

Table 109. Example for status calculation using the Threshold function

Name Weig
ht

Weight
Factor

Input
Severity

Operational
Status

Critic
al

Majo
r

Mino
r

Warni
ng

Norm
al

Web-
ICMP-1

1 0.2 Critical Critical 0.2 0.2 0.2 0.2 0.2

336

Name Weig
ht

Weight
Factor

Input
Severity

Operational
Status

Critic
al

Majo
r

Mino
r

Warni
ng

Norm
al

Web-
ICMP-2

1 0.2 Normal Normal 0 0 0 0 0.2

Web-
ICMP-3

3 0.6 Warning Warning 0 0 0 0.6 0.6

Total 1.0 0.2 0.2 0.2 0.8 1

Percentag
e

100% 20% 20% 20% 80% 100%

The Operational Status Severity is evaluated from left to right, the first value higher then the
configured Threshold is used. In this case the Operational Status is set to Warning because the first
threshold which exceeds 33% is Warning with 80%.

13.11. Business Service Daemon
The calculation of the Operational Status of the BS is driven by the Business Service Monitoring
Daemon (bsmd). The daemon is responsible for tracking the operational status of all BS and for
sending events in case of operational status changes.

In order to calculate the Operational Status the reduction key associated with a Business Service is
used. The reduction key is obtained from an alarm generated by OpenNMS Meridian. This means
that the alarm’s reduction key of a defined Business Service must not change afterwards. Otherwise
bsmd is not able to calculate the Operational Status correctly. This also applies for removing the
alarm data from events associated to Business Services In addition the child type "IP Service" from
the Business Service Configuration Page requires the following events with the default reduction
keys being defined: * uei.opennms.org/nodes/nodeLostService * uei.opennms.org/nodes/nodeDown
* uei.opennms.org/nodes/interfaceDown

Every time the configuration of a Business Service is changed a reload of the daemon’s
configuration is required. This includes changes like the name of the Business Service or its
attributes as well as changes regarding the Reduction Keys, contained Business Services or IP
Services. The bsmd configuration can be reloaded with the following mechanisms:

• Click the Reload Daemon button in the Business Service Editor

• Send the reloadDaemonConfig event using send-event.pl or use the WebUI in Manually Send an
Event with parameter daemonName bsmd

• Use the ReST API to perform a POST request to /opennms/api/v2/business-services/daemon/reload

If the reload of the configuration is done an event of type
uei.opennms.org/internal/reloadDaemonConfigSuccessful is fired.

337

Example reloading bsmd configuration from CLI

$OPENNMS_HOME/bin/send-event.pl -p 'daemonName bsmd'
uei.opennms.org/internal/reloadDaemonConfig

Example reloading bsmd configuration through ReST POST

curl -X POST -u admin:admin -v http://localhost:8980/opennms/api/v2/business-
services/daemon/reload

338

Chapter 14. Topology Map
This section describes how to configure the Topology Map.

14.1. Properties
The Topology Map supports the following properties, which can be influenced by changing the file
etc/org.opennms.features.topology.app.cfg:

Property Type Default Description

showHeader Boole
an

true Defines if the OpenNMS Meridian header is shown.

autoRefresh.e
nabled

Boole
an

false If enabled, auto refresh is enabled by default.

autoRefresh.i
nterval

Integ
er

60 Defines the auto refresh interval in seconds.

hiddenCategor
yPrefix

Strin
g

empty
String

A String which allows hiding categories. For example a value of
server will hide all categories starting with server. Be aware, that
this setting is case-sensistive, so Servers will be shown. The
resolution is only enabled if no longitude/latitude information is
available.

14.2. Edge Status
The choice of topology provider controls the status and color of an edge, or link between two
vertices. Each topology provider has different notions of what an edge represents and may provide
different controls for managing the behavior.

14.2.1. Linkd Topology Provider

The Linkd Topology Provider uses the state and existence of alarms to determine the color of the
edge. An edge between two vertices on a topology map represents a link that has been discovered
between two interfaces on distinct nodes. If an alarm is present with a UEI
uei.opennms.org/internal/topology/linkDown, and the alarm is associated with either of the
interfaces on either node, then the edge is red. If no such alarm is present, the edge is green.

These alarms are not generated by default. Enable them by changing the logmsg property on the
uei.opennms.org/internal/topology/linkDown and uei.opennms.org/internal/topology/linkUp events
from donotpersist to logndisplay. These events are automatically generated by the default set of
event translator rules that process incoming SNMP Link Up & Down traps.

14.3. Icons
Each Vertex on the Topology Map is represented by an icon. The default icon is configured in the
icon mapping file: ${OPENNMS_HOME}/etc/org.opennms.features.topology.app.icons.<topology-

339

namespace>.cfg. If an icon mapping file does not exist for a Topology Provider, the provider does not
support customization.

List of available icon mapping files (may not be complete)

org.opennms.features.topology.app.icons.default.cfg ①
org.opennms.features.topology.app.icons.application.cfg ②
org.opennms.features.topology.app.icons.bsm.cfg ③
org.opennms.features.topology.app.icons.linkd.cfg ④
org.opennms.features.topology.app.icons.vmware.cfg ⑤

① Default icon mapping

② Icon mapping for the Application Topology Provider

③ Icon mapping for the Business Services Topology Provider

④ Icon mapping for the Linkd Topology Provider

⑤ Icon mapping for the Vmware Topology Provider

Each File contains a mapping in form of <icon key> = <icon id>.

Icon key

A Topology Provider dependent string which maps to an icon id. An icon key consists of one to
multiple segments. Each segment must contain only numbers or characters. If multiple segments
exist they must be separated by ., e.g. my.custom.key. Any existing default icon keys are not
configurable and should not be changed.

Icon id

The icon id is a unique icon identifier to reference an icon within one of the available SVG icons
located in ${OPENNMS_HOME}/jetty-webapps/opennms/svg. For more details see Add new icons.

Icon key and icon id specification using BNF

icon key ::= segment["."segment]*
segment ::= text+ [("-" | "_" | ":") text]*
text ::== (char | number)+
char ::== A | B | ... | Z | a | b | ... | z
number ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
icon id ::= segment

Example icon mapping file

Business Service Topology
bsm.business-service = business_service ①
bsm.ip-service = IP_service ②
bsm.reduction-key = reduction_key ③

① Icon definition for Business Services

② Icon definition for IP Services

340

③ Icon definition for Reduction Keys

14.3.1. Icon resolution

The icon of a vertex is resolved as follows:

• If a vertex id to icon id mapping is defined, the icon referenced by the icon id is used

• If a mapping for the icon key determined by the Topology Provider for the vertex is defined, the
icon referenced by the icon id is used

◦ If no mapping exists and the icon key has more than one segments, reduce the icon key by
the last segment and try resolving that icon key

• If no mapping is defined, the fallback icon key default is used.

The following example icon mapping is defined for the Linkd Topology Provider to illustrate this
behaviour.

linkd.system.snmp.1.3.6.1.4.1.9.1.485 = server1
linkd.system.snmp.1.3.6 = server2

If the Enterprise OID of a node is 1.3.6.1.4.1.9.1.485 the icon with id server1 is used. If the
Enterprise OID of a node is 1.3.6 the icon with id server2 is used. However, if the Enterprise OID of
a node is 1.3.6.1.4.1.9.1.13 the icon with id server2 is used.

Linkd Topology Provider

The Linkd Topology Provider uses the Enterprise OID from each node to determine the icon of a
vertex.

14.3.2. Change existing icon mappings

The easiest way to change an icon representation of an existing Vertex is to use the Icon Selection
Dialog from the Vertex' context menu in the Topology Map. This will create a custom icon key to
icon id mapping in the Topology Provider specific icon mapping file. As icon key the Vertex id is
used. This allows each Vertex to have it’s own icon.

If a more generic approach is preferred the icon mapping file can be modified manually.

Do NOT remove the default mappings and do NOT change the icon keys in the
default mappings.

14.3.3. Add new icons

All available icons are stored in SVG files located in ${OPENNMS_HOME}/jetty-webapps/opennms/svg. To
add new icons, either add definitions to an existing SVG file or create a new SVG file in that
directory.

Whatever way new icons are added to OpenNMS it is important that each new icon id describes a

341

set of icons, rather than a single icon. The following example illustrates this.

Example SVG file with a custom icon with id my-custom

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg id="icons" xmlns="http://www.w3.org/2000/svg">
 <g id="my-custom_icon"> ①
 <g id="my-custom_active"> ②
 <!-- rect, path, circle, etc elements, supported by SVG -->
 </g>
 <g id="my-custom_rollover"> ③
 <!-- rect, path, circle, etc elements, supported by SVG -->
 </g>
 <g id="my-custom"> ④
 <!-- rect, path, circle, etc elements, supported by SVG -->
 </g>
 </g>
 <!-- Additional groups ... -->
</svg>

① Each icon must be in a SVG group with the id <icon id>_icon. Each SVG <icon id>_icon group
must contain three sub groups with the ids: <icon id>_active, <icon id>_rollover and <icon id>.

② The icon to use when the Vertex is selected.

③ The icon to use when the Vertex is moused over.

④ The icon to use when the Vertex is not selected or not moused over (just visible).

It is important that each icon id is unique overall SVG files. This means there
cannot be another my-custom icon id in any other SVG file.

If the new icons should be selectable from the Topology Map’s Icon Selection Dialog an entry with
the new icon id must be added to the file
${OPENNMS_HOME}/etc/org.opennms.features.topology.app.icons.properties.

Snippet of org.opennms.features.topology.app.icons.list

access_gateway ①
accesspoint
cloud
fileserver
linux_file_server
opennms_server
printer
router
workgroup_switch
my-custom ②

① Already existing icon ids

342

② New icon id

The order of the entries in org.opennms.features.topology.app.icons.list

determine the order in the Icon Selection Dialog in the Topology Map.

343

Chapter 15. Asset Topology Provider

15.1. Overview
OpenNMS Meridian has introduced the ability for users to define arbitrarily complex layered
topologies using GraphML (see http://graphml.graphdrawing.org/). The details of how OpenNMS
Meridian interprets GraphML are given in the GraphML section of the OpenNMS Meridian
developers guide. The ability to display complex layered topologies is a great feature but creating a
usable GraphML topology for a large network can be a complex task for a user.

The Asset Topology Provider avoids the need for users to work directly with GraphML by directly
generating a layered GraphML topology based upon node parameters and the contents of the Node
Asset table. The Asset Topology Provider greatly simplifies the task for many use cases by allowing
users to define fields in the Node Asset table which will enable nodes to be positioned correctly in a
complex topology. This allows a physical and logical ordering of nodes which makes it easier for
users to represent and navigate their infrastructure.

The structure of the generated topology is determined by the assetLayers configuration constant
which can be set by a user. To illustrate how this works, we will consider the following
configuration:

assetLayers=asset-region,asset-building

The OpenNMS Meridian Asset table is parsed to generate nested layers in the order of the comma
separated keys in the assetLayers property. Each layer is a graph which is named after the key.
Graph nodes in each layer reference related Graph nodes in the underlying layer. The lowest layer
contains Graph nodes which are directly linked to monitored OpenNMS Meridian nodes which have
entries in the Asset table.

The following diagram shows the structure of a topology generated by the above assetLayers
property

344

http://graphml.graphdrawing.org/

In this example the region asset fields for node 1,2,3,4 are set to north. All of these nodes are in the
same north region. The building asset fields for Node 1 and Node 2 are set to 21 (both nodes are in
building 21) while the building asset fields for Node 3 and Node 4 are set to 22 (both nodes are in
building 22).

The Asset Topology Provider generates four linked graphs for this configuration. The layer 0 graph
is called asset-region, the layer 1 graph is called asset-building and the layer 2 graph is called
nodes.

Conceptually we can see that the topology is rendered as concentric sets. The Asset Topology
Provider first searches all of the nodes with regions defined and creates a new level 0 graph node
representing each region found. The Asset Topology Provider then searches within each region to
find the building entries and creates a corresponding level 1 graph node for each building name
found. Finally the Asset Topology Provider creates layer 2 nodes corresponding to each OpenNMS
Meridian monitored node and places each in the correct building.

If however OpenNMS Meridian monitored nodes are found which have either the region or building
asset fields empty they cannot be placed correctly in this topology. These nodes as shown in the
diagram as unallocated nodes. Finally, only building and region nodes are generated which can be
linked to OpenNMS Meridian nodes in the topology. The Asset Topology Provider does not generate
spurious graph nodes in upper layers which are not directly and completely referenced by
OpenNMS Meridian nodes in the lowest layer.

Example screenshots of a topology containing regions, buildings, racks and nodes are shown below

345

15.2. Asset layers
The entries for assetLayers can be any node or asset entry from the following list (defined in class
NodeParamLabels). Keys beginning with node- come from the node table. Keys beginning with
parent- come from the node table entry of the designated parent node (If defined). Keys beginning
with asset- come from the corresponding asset table entry for the given node (If defined).

node-nodelabel node-nodeid node-foreignsource node-foreignid node-
nodesysname

node-
nodesyslocation

node-
operatingsystem

node-categories

346

parent-nodelabel parent-nodeid parent-
foreignsource

parent-foreignid

asset-address1 asset-address2 asset-city asset-zip asset-state

asset-latitude asset-longitude asset-region asset-division asset-
department

asset-building asset-floor asset-room asset-rack asset-slot

asset-port asset-circuitid asset-category asset-displaycategory asset-
notifycategory

asset-
pollercategory

asset-
thresholdcategory

asset-
managedobjecttype

asset-
managedobjectinstanc
e

asset-
manufacturer

asset-vendor asset-
modelnumber

asset-description asset-operatingsystem asset-country

This allows arbitrary topologies to be generated including physical fields (room, rack etc.) and
logical fields such as asset node categories. Please note you should not put any spaces in the comma
separated assetLayers list. If the assetLayers property is defined as empty then a single graph layer
will be generated containing all opennms nodes.

15.3. Node filtering
In many cases it is desirable to control which nodes are included or excluded from a topology. For
instance it is useful to be able to generate customised topologies for specific customers which
include only regions/buildings etc relevant to their filtered node set. To this end it is possible to
define a node filter which chooses which nodes are included in a generated topology.

Filters are defined using the same asset table keys which are available for the assetLayers field.

Operatio
n

Definition Example

OR key1=value1,value2 alternatively
key1=value1;key1=value2

asset-region=north,south

AND key1=val1;key2=val2 asset-region=north;asset-
building=23

NOT key1=!val1 asset-building=!23

Thus the following configuration means include only nodes with region north or south but exclude
all nodes with building 23.

filter=asset-region=north,south;asset-building=!23

347

The filters are designed to treat all selected text key entries as comma separated values (csv). This
allows OpenNMS node-categories which are many to many entries to be dealt with as a comma
separated list of values; routers,servers,web etc. Thus we can select based on multiple separate
node categories. The following configuration means show routers and servers on all buildings
except building 23.

filter=node-categories=routers,servers;asset-building=!23

The filters treat all asset table entries as comma separated variables (csv). This also means that, for
instance asset-displaycategory could also contain several values separated by commas. e.g.
customer1,customer2,customer3 etc.

You should make sure asset addresses and other free format asset text fields do not
contain commas if you want an exact match on the whole field

Regular expressions are also allowed. Regular expressions start with the ~ character. You can also
negate a regular expression by preceding it with !~.

The following example will match against regions 'Stuttgart' and 'Isengard' and any building name
which ends in 4

filter=asset-region=~.*gar(t|d);asset-building=~.*4

15.4. Configuration
The Asset Topology Provider persists both the asset topology graph definitions and the generated
GraphML graphs. The persisted definitions mean that is is possible to regenerate graphs if the asset
table is changed without reentering the configuration.

The Asset Topology Provider persists GraphML graphs along side any other GraphML graphs in the
directory;

<opennms home>/etc/graphml

Please note that if you are using ReST or any other means to generate other GraphML graphs, you
should ensure that the providerIds and labels are distinct from those used by the Asset Topology
Provider

The asset graph definitions for the Asset Topology Provider are persisted to the following xml
configuration file:

<opennms home>/etc/org.opennms.features.topology.plugins.topo.asset.xml

Normally you should not edit this file directly but use the karaf consol or events to define new

348

graphs.

The config file will contain each of the graph definitions as properties in the form

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configs>
 <config>
 <label>Asset Topology Provider</label>
 <breadcrumb-strategy>SHORTEST_PATH_TO_ROOT</breadcrumb-strategy>
 <provider-id>asset</provider-id>
 <preferred-layout>Grid Layout</preferred-layout>
 <filters>
 <filter>asset-region=South</filter>
 </filters>
 <layers>
 <layer>asset-region</layer>
 <layer>asset-building</layer>
 <layer>asset-rack</layer>
 </layers>
 </config>
</configs>

The individual definition parameters are described in the following table

Parameter Description

providerId The unique name of the provider - used as handle to install and remove the
topology

label The name which shows up on the topology menu (must be unique)

assetLayers List of asset layers (in order). See separate description.

filters List of filters to be applied. Filters determine which nodes are included in graph.
See separate description.

preferredLayout Preferred layout of the nodes in generated graphs.

breadcrumbStrat
egy

Breadcrumb strategy used to display breadcrumbs above each graph

15.5. Creating Asset Based Topologies From Karaf
Consol
The OpenNMS Meridian Karaf Consol can be used to control topology generation. To login use
admin password.

ssh admin@localhost -p 8101

349

The following commands are available

Command Description Options

opennms:asset
-topo-create

Creates Asset Topology. (The default settings are used if a
particular setting is not included in the
command)

-l, --label : Asset Topology label (shows in
topology menu) (Default: asset)

-i, --providerId : Unique providerId of
asset topology (Default: 'Asset Topology
Provider')

-f, --filter : Optional node filter (Default:
empty filter i.e. allow all nodes)

-a, --assetLayers : Comma separated list
of asset layers (Default: asset-
region,asset-building,asset-rack)

-p, --preferredLayout : Preferred Layout
(Default: 'Grid Layout')

-b, --breadcrumbStrategy : Bread Crumb
Strategy (Default:
SHORTEST_PATH_TO_ROOT)

If you simply type asset-topology:create
a default topology with providerId asset
will be created.

opennms:asset
-topo-remove

Removes Asset Topology. -i, --providerId : Unique providerId of
asset topology (Default: asset)

opennms:asset
-topo-list

Lists all Asset Topologies installed. all : display detailed view including
--uriParams string

opennms:asset
-topo
-regenerate

Regenerates the graphs for the given
Asset Topology definition.

-i, --providerId : Unique providerId of
asset topology to regenerate (Default:
asset)

opennms:asset
-topo
-regenerateall

Best Effort regeneration of all asset
topologies. (If one graph fails, the
command will try to complete the rest of
the definitions definition)

350

15.6. Creating Asset Based Topologies Using OpenNMS
Meridian events
The Asset Topology Provider listens for events which trigger the generation and installation or
removal of topologies. The Asset Topology Provider events are defined in the file

<opennms home>/etc/events/GraphMLAssetPluginEvents.xml

These events will use the default parameters if parameters are not supplied

To create a new topology from the current OpenNMS inventory use

(for default topology)
sudo ./send-event.pl uei.opennms.plugins/assettopology/create localhost

(or with parameters)
sudo ./send-event.pl uei.opennms.plugins/assettopology/create localhost -p
'providerId test' -p 'label test' -p 'assetLayers asset-country,asset-city,asset-
building'-->

other example possible parameters are
-p 'filters asset-displaycategory=!testDisplayCategory'
-p 'preferredLayout Grid Layout'
-p 'breadcrumbStrategy SHORTEST_PATH_TO_ROOT'

To uninstall an asset topology use

(for default topology providerId)
sudo ./send-event.pl uei.opennms.plugins/assettopology/remove localhost

(or with specific providerId)
sudo ./send-event.pl uei.opennms.plugins/assettopology/remove localhost -p
'providerId test'

To regenerate an existing asset topology use

(for default topology providerId)
sudo ./send-event.pl uei.opennms.plugins/assettopology/regenerate localhost

(or with specific providerId)
sudo ./send-event.pl uei.opennms.plugins/assettopology/regenerate localhost-p
'providerId test'

To regenerate all existing asset topologies use

351

sudo ./send-event.pl uei.opennms.plugins/assettopology/regenerateall localhost

15.7. Viewing the topology
If all goes well, having installed the topology, upon refreshing your screen, you should see a new
topology display option in the OpenNMS Meridian topology page. The displayed name of this
topology is given by the label field

The label field need not be the same as the providerId which is used by the ReST api for the
installation or removal of a topology. However the label field must be unique across all installed
topologies.

It is possible to have several topologies installed which have been generated using different
configurations. You simply need to ensure that the providerId and label field used for each
installation command is different.

15.8. Additional notes
Please note you MUST first uninstall an OpenNMS Meridian graphml topology before installing a
new one. You will also have to log out and log back into the UI in order to see the new topology file.
If you uninstall a topology while viewing it, the UI will throw an error and you will also have to log
out and back in to see the remaining topologies.

352

Chapter 16. Database Reports
Reporting on information from the OpenNMS Meridian monitoring system is important for
strategical or operational decisions. Database reports give access to the embedded JasperReports
engine and allow users to create and customize report templates. Run these reports on demand or
on a predefined schedule within OpenNMS Meridian.

Originally database reports created reports working on data stored in the
OpenNMS Meridian database only. This is no longer mandatory, performance data
can also be used. Theoretically the reports do not need to be OpenNMS Meridian
related.

The OpenNMS Meridian Report Engine allows the creation of various kinds of
reports and also supports distributed report repositories. These features are not
covered by this documentation. Only reports using JasperReports and Grafana
dashboards are described here.

16.1. Overview
The OpenNMS Meridian Report Engine uses the JasperReport library to create reports in various
output formats. Each report template must be a *.jrxml file. The OpenNMS Meridian Report Engine
passes a JDBC Connection to the OpenNMS Meridian Database to each report on execution.

Table 110. feature overview

Supported Output Formats PDF, CSV

JasperReport Version 6.3.0

For more details on how JasperReports works, please refer to the official documentation of
Jaspersoft Studio.

16.2. Modify existing reports
All default OpenNMS Meridian reports are located in $OPENNMS_HOME/etc/report-templates. Each
.jrxml file located there can be modified; the changes are applied the next time OpenNMS Meridian
creates a report.

When a subreport has been modified, OpenNMS Meridian will detect a change based on the report’s
lastModified time and will recompile the report. A compiled version of the report is represented by
a .jasper file with the same name as the .jrxml file. Subreports are located in
$OPENNMS_HOME/etc/report-templates/subreports.

If unsure, simply delete all .jasper files and OpenNMS Meridian will automatically
compile the subreports if needed.

353

http://community.jaspersoft.com/documentation/tibco-jaspersoft-studio-user-guide/v610/getting-started-jaspersoft-studio

16.3. Add a custom report
To add a new JasperReport report to the Local OpenNMS Meridian Report Repository, do the
following:

Create a new entry in the $OPENNMS_HOME/etc/database-reports.xml file.

<report
 id="MyReport" ①
 display-name="My Report" ②
 online="true" ③
 report-service="jasperReportService" ④
 description="This is an example description. It shows up in the web ui when creating
an online report" ⑤
/>

① A unique identifier.

② The name of the report. Appears in the web UI.

③ Defines if this report can be executed on demand, otherwise only scheduling is possible.

④ The report service implementation to use. In most cases this is jasperReportService.

⑤ A description of the report. Appears in the web UI.

In addition, create a new entry in the $OPENNMS_HOME/etc/jasper-reports.xml file.

<report
 id="MyReport" ①
 template="My-Report.jrxml" ②
 engine="jdbc" ③
/>

① The identifier defined in the previous step. This identifier must exist in
$OPENNMS_HOME/etc/database-reports.xml.

② The name of the template. The template must be located in $OPENNMS_HOME/etc/report-templates.

③ The engine to use. It is either jdbc or null.

16.4. Usage of Jaspersoft Studio
When developing new reports, we recommended using the Jaspersoft Studio application. Download
it here.

We recommend always using the same Jaspersoft Studio version that the OpenNMS
Meridian JasperReport library uses. Currently OpenNMS Meridian uses version
6.3.0.

354

http://community.jaspersoft.com/project/jaspersoft-studio

16.4.1. Connect to the OpenNMS Meridian Database

To actually create SQL statements against the OpenNMS Meridian database you must create a
database Data Adapter. The official Jaspersoft Studio documentation and wiki cover how to do this.

16.4.2. Use Measurements Datasource and Helpers

To use the Measurements API you must add the Measurements Datasource library to the build path
of JasperStudio. To do so, right click in the Project Explorer and select Configure Buildpath.

1. Switch to the Libraries tab.

2. Click Add External JARs and select the opennms-jasperstudio-extension-2020.1.26-jar-with-
dependencies.jar file located in $OPENNMS_HOME/contrib/jasperstudio-extension.

3. Close the file selection dialog.

4. The Measurements Datasource and Helpers should now be available.

5. Go to the Dataset and Query Dialog in Jaspersoft Studio and select a language called measurement.

355

If the Read Fields functionality is not available, use the Data preview. Access to the
Measurements API is possible using the connection parameters MEASUREMENT_URL,
MEASUREMENT_USERNAME and MEASUREMENT_PASSWORD. The Supported Fields section gives
more details.

16.5. Accessing Performance Data

Before OpenNMS Horizon 17 and OpenNMS Meridian 2016, it was possible to access
the performance data stored in .rrd or .jrobin files directly by using the jrobin
language extension provided by the RrdDataSource. This is no longer possible; you
must use the Measurements Datasource.

To access performance data within reports, we created a custom Measurement
Datasource that allows you to query the Measurements API and process the
returned data in your reports. Please refer to the <a
href="http://vault.opennms.com/docs/opennms/branches/develop/guide-development/guide-
development.html#measurements_api">official Measurements API documentation on
how to use the _Measurements API.

When using the Measurements Datasource within a report a HTTP connection to the
Measurements API is only established if the report is NOT running within
OpenNMS Meridian, e.g. when used with Jaspersoft Studio.

To receive data from the Measurements API simply create a query as follows:

356

Sample queryString to receive data from the Measurements API

<query-request step="300000" start="$P{startDateTime}" end="$P{endDateTime}" maxrows=
"2000"> ①
 <source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets" transient
="false" resourceId="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
 <source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets"
transient="false" resourceId="node[$P{nodeid}].interfaceSnmp[$P{interface}]"/>
</query-request>

① The query language. In our case, measurement, but JasperReports supports a lot out of the box,
such as sql, xpath, etc.

16.5.1. Fields

Each datasource should return a number of fields, which can be used in the report. The
Measurement Datasource supports the following fields:

Field name Field type Field description

<label> java.lang.Double Each Source defined as
transient=false can be used as
a field. The name of the field is
the label, e.g. IfInOctets

timestamp java.util.Date The timestamp of the sample.

step java.lang.Long The Step size of the Response.
Returns the same value for all
rows.

start java.lang.Long The Start timestamp in
milliseconds of the Resopnse.
Returns the same value for all
rows.

end java.lang.Long The End timestamp in
milliseconds of the Response.
Returns the same value for all
rows.

For more details about the Response, please refer to the official Measurement API documentation.

16.5.2. Parameters

In addition to the queryString, the following JasperReports parameters are supported.

357

http://vault.opennms.com/docs/opennms/branches/develop/guide-development/guide-development.html#_measurements_api

Parameter name Required Description

MEASUREMENT_URL yes The URL of the Measurements
API, e.g. http://localhost:8980/
opennms/rest/measurements

MEASUREMENT_USERNAME no If authentication is required,
specify the username, e.g. admin

MEASUREMENT_PASSWORD no If authentication is required,
specify the password, e.g. admin

16.6. Disable Scheduler
In cases where the scheduler executing the reports must be disabled, set the system property
opennms.report.scheduler.enabled to false. You can set this in
${OPENNMS_HOME}/etc/opennms.properties or ${OPENNMS_HOME}/etc/opennms.properties.d/<my-

properties-file>.properties.

16.7. Helper methods
There are a few helper methods to help create reports in OpenNMS Meridian.

These helpers come with the Measurement Datasource.

Table 111. Supported helper methods

358

http://localhost:8980/opennms/rest/measurements
http://localhost:8980/opennms/rest/measurements
http://localhost:8980/opennms/rest/measurements
http://localhost:8980/opennms/rest/measurements
http://localhost:8980/opennms/rest/measurements
http://localhost:8980/opennms/rest/measurements
http://localhost:8980/opennms/rest/measurements

Helper class Helper Method Description

org.opennms.netmgt.jasper.help
er.MeasurementsHelper

getNodeOrNodeSourceDescriptor(
nodeId, foreignSource,
foreignId)

Generates a node source
descriptor according to the
input paramters. Either
node[nodeId] or
nodeSource[foreignSource:forei

gnId] is returned.
nodeSource[foreignSource:forei

gnId] is only returned if
foreignSource and foreignId are
not empty and not null.
Otherwise node[nodeId] is
always returned.

nodeId : String, the ID of the
node
foreignSource: String, the
foreign source of the node. May
be null
foreignId: String, the foreign ID
of the node. May be null.

For more details see Usage of
the node source descriptor.

359

Helper class Helper Method Description

org.opennms.netmgt.jasper.help
er.MeasurementsHelper

getInterfaceDescriptor(snmpifn
ame, snmpifdescr, snmphysaddr)

Returns the interface
descriptor of a given interface,
e.g., en0-005e607e9e00. The input
paramaters are prioritized. If a
snmpifdescr is specified, it is
used instead of the snmpifname.
It a snmpifdescr is defined, it
will be appended to snmpifname
/snmpifdescr.

snmpifname: String, the interface
name of the interface, e.g., en0.
May be null.
snmpifdescr: String, the
description of the interface, e.g.,
en0. May be null.
snmphyaddr: String, the MAC
address of the interface, e.g.,
005e607e9e00. May be null.
As each input parameter may
be null, not all of them can be
null at the same time. At least
one input parameter has to be
defined.

For more details see Usage of
the interface descriptor.

16.7.1. Usage of the node source descriptor

A node is addressed by a node source descriptor. The node source descriptor references the node
either via the foreign source and foreign id or by the node id.

If store by foreign source is enabled addressing the node only via foreign source and foreign id is
possible.

To make report creation easier, there is a helper method to create the node source descriptor.

 For more information about store by foreign source, please see our Wiki.

The following example shows the usage of that helper.

360

http://www.opennms.org/wiki/ForeignSource/foreignId_Data_Storage_How-To

jrxml report snippet to visualize the use of the node source descriptor.

<parameter name="nodeResourceDescriptor" class="java.lang.String" isForPrompting=
"false">
 <defaultValueExpression>
<![CDATA[org.opennms.netmgt.jasper.helper.MeasurementsHelper.getNodeOrNodeSourceDescri
ptor(String.valueOf($P{nodeid}), $P{foreignsource}, $P{foreignid})
]]></defaultValueExpression>
</parameter>
<queryString language="Measurement">
 <![CDATA[<query-request step="300000" start="$P{startDateTime}"
end="$P{endDateTime}" maxrows="2000">
<source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets"
transient="false" resourceId="$P{nodeResourceDescriptor}.interfaceSnmp[en0-
005e607e9e00]"/>
<source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets"
transient="false" resourceId="$P{nodeResourceDescriptor}.interfaceSnmp[en0-
005e607e9e00]"/>
</query-request>]]>

Depending on the input parameters, you either get a node resource descriptor or a foreign
source/foreign id resource descriptor.

16.7.2. Usage of the interface descriptor

An interfaceSnmp is addressed with the exact interface descriptor. To allow easy access to the
interface descriptor we provide a helper tool. The following example shows the usage of that
helper.

jrxml report snippet to visualize the use of the interface descriptor

<parameter name="interface" class="java.lang.String" isForPrompting="false">
 <parameterDescription><![CDATA[]]></parameterDescription>
 <defaultValueExpression>
<![CDATA[org.opennms.netmgt.jasper.helper.MeasurementsHelper.getInterfaceDescriptor($P
{snmpifname}, $P{snmpifdescr}, $P{snmpphysaddr})]]></defaultValueExpression>
</parameter>
<queryString language="Measurement">
 <![CDATA[<query-request step="300000" start="$P{startDateTime}"
end="$P{endDateTime}" maxrows="2000">
<source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets"
transient="false" resourceId="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
<source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets"
transient="false" resourceId="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
</query-request>]]>

To get the appropriate interface descriptor depends on the input parameter.

361

16.7.3. Use HTTPS

To establish a secure connection to the Measurements API, you must import the public certificate of
the running OpenNMS Meridian to the Java Trust Store. In addition, OpenNMS Meridian must be
configured to use that Java Trust Store. Please follow the instructions in this chapter to setup the
Java Trust Store correctly.

In addition please also set the property org.opennms.netmgt.jasper.measurement.ssl.enable in
$OPENNMS_HOME\etc\opennms.properties to true to ensure that only secure connections are
established.

If org.opennms.netmgt.jasper.measurement.ssl.enable is set to false an accidentally
insecure connection can be established to the Measurements API location. An SSL
secured connection can be established even if
org.opennms.netmgt.jasper.measurement.ssl.enable is set to false.

16.8. Limitations
• Only a JDBC Datasource to the OpenNMS Meridian Database connection can be passed to a

report, or no datasource at all. One does not have to use the datasource, though.

16.9. Creating PDF Reports from Grafana Dashboards
Using OpenNMS Meridian
OpenNMS Meridian provides three templates to create a PDF report from an existing Grafana
dashboard. You can also schedule and email these PDF reports to anyone:

• Keep staff without access to OpenNMS Meridian informed about network performance for
improved capacity planning

• Create a permanent record of strategic information and progress over a long period of time

The PDF report displays each of the panels from the specified dashboard, with one, two, or four
panels per page, depending on the selected template.

Dashboard to PDF:

362

16.9.1. Before You Begin

This feature requires OpenNMS Meridian and an instance of Grafana with at least one dashboard
and panel. OpenNMS allows you to create a report for any Grafana dashboard, not just those
created using OpenNMS Helm.

You must set up Grafana as a datasource by configuring the Grafana endpoint in OpenNMS
Meridian.

16.9.2. Configure the Grafana Endpoint

Configuring the Grafana endpoint sets up Grafana as the datasource for the dashboards from which
you create PDFs.

1. Login to your Grafana instance.

2. Choose Configuration > API Keys and click New API Key.

3. Specify a key name and "Viewer" role and click Add.

a. Leave the time to live blank so that the key never expires.

4. Copy the key so that you can paste it into the OpenNMS Meridian UI.

a. If desired, test the key using the Curl command provided oi the API key dialog.

363

http://vault.opennms.com/docs/helm/branches/master/helm/latest/welcome/index.html

5. In OpenNMS, click Please add a Grafana endpoint:

6. In the Endpoint Configuration screen click the plus sign on the right to add a new endpoint.

7. Fill in the information and click Test Connection.

8. Click Create.

You can now use OpenNMS Meridian to create PDF reports of Grafana dashboards.

16.9.3. Creating a PDF of a Grafana Dashboard

1. In the OpenNMS Meridian UI, choose Reports>Database Reports.

2. In the Report Templates area, click Grafana Dashboard Report <Xppp>, where <Xppp> represents
the number of panels per page you want to display.

3. In the Report Parameters area, specify the appropriate information.

a. Note that Grafana Endpoint is the datasource. Select a Grafana dashboard from the drop-
down list.

b. You can also specify CSV for report type.

4. Click Create Report.

a. You are prompted to save the report locally or open it. The file is saved to a folder on the
OpenNMS Meridian Server. It also appears in the UI in the Persisted Reports tab.

5. To send the report to someone, click Deliver this report.

6. Fill out the Report Delivery Options.

a. If you select Email report, specify the recipient’s email address in the Recipient field.
Separate multiple recipient emails with a comma.

b. Webhook allows you to post the generated report to the specified URL.

7. Click Deliver Report.

8. To schedule the report for regular delivery, click Schedule this report.

9. Specify the report frequency (daily, days per week, etc.) and interval of the report.

10. Click Schedule Report.

Scheduled reports appear in the Report Schedules tab, where you can edit or delete them:

364

Chapter 17. Enhanced Linkd
Enhanced Linkd (Enlinkd) has been designed to discover connections between nodes using data
generated by various link discovery protocols and accessible via SNMP. Enlinkd gathers this data on
a regular interval and creates a snapshot of a device’s neighbors from its perspective by SNMP Data
Collectors. Enlinkd consolidate the collected Data by Bridge Domain Discovery and Topologies
Updater.

Enlinkd-Bridge Domain Discovery use the data gathered by Bridge and IpNetToMedia collectors to
provide Bridge Broadcast Domain layout. The Bridge Forwarding Table provided by the single
nodes display information about mac address learned on which bridge port, this is what the Bridge
consider a Connection: this is not very useful so Bridge Discovery will perform domain calculation
to assign to every mac address the port where the device that holds it is effective connected (Or the
known nearest bridge port).

Enlinkd-Updaters, for every supported discovery protocol, use the provided Topologies Update API
to provide connections information to other OpenNMS service and daemon via OnmsTopologyDao.
The provided topologies are used in topology-map and for sending TopologyMessage via Kafka
Producer.

The connections discovered by Enlinkd collectors and by Bridge Domain Discovery are called Links.
The term Link, within the context of Enlinkd, is not synonymous with the term "link" when used
with respect to the network OSI Layer 2 domain, whereby a link only indicates a Layer 2
connection. A Link in context of Enlinkd is a more abstract concept and is used to describe any
connection between two OpenNMS Meridian Nodes. These Links are discovered based on
information provided by an agent’s understanding of connections at the OSI Layer 2, Layer 3, or
other OSI layers.

The Topologies discovered by Enlinkd-Updaters are made of Vertices and Edges.

The following sections describe the Enlinkd daemon and its configuration. Additionally, the
supported Link discovery implementations will be described as well as a list of the SNMP MIBs that
the SNMP agents must expose in order for EnLinkd to gather Links between Nodes. FYI: Detailed
information about a node’s connections (discovered Links) and supporting link data can be seen on
the Node detail page within the OpenNMS Meridian Web-UI.

17.1. Enlinkd Daemon
Essentially each Enlinkd-Collector asks each device the following question: "What is the network
topology from your point of view", this will provide local topology discovery features.

The Enlinkd-Discovery does attempt to discover bridge domain Links with the data coming from all
collected Bridge Forwarding Tables.

The Enlinkd-Updaters does attempt to discover global OnmsTopology doing correlation with the
data coming from all node discovered Links.

For large environments the behavior of Enlinkd can be configured. During the EnLink discovery
process informational and error output is logged to a global log file.

365

Table 112. Global log and configuration files for Enlinkd

File Location Description

enlinkd-configuration.xml $OPENNMS_HOME/etc Global configuration for the daemon process

enlinkd.log $OPENNMS_HOME/logs Global Enlinkd log file

log4j2.xml $OPENNMS_HOME/etc Configuration file to set the log level for Enlinkd

Configuration file for Enlinkd

<?xml version="1.0" encoding="ISO-8859-1"?>
<enlinkd-configuration threads="5"
 initial_sleep_time="60000"
 rescan_interval="86400000"
 use-cdp-discovery="true"
 use-bridge-discovery="true"
 use-lldp-discovery="true"
 use-ospf-discovery="true"
 use-isis-discovery="true"
 topology_interval="30000"
 bridge_topology_interval="300000"
 max_bft="100"
 discovery-bridge-threads="1"
 />

Table 113. Descriptione for global configuration parameter

Attribute Type Defau
lt

Description

threads Intege
r

5 Number of parallel threads used by Collectors, Updaters and
Discovery.

initial_sleep_time Intege
r

60000 Time in milliseconds to wait for start Collectors after
OpenNMS Meridian is started.

rescan_interval Intege
r

864000
00

Interval in milliseconds for Collectors.

topology_interval Intege
r

30000 Interval in milliseconds for Updaters.

bridge_topology_in
terval

Intege
r

300000 Interval in milliseconds for Discovery.

max_bft Intege
r

100 the max number of bft stored in memory for Discovery.

discovery-bridge-
threads

Intege
r

1 the number of threads used for Discovery.

366

Attribute Type Defau
lt

Description

use-cdp-discovery Boole
an

true Enable or disable discovery based on CDP information.

use-bridge-
discovery

Boole
an

true Enable or disable discovery based on the Bridge information.

use-lldp-discovery Boole
an

true Enable or disable discovery based on LLDP information.

use-ospf-discovery Boole
an

true Enable or disable discovery based on OSPF information.

use-isis-discovery Boole
an

true Enable or disable discovery based on IS-IS information.

The Discovery for bridge first start is scheduled at initial_sleep_time + bridge_topology_interval. The
Updaters first start are scheduled at 0L. Configuration changes are applied by restarting OpenNMS
and Enlinkd. It is also possible to send an Event to Enlinkd reloading the configuration. An Event
can be sent on the CLI or the Web User Interface.

Send configuration reload event on CLI

cd $OPENNMS_HOME/bin
./send-event.pl uei.opennms.org/internal/reloadDaemonConfig --parm 'daemonName
Enlinkd'

If multiple protocols are enabled, the links will be discovered for each enabled
discovery protocol. The topology WebUI will visualize Links for each discovery
protocol. For example if you start CDP and LLDP discovery, the WebUI will
visualize a CDP Link and an LLDP Link.

17.2. Layer 2 Link Discovery
Enlinkd is able to discover Layer 2 network links based on the following protocols:

• Link Layer Discovery Protocol (LLDP)

• Cisco Discovery Protocol (CDP)

• Bridge Discovery (Bridge)

This information are provided by SNMP Agents with appropriate MIB support. For this reason it is
required to have a working SNMP configuration running. The following section describes the
required SNMP MIB provided by the SNMP agent to allow the Link Discovery.

367

https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol
https://en.wikipedia.org/wiki/Cisco_Discovery_Protocol
https://en.wikipedia.org/wiki/Bridging_(networking)

17.2.1. LLDP Discovery

The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol. It is used by
network devices for advertising their identity, capabilities, and neighbors. LLDP performs functions
similar to several proprietary protocols, such as the Cisco Discovery Protocol (CDP), Extreme
Discovery Protocol, Foundry Discovery Protocol (FDP), Nortel Discovery Protocol (also known as
SONMP), and Microsoft’s Link Layer Topology Discovery (LLTD)[1].

Only nodes with a running LLDP process can be part of the link discovery. The
data is similar to running a show lldp neighbor command on the device. Linux and
Windows servers don’t have an LLDP process running by default and will not be
part of the link discovery.

The following OIDs are supported to discover and build the LLDP network topology and are
collected by the LLDP Discovery Collector.

Table 114. Supported OIDs from LLDP-MIB

Name OID Description

lldpLocChassisI
dSubtype

.1.0.8802.1.1.2.
1.3.1.0

The type of encoding used to identify the chassis associated
with the local system. Possible values can be:
chassisComponent(1)
interfaceAlias(2)
portComponent(3)
macAddress(4)
networkAddress(5)
interfaceName(6)
local(7)

lldpLocChassisI
d

.1.0.8802.1.1.2.
1.3.2.0

The string value used to identify the chassis component
associated with the local system.

lldpLocSysName .1.0.8802.1.1.2.
1.3.3.0

The string value used to identify the system name of the local
system. If the local agent supports IETF RFC 3418,
lldpLocSysName object should have the same value of sysName
object.

lldpLocPortIdSu
btype

.1.0.8802.1.1.2.
1.3.7.1.2

The type of port identifier encoding used in the associated
lldpLocPortId object.

lldpLocPortId .1.0.8802.1.1.2.
1.3.7.1.3

The string value used to identify the port component
associated with a given port in the local system.

lldpLocPortDesc .1.0.8802.1.1.2.
1.3.7.1.4

The string value used to identify the 802 LAN station’s port
description associated with the local system. If the local agent
supports IETF RFC 2863, lldpLocPortDesc object should have
the same value of ifDescr object.

368

http://tools.ietf.org/html/rfc3418

Name OID Description

lldpRemChassisI
dSubtype

.1.0.8802.1.1.2.
1.4.1.1.4

The type of encoding used to identify the chassis associated
with the local system. Possible values can be:
chassisComponent(1)
interfaceAlias(2)
portComponent(3)
macAddress(4)
networkAddress(5)
interfaceName(6)
local(7)

lldpRemChassisI
d

.1.0.8802.1.1.2.
1.4.1.1.5

The string value used to identify the chassis component
associated with the remote system.

369

Name OID Description

lldpRemPortIdS
ubtype

.1.0.8802.1.1.2.
1.4.1.1.6

The type of port identifier encoding used in the associated
lldpRemPortId object.

interfaceAlias(1)
the octet string identifies a particular instance of the ifAlias
object (defined in IETF RFC 2863). If the particular ifAlias
object does not contain any values, another port identifier type
should be used.

portComponent(2)
the octet string identifies a particular instance of the
entPhysicalAlias object (defined in IETF RFC 2737) for a port or
backplane component.

macAddress(3)
this string identifies a particular unicast source address
(encoded in network byte order and IEEE 802.3 canonical bit
order) associated with the port (IEEE Std 802-2001).

networkAddress(4)
this string identifies a network address associated with the
port. The first octet contains the IANA AddressFamilyNumbers
enumeration value for the specific address type, and octets 2
through N contain the networkAddress address value in
network byte order.

interfaceName(5)
the octet string identifies a particular instance of the ifName
object (defined in IETF RFC 2863). If the particular ifName
object does not contain any values, another port identifier type
should be used.

agentCircuitId(6)
this string identifies a agent-local identifier of the circuit
(defined in RFC 3046)

local(7)
this string identifies a locally assigned port ID.

lldpRemPortId .1.0.8802.1.1.2.
1.4.1.1.7

The string value used to identify the port component
associated with the remote system.

lldpRemPortDes
c

.1.0.8802.1.1.2.
1.4.1.1.8

The string value used to identify the description of the given
port associated with the remote system.

lldpRemSysNam
e

.1.0.8802.1.1.2.
1.4.1.1.9

The string value used to identify the system name of the
remote system.

370

Generic information about the LLDP process can be found in the LLDP Information box on the Node
Detail Page of the device. Information gathered from these OIDs will be stored in the following
database table:

Figure 36. Database tables related to LLDP discovery

Lldp Topology Updater provide LLDP OnmsTopology consolidating lldp data collected by LLDP
Collector only full bidirectional connections between two Lldp supported devices become Edges.
Node A and Node B are connected by an LLDP Edge if and only if there is an LLDP MIB port
connection in Node A to Node B and viceversa.

17.2.2. CDP Discovery

The Cisco Discovery Protocol (CDP) is a proprietary link layer protocol from Cisco. It is used by
network devices to advertise identity, capabilities and neighbors. CDP performs functions similar to
several proprietary protocols, such as the Link Layer Discovery Protocol (LLDP), Extreme Discovery
Protocol, Foundry Discovery Protocol (FDP), Nortel Discovery Protocol (also known as SONMP), and
Microsoft’s Link Layer Topology Discovery (LLTD). The CDP discovery uses information provided by
the CISCO-CDP-MIB and CISCO-VTP-MIB.

Only nodes with a running CDP process can be part of the link discovery. The data
is similar to running a show cdp neighbor command on the IOS CLI of the device.
Linux and Windows servers don’t have a CDP process running by default and will
not be part of the link discovery.

The following OIDs are supported to discover and build the CDP network topology and are collected
by the CDP Discovery Collector.

Table 115. Supported OIDS from the IF-MIB

371

http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2&mibName=CISCO-CDP-MIB
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2&mibName=CISCO-VTP-MIB

Nam
e

OID Description

ifDes
cr

.1.3.6.1.2.1.2.
2.1.2

A textual string containing information about the interface. This string
should include the name of the manufacturer, the product name and the
version of the interface hardware/software.

Table 116. Supported OIDS from the CISCO-CDP-MIB to discover links

Name OID Description

cdpInterfaceNa
me

.1.3.6.1.4.1.9.9.2
3.1.1.1.1.6

The name of the local interface as advertised by CDP in the
Port-ID TLV.

cdpCacheEntry .1.3.6.1.4.1.9.9.2
3.1.2.1.1

An entry (conceptual row) in the cdpCacheTable, containing
the information received via CDP on one interface from one
device. Entries appear when a CDP advertisement is received
from a neighbor device. Entries disappear when CDP is
disabled on the interface, or globally.

cdpCacheAddres
sType

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.3

An indication of the type of address contained in the
corresponding instance of cdpCacheAddress.

cdpCacheAddres
s

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.4

The (first) network-layer address of the device’s SNMP-agent
as reported in the Address TLV of the most recently received
CDP message. For example, if the corresponding instance of
cacheAddressType had the value ip(1), then this object
would be an IP-address.

cdpCacheVersio
n

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.5

The Version string as reported in the most recent CDP
message. The zero-length string indicates no Version field
(TLV) was reported in the most recent CDP message.

cdpCacheDevice
Id

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.6

The Device-ID string as reported in the most recent CDP
message. The zero-length string indicates no Device-ID field
(TLV) was reported in the most recent CDP message.

cdpCacheDevice
Port

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.7

The Port-ID string as reported in the most recent CDP
message. This will typically be the value of the ifName object
(e.g., Ethernet0). The zero-length string indicates no Port-ID
field (TLV) was reported in the most recent CDP message.

cdpCachePlatfor
m

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.8

The Device’s Hardware Platform as reported in the most
recent CDP message. The zero-length string indicates that no
Platform field (TLV) was reported in the most recent CDP
message.

cdpGlobalRun .1.3.6.1.4.1.9.9.2
3.1.3.1.0

An indication of whether the Cisco Discovery Protocol is
currently running. Entries in cdpCacheTable are deleted
when CDP is disabled.

372

Name OID Description

cdpGlobalDevice
Id

.1.3.6.1.4.1.9.9.2
3.1.3.4.0

The device ID advertised by this device. The format of this
device id is characterized by the value of
cdpGlobalDeviceIdFormat object.

cdpGlobalDevice
IdFormat

.1.3.6.1.4.1.9.9.2
3.1.3.7.0

An indication of the format of Device-Id contained in the
corresponding instance of cdpGlobalDeviceId. User can only
specify the formats that the device is capable of as denoted
in cdpGlobalDeviceIdFormatCpb object.
serialNumber(1): indicates that the value of
cdpGlobalDeviceId object is in the form of an ASCII string
contain the device serial number.
macAddress(2): indicates that the value of
cdpGlobalDeviceId object is in the form of Layer 2 MAC
address.
other(3): indicates that the value of cdpGlobalDeviceId object
is in the form of a platform specific ASCII string contain info
that identifies the device. For example: ASCII string contains
serialNumber appended/prepened with system name.

Table 117. Supported OIDS from the CISCO-VTP-MIB.

vtpVersion .1.3.6.1.4.1.9.9.46
.1.1.1.0

The version of VTP in use on the local system. A device will
report its version capability and not any particular version
in use on the device. If the device does not support VTP, the
version is none(3).

ciscoVtpVla
nState

.1.3.6.1.4.1.9.9.46

.1.3.1.1.2
The state of this VLAN. The state mtuTooBigForDevice indicates
that this device cannot participate in this VLAN because the
VLAN’s MTU is larger than the device can support.
The state mtuTooBigForTrunk indicates that while this VLAN’s
MTU is supported by this device, it is too large for one or more
of the device’s trunk ports.
operational(1), suspended(2), mtuTooBigForDevice(3),
mtuTooBigForTrunk(4)

ciscoVtpVla
nType

.1.3.6.1.4.1.9.9.46

.1.3.1.1.3
The type of this VLAN.
ethernet(1), fddi(2), tokenRing(3), fddiNet(4), trNet(5),
deprecated(6)

ciscoVtpVla
nName

.1.3.6.1.4.1.9.9.46

.1.3.1.1.4
The name of this VLAN. This name is used as the ELAN-name
for an ATM LAN-Emulation segment of this VLAN.

Generic information about the CDP process can be found in the CDP Information box on the Node
Detail Page of the device. Information gathered from these OIDs will be stored in the following
database table:

373

Figure 37. Database tables related to CDP discovery

Cdp Topology Updater provide CDP OnmsTopology consolidating cdp data collected by CDP Collector
only full bidirectional connections between two Cdp supported devices become Edges. Node A and
Node B are connected by an CDP Edge if and only if there is a CDP MIB port connection in Node A to
Node B and viceversa.

17.2.3. Transparent Bridge Discovery

Discovering Layer 2 network links using the Bridge Forwarding table requires a special algorithm.
To discover Links an algorithm based on a scientific paper with the title Topology Discovery for
Large Ethernet Networks is implemented. The gathered information is used to classify Links in
macLink and bridgeLink. A macLink represents a Link between a workstation or server identified
by a mac address. A bridgeLink is a connection between backbone ports. A Shared Segment is a
connection among workstations or servers (several mac addresses) and backbone ports (for example
devices connected via an hub). A _bridgeLink is a a shared segment with only two bridge backbone
ports. A macLink is a shared segment with only a bridge port and only one mac address. A Broadcast
Domain is a collection of Shared Segment baed on common set of mac addresses.

Discovery Bridge Broadcast Domains is made in two step, the first step regards data collection. The
Bridge Forwarding Table together with other Spanning Tree information is collected by the
BridgeDiscovery Collector. The BTF is not persisted into database and is maintained in memory to
be processed by the BridgeDomainDiscovery. BridgeDomainDiscovery runs the specified algorithm
over collected BFT and will produce a Bridge Domain or several Bridge domains depending on the
broadcasts set of mac addresses found. Bridge Domains are collection of Shared Segments as
described above.

BridgeDomainDiscovery does not support multi vlan, the Bridge Network model identify a Bridge
for every VLAN. Each VLAN has it’s own Bridge Forwarding Table and it’s own Spanning Tree. So in
line to discovery a Bridge Topology the algorithm has to be run against every bridge and every
vlan. Actually the discovery is run only against the main VLAN.

Bridge Domains provide no information about layer 3 but only a layer 2 two map of the Broadcast
Domains. While Bridge/Switch are identified by the fact that are OpenNMS Nodes to map mac to

374

http://cs-pub.bu.edu/groups/nrg/readinglist/lowekamp-sigcomm01.pdf
http://cs-pub.bu.edu/groups/nrg/readinglist/lowekamp-sigcomm01.pdf

Nodes where possible the IpNetToMedia table is needed. In this manned we are able to associate to
mac address the corresponding ip address and then the associated node. The Bridge Topology
Updater put together the information stored into bridge domains with the ipnettomedia data. and
provide Bridge OnmsTopology.

Bridge Topology Updater whenever possible tries to associate a mac address to an ip address and
then to a node. It can happen that the mac address and the ip address specified are not associate to
a single node (for example because there are duplicated node or also because the nodes supports
protocol like LACP), in this case we do not resolve the node but leave the association found mac:ip
into a specific Vertex.

Bridge Topology Updater do not support LACP protocols and other similar aggregation protocols.

Transparent bridging is not loop free so if you have loops you have to enable the spanning tree
protocol that will detect loops and again will put some ports in a blocking state to avoid loops. To get
links it is necessary to perform some calculations that let us define the Links. The following MIBS
must be supported by the SNMP agent to allow Transparent Bridge Discovery.

Table 118. Supported MIBS from the Cisco-VTP MIB

Name OID Description

vtpVers
ion

.1.3.6.1.4.1.9.9.46

.1.1.1.0
The version of VTP in use on the local system. A device will report its
version capability and not any particular version in use on the
device. If the device does not support VTP, the version is none(3).

Table 119. Supported OIDs from the IP-MIB

Name OID Description

ipNetToMediaIfIn
dex

.1.3.6.1.2.1.4

.22.1.1
The interface on which this entry’s equivalence is effective. The
layer-2 interface identified by a particular value of this index is
the same interface as identified by the same value of ifIndex.

ipNetToMediaPhy
sAddress

.1.3.6.1.2.1.4

.22.1.2
The media-dependent physical address.

ipNetToMediaNet
Address

.1.3.6.1.2.1.4

.22.1.3
The IpAddress corresponding to the media-dependent physical
address.

ipNetToMediaTyp
e

.1.3.6.1.2.1.4

.22.1.4
The type of mapping. Setting this object to the value invalid(2)
has the effect of invalidating the corresponding entry in the
ipNetToMediaTable. That is, it effectively dissasociates the
interface identified with said entry from the mapping identified
with said entry. It is an implementation-specific matter as to
whether the agent removes an invalidated entry from the table.
Accordingly, management stations must be prepared to receive
tabular information from agents that corresponds to entries not
currently in use. Proper interpretation of such entries requires
examination of the relevant ipNetToMediaType object.

Table 120. Supported OIDS from the BRIDGE-MIB

375

Name OID Description

dot1dBaseBridgeA
ddress

.1.3.6.1.2.1.17

.1.1.0
The MAC address used by this bridge when it must be
referred to in a unique fashion. It is recommended that this
be the numerically smallest MAC address of all ports that
belong to this bridge. However it is only required to be
unique. When concatenated with dot1dStpPriority a unique
BridgeIdentifier is formed which is used in the Spanning Tree
Protocol.

dot1dBaseNumPort
s

.1.3.6.1.2.1.17

.1.2.0
The number of ports controlled by this bridging entity.

dot1dBaseType .1.3.6.1.2.1.17
.1.3.0

Indicates what type of bridging this bridge can perform. If a
bridge is actually performing a certain type of bridging this
will be indicated by entries in the port table for the given
type.

dot1dBasePort .1.3.6.1.2.1.17
.1.4.1.1

The port number of the port for which this entry contains
bridge management information.

dot1dPortIfIndex .1.3.6.1.2.1.17
.1.4.1.2

The value of the instance of the ifIndex object, defined in
MIB-II, for the interface corresponding to this port.

dot1dStpProtocolS
pecification

.1.3.6.1.2.1.17

.2.1.0
An indication of what version of the Spanning Tree Protocol
is being run. The value decLb100(2) indicates the DEC
LANbridge 100 Spanning Tree protocol. IEEE 802.1d
implementations will return ieee8021d(3). If future versions
of the IEEE Spanning Tree Protocol are released that are
incompatible with the current version a new value will be
defined.

dot1dStpPriority .1.3.6.1.2.1.17
.2.2

The value of the writeable portion of the Bridge ID, i.e., the
first two octets of the (8 octet long) Bridge ID. The other (last)
6 octets of the Bridge ID are given by the value of
dot1dBaseBridgeAddress.

dot1dStpDesignate
dRoot

.1.3.6.1.2.1.17

.2.5
The bridge identifier of the root of the spanning tree as
determined by the Spanning Tree Protocol as executed by this
node. This value is used as the Root Identifier parameter in
all configuration Bridge PDUs originated by this node.

dot1dStpRootCost .1.3.6.1.2.1.17
.2.6

The cost of the path to the root as seen from this bridge.

dot1dStpRootPort .1.3.6.1.2.1.17
.2.7

The port number of the port which offers the lowest cost
path from this bridge to the root bridge.

dot1dStpPort .1.3.6.1.2.1.17
.2.15.1.1

The port number of the port for which this entry contains
Spanning Tree Protocol management information.

376

dot1dStpPortPriori
ty

.1.3.6.1.2.1.17

.2.15.1.2
The value of the priority field which is contained in the first
(in network byte order) octet of the (2 octet long) Port ID. The
other octet of the Port ID is given by the value of
dot1dStpPort.

dot1dStpPortState .1.3.6.1.2.1.17
.2.15.1.3

The port’s current state as defined by application of the
Spanning Tree Protocol. This state controls what action a port
takes on reception of a frame. If the bridge has detected a
port that is malfunctioning it will place that port into the
broken(6) state. For ports which are disabled (see
dot1dStpPortEnable), this object will have a value of
disabled(1).

dot1dStpPortEnabl
e

.1.3.6.1.2.1.17

.2.15.1.4
The enabled/disabled status of the port.

dot1dStpPortPathC
ost

.1.3.6.1.2.1.17

.2.15.1.5
The contribution of this port to the path cost of paths
towards the spanning tree root which include this port.
802.1D-1990 recommends that the default value of this
parameter be in inverse proportion to the speed of the
attached LAN.

dot1dStpPortDesig
natedRoot

.1.3.6.1.2.1.17

.2.15.1.6
The unique Bridge Identifier of the Bridge recorded as the
Root in the Configuration BPDUs transmitted by the
Designated Bridge for the segment to which the port is
attached.

dot1dStpPortDesig
natedCost

.1.3.6.1.2.1.17

.2.15.1.7
The path cost of the Designated Port of the segment
connected to this port. This value is compared to the Root
Path Cost field in received bridge PDUs.

dot1dStpPortDesig
natedBridge

.1.3.6.1.2.1.17

.2.15.1.8
The Bridge Identifier of the bridge which this port considers
to be the Designated Bridge for this port’s segment.

dot1dStpPortDesig
natedPort

.1.3.6.1.2.1.17

.2.15.1.9
The Port Identifier of the port on the Designated Bridge for
this port’s segment.

dot1dTpFdbAddres
s

.1.3.6.1.2.1.17

.4.3.1.1
A unicast MAC address for which the bridge has forwarding
and/or filtering information.

dot1dTpFdbPort .1.3.6.1.2.1.17
.4.3.1.2

Either the value '0', or the port number of the port on which
a frame having a source address equal to the value of the
corresponding instance of dot1dTpFdbAddress has been seen.
A value of '0' indicates that the port number has not been
learned but that the bridge does have some
forwarding/filtering information about this address (e.g. in
the dot1dStaticTable). Implementors are encouraged to
assign the port value to this object whenever it is learned
even for addresses for which the corresponding value of
dot1dTpFdbStatus is not learned(3).

377

dot1dTpFdbStatus .1.3.6.1.2.1.17
.4.3.1.3

The status of this entry. The meanings of the values are:
other(1): none of the following. This would include the case
where some other MIB object (not the corresponding
instance of dot1dTpFdbPort, nor an entry in the
dot1dStaticTable) is being used to determine if and how
frames addressed to the value of the corresponding instance
of dot1dTpFdbAddress are being forwarded.
invalid(2): this entry is not longer valid (e.g., it was learned
but has since aged-out), but has not yet been flushed from
the table.
learned(3): the value of the corresponding instance of
dot1dTpFdbPort was learned, and is being used.
self(4): the value of the corresponding instance of
dot1dTpFdbAddress represents one of the bridge’s addresses.
The corresponding instance of dot1dTpFdbPort indicates
which of the bridge’s ports has this address.
mgmt(5): the value of the corresponding instance of
dot1dTpFdbAddress is also the value of an existing instance
of dot1dStaticAddress.

Table 121. Supported OIDS from the Q-BRIDGE-MIB

Name OID Description

dot1qTpFdb
Port

.1.3.6.1.2.1.17.7.
1.2.2.1.2

Either the value 0, or the port number of the port on which a
frame having a source address equal to the value of the
corresponding instance of dot1qTpFdbAddress has been seen. A
value of 0 indicates that the port number has not been learned
but that the device does have some forwarding/filtering
information about this address (e.g., in the
dot1qStaticUnicastTable). Implementors are encouraged to assign
the port value to this object whenever it is learned, even for
addresses for which the corresponding value of
dot1qTpFdbStatus is not learned(3).

378

dot1qTpFdb
Status

.1.3.6.1.2.1.17.7.
1.2.2.1.3

The status of this entry. The meanings of the values are:
other(1): none of the following. This may include the case where
some other MIB object (not the corresponding instance of
dot1qTpFdbPort, nor an entry in the dot1qStaticUnicastTable) is
being used to determine if and how frames addressed to the
value of the corresponding instance of dot1qTpFdbAddress are
being forwarded.
invalid(2): this entry is no longer valid (e.g., it was learned but
has since aged out), but has not yet been flushed from the table.
learned(3): the value of the corresponding instance of
dot1qTpFdbPort was learned and is being used.
self(4): the value of the corresponding instance of
dot1qTpFdbAddress represents one of the device’s addresses. The
corresponding instance of dot1qTpFdbPort indicates which of the
device’s ports has this address.
mgmt(5): the value of the corresponding instance of
dot1qTpFdbAddress is also the value of an existing instance of
dot1qStaticAddress.

Generic information about the bridge link discovery process can be found in the Bridge Information
box on the Node Detail Page of the device. Information gathered from this OID will be stored in the
following database table:

379

Figure 38. Database tables related to transparent bridge discovery

17.3. Layer 3 Link Discovery
With Enlinkd it is possible to get Links based on network routing applications. The following routing
daemons can be used to provide a discovery of links based Layer 3 information:

• Open Shortest Path First (OSPF)

• Intermediate System to Intermediate System (IS-IS)

This information is provided by SNMP Agents with appropriate MIB support. For this reason it is
required to have a working SNMP configuration running. The link data discovered from Enlinkd is
provided in the Topology User Interface and on the detail page of a node.

380

https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/IS-IS

17.3.1. OSPF Discovery

The following MIBSs are supported to discover and build the OSPF network topology and are
collected by the OSPF Discovery Collector.

The relevant MIBs for OSPF topology are OSPF-MIB and OSPF-TRAP-MIB. In these MIBs are defined
the relevant objects used to find OSPF links, specifically:

• The Router ID which, in OSPF, has the same format as an IP address

• But identifies the router independent of its IP address.

Also all the interfaces are identified by their IP addresses. The OSPF links come from the SNMP
ospfNbrTable defined in OSPF-MIB and this table is in practice persisted in the ospfLink table:

Table 122. Supported OIDs from OSPF-MIB

Name OID Description

ospfRouterId .1.3.6.1.2.1.1
4.1.1.0

A 32-bit integer uniquely identifying the router in the
Autonomous System. By convention, to ensure uniqueness, this
should default to the value of one of the router’s IP interface
addresses. This object is persistent and when written the entity
should save the change to non-volatile storage.

ospfAdminStat .1.3.6.1.2.1.1
4.1.2.0

The administrative status of OSPF in the router. The value
enabled denotes that the OSPF Process is active on at least one
interface; disabled disables it on all interfaces. This object is
persistent and when written the entity should save the change
to non-volatile storage.

ospfVersionNum
ber

.1.3.6.1.2.1.1
4.1.3.0

The current version number of the OSPF protocol is 2.

ospfAreaBdrRtrS
tatus

.1.3.6.1.2.1.1
4.1.4.0

A flag to note whether this router is an Area Border Router.

ospfAreaASBdrR
trStatus

.1.3.6.1.2.1.1
4.1.5.0

A flag to note whether this router is configured as an
Autonomous System Border Router. This object is persistent and
when written the entity should save the change to non-volatile
storage.

ospfIfIpAddress .1.3.6.1.2.1.1
4.7.1.1

The IP address of this OSPF interface.

ospfAddressLessI
f

.1.3.6.1.2.1.1
4.7.1.2

For the purpose of easing the instancing of addressed and
addressless interfaces; this variable takes the value 0 on
interfaces with IP addresses and the corresponding value of
ifIndex for interfaces having no IP address.

ospfNbrIpAddr .1.3.6.1.2.1.1
4.10.1.1

The IP address this neighbor is using in its IP source address.
Note that, on addressless links, this will not be 0.0.0.0 but the
address of another of the neighbor’s interfaces.

381

Name OID Description

ospfNbrAddressL
essIndex

.1.3.6.1.2.1.1
4.10.1.2

On an interface having an IP address, zero. On addressless
interfaces, the corresponding value of ifIndex in the Internet
Standard MIB. On row creation, this can be derived from the
instance.

ospfNbrRtrId .1.3.6.1.2.1.1
4.10.1.3

A 32-bit integer (represented as a type IpAddress) uniquely
identifying the neighboring router in the Autonomous System.

Table 123. Supported OIDs from IP-MIB

Name OID Description

ipAdEntIfIn
dex

.1.3.6.1.2.1.4.
20.1.2

The index value which uniquely identifies the interface to which
this entry is applicable. The interface identified by a particular value
of this index is the same interface as identified by the same value of
the IF-MIB’s ifIndex.

ipAdEntNet
Mask

.1.3.6.1.2.1.4.
20.1.3

The subnet mask associated with the IPv4 address of this entry. The
value of the mask is an IPv4 address with all the network bits set to 1
and all the hosts bits set to 0.

Generic information about the OSPF link discovery process can be found in the OSPF Information
box on the Node Detail Page of the device. Information gathered from these OIDs will be stored in
the following database table:

Figure 39. Database tables related to OSPF discovery

OSPF Topology Updater provide OSPF OnmsTopology consolidating OSPF data collected by OSPF
Collector only full bidirectional connections between two OSPF supported devices become Edges.
Node A and Node B are connected by an OSPF Edge if and only if there is a OSPF link in Node A to
Node B and viceversa.

382

17.3.2. IS-IS Discovery

IS-IS Links are found in the isisISAdjTable that is defined in ISIS-MIB (mib-rfc4444.txt). In this table
is found the information needed to find the Adjacency Intermediate System. The information about
IS-IS is stored into two tables: isisElement and isisLink. isisElement contains the ISISSysID, a unique
identifier of the "Intermediate System" (the name for the Router in ISO protocols). Each entry in this
SNMP MIB table represents a unidirectional link from the Intermediate System that is queried to the
Adjacent Intermediate Systems running IS-IS and "peering" with the source router. If two routers IS-
A and IS-B support ISIS-MIB, then EnLinkd will create two link entries in OpenNMS Meridian: one
from IS-A to IS-B (from the adjtable of IS-A) the complementary link back from IS-B to IS-A (from the
adjTable of _IS-B). IS-IS links are represented in the ISIS-MIB as follows:

The following OIDs are supported to discover and build the ISIS network topology and are collected
by the ISIS Discovery Collector.

Table 124. Supported OIDs from ISIS-MIB

Name OID Description

isisSysID .1.3.6.1.2.1.138
.1.1.1.3.0

The ID for this Intermediate System. This value is appended
to each of the area addresses to form the Network Entity
Titles. The derivation of a value for this object is
implementation specific. Some implementations may
automatically assign values and not permit an SNMP write,
while others may require the value to be set manually.
Configured values must survive an agent reboot.

isisSysAdminStat
e

.1.3.6.1.2.1.138

.1.1.1.8.0
The administrative state of this Intermediate System. Setting
this object to the value on when its current value is off
enables the Intermediate System. Configured values must
survive an agent reboot.

isisSysObject .1.3.6.1.2.1.138
.1.1.1

isisSysObject

isisCircIfIndex .1.3.6.1.2.1.138
.1.3.2.1.2

The value of ifIndex for the interface to which this circuit
corresponds. This object cannot be modified after creation.

isisCircAdminStat
e

.1.3.6.1.2.1.138

.1.3.2.1.3
The administrative state of the circuit.

isisISAdjState .1.3.6.1.2.1.138
.1.6.1.1.2

The state of the adjacency.

isisISAdjNeighSN
PAAddress

.1.3.6.1.2.1.138

.1.6.1.1.4
The SNPA address of the neighboring system.

isisISAdjNeighSys
Type

.1.3.6.1.2.1.138

.1.6.1.1.5
The type of the neighboring system.

isisISAdjNeighSys
ID

.1.3.6.1.2.1.138

.1.6.1.1.6
The system ID of the neighboring Intermediate System.

383

Name OID Description

isisISAdjNbrExte
ndedCircID

.1.3.6.1.2.1.138

.1.6.1.1.7
The 4-byte Extended Circuit ID learned from the Neighbor
during 3-way handshake, or 0.

Generic information about the IS-IS link discovery process can be found in the IS-IS Information
box on the Node Detail Page of the device. Information gathered from this OIDs will be stored in the
following database table:

Figure 40. Database tables related to IS-IS discovery

ISIS Topology Updater provide ISIS OnmsTopology consolidating Is-IS data collected by ISIS
Collector only full bidirectional connections between two ISIS supported devices become Edges.
Node A and Node B are connected by an ISIS Edge if and only if there is a ISIS link in Node A to Node
B and viceversa.

[1] Wikipedia LLDP: https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

384

https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

Chapter 18. OpenTracing

18.1. Introduction
OpenTracing enables distributed tracing which makes it possible to monitor RPCs or transactions
across process boundaries. This functionality can be leveraged to help track and diagnose
communication problems that may arise in distributed deployments of OpenNMS Meridian that
leverage Minion and/or Sentinel. OpenNMS Meridian currently supports Jaeger which implements
the OpenTracing API.

OpenTracing is now supported on RPC calls between Minion and OpenNMS Meridian and Sink API
calls (including flows) between Minion and Sentinel or OpenNMS Meridian.

18.1.1. Enabling Tracing on OpenNMS Meridian

By default the tracing instrumentation OpenNMS Meridian is disabled (a no-op tracer is used.)

Enable tracing with Jeager as follows:

echo 'org.opennms.core.tracer=jaeger' >>
"$OPENNMS_HOME/etc/opennms.properties.d/jaeger.properties"
echo 'opennms-core-tracing-jaeger' >> "$OPENNMS_HOME/etc/featuresBoot.d/jaeger.boot"

Restart OpenNMS Meridian to apply the changes.

Additional Jaeger tracing options can be added to the jaeger.properties file specified above.
Available configuration options are listed here.

18.1.2. Enabling Tracing on Minion

Enable tracing with Jaeger on Minion by installing the opennms-core-tracing-jaeger feature.

echo 'opennms-core-tracing-jaeger' >> "$MINION_HOME/etc/featuresBoot.d/jaeger.boot"

Uninstalling the opennms-core-tracing-jaeger feature at runtime is not yet
supported. To disable tracing with Jaeger, remove the reference from the features
boot file and restart Minion.

Additional Jaeger tracing options can be added to $MINION_HOME/etc/system.properties on Minion.
Available configuration options are listed here.

18.1.3. Enabling Tracing on Sentinel

Enable tracing with Jaeger on Sentinel by installing the opennms-core-tracing-jaeger feature.

385

https://www.jaegertracing.io/
https://github.com/jaegertracing/jaeger-client-java/blob/master/jaeger-core/README.md
https://github.com/jaegertracing/jaeger-client-java/blob/master/jaeger-core/README.md

echo 'opennms-core-tracing-jaeger' >> "$SENTINEL_HOME/etc/featuresBoot.d/jaeger.boot"

Either sentinel-flows or sentinel-telemetry need to be installed before installing
opennms-core-tracing-jaeger feature. Uninstalling the opennms-core-tracing-jaeger
feature at runtime is not yet supported. To disable tracing with Jaeger, remove the
reference from the features boot file and restart Sentinel.

Additional Jaeger tracing options can be added to $SENTINEL_HOME/etc/system.properties on Sentinel.
Available configuration options are listed here.

386

https://github.com/jaegertracing/jaeger-client-java/blob/master/jaeger-core/README.md

Chapter 19. Operation

19.1. HTTPS / SSL
This chapter covers the possibilities to configure OpenNMS Meridian to protect web sessions with
HTTPS and also explains how to configure OpenNMS Meridian to establish secure connections.

In order to use HTTPS the Java command line tool keytool is used. It is
automatically shipped with each JRE installation. More details about the keytool
can be found at the official documentation.

19.1.1. Standalone HTTPS with Jetty

To configure OpenNMS Meridian to protect web sessions with HTTPS, see How to setup SSL with
Jetty.

19.1.2. OpenNMS Meridian as HTTPS client

To establish secure HTTPS connections within Java one has to setup a so called Java Trust Store.

The Java Trust Store contains all certificates a Java application should trust when making
connections as a client to a server.

Setup Java Trust Store

To setup the Java Trust Store the following command can be issued.

 If you do not have a Java Trust Store setup yet, it is created automatically.

Import a certificate to the Java Trust Store

keytool \
 -import \ ①
 -v \ ②
 -trustcacerts \ ③
 -alias localhost \ ④
 -file localhost.cert \ ⑤
 -keystore /$OPENNMS_HOME/etc/trust-store.jks ⑥

① Define to import a certificate or a certificate chain

② Use verbose output

③ Define to trust certificates from cacerts

④ The alias for the certificate to import, e.g. the common name

⑤ The certificate to import

⑥ The location of the Java Trust Store

387

https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
https://opennms.discourse.group/t/how-to-setup-ssl-with-jetty/1084
https://opennms.discourse.group/t/how-to-setup-ssl-with-jetty/1084

If you create a new Java Trust Store you are asked for a password to protect the Java Trust Store. If
you update an already existing Java Trust Store please enter the password you chose when creating
the Java Trust Store initially.

Download existing public certificate

To Download an existing public certificate the following command can be issued.

Download an existing public certificate

openssl \
 s_client \ ①
 -showcerts \ ②
 -connect localhost:443 \ ③
 -servername localhost \ ④
 < /dev/null \ ⑤
 > localhost.cert ⑥

① Use SSL/TLS client functionality of openssl.

② Show all certificates in the chain

③ PORT:HOST to connect to, e.g. localhost:443

④ This is optional, but if you are serving multiple certificates under one single ip address you may
define a server name, otherwise the ip of localhost:PORT certificate is returned which may not
match the requested server name (mail.domain.com, opennms.domain.com, dns.domain.com)

⑤ No input

⑥ Where to store the certificate.

Configure OpenNMS Meridian to use the defined Java Trust Store

To setup OpenNMS Meridian to use the defined Java Trust Store the according
javax.net.ssl.trustStore* properties have to be set. Open $OPENNMS_HOME/etc/opennms.properties
and add the properties javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword as shown
below.

$OPENNMS_HOME/etc/opennms.properties snippet to define a Java Trust Store

javax.net.ssl.trustStore=/$OPENNMS_HOME/etc/trust-store.jks ①
javax.net.ssl.trustStorePassword=change-me ②

① The location of the Java Trust Store

② The password of the Java Trust Store

For more details on the Java build-in SSL System properties have a look at chapter Debugging /
Properties.

Each time you modify the Java Trust Store you have to restart OpenNMS Meridian
to have the changes take effect.

388

19.1.3. Differences between Java Trust Store and Java Key Store

The Java Trust Store is used to determine whether a remote connection should be trusted or not,
e.g. whether a remote party is who it claims to be (client use case).

The Java Key Store is used to decide which authentication credentials should be sent to the remote
host for authentication during SSL handshake (server use case).

For more details, please check the JSSE Reference Guide.

19.1.4. Debugging / Properties

If you encounter issues while using HTTPS it might be useful to enable debugging or use one of the
build-in Java System Properties to configure the proper use of SSL.

Table 125. Java build-in System Properties (Source)

System Property Name Description

javax.net.ssl.keyStore Location of the Java keystore file containing an
application process’s own certificate and private
key. On Windows, the specified pathname must
use forward slashes, /, in place of backslashes, \.

javax.net.ssl.keyStorePassword Password to access the private key from the
keystore file specified by javax.net.ssl.keyStore.
This password is used twice: to unlock the
keystore file (store password) and to decrypt the
private key stored in the keystore (key
password). In other words, the JSSE framework
requires these passwords to be identical.

javax.net.ssl.keyStoreType (Optional) For Java keystore file format, this
property has the value jks (or JKS). You do not
normally specify this property, because its
default value is already jks.

javax.net.ssl.trustStore Location of the Java keystore file containing the
collection of CA certificates trusted by this
application process (trust store). On Windows,
the specified pathname must use forward
slashes, /, in place of backslashes, \. If a trust
store location is not specified using this
property, the Sun JSSE implementation searches
for and uses a keystore file in the following
locations (in order):
$JAVA_HOME/lib/security/jssecacerts and
$JAVA_HOME/lib/security/cacerts

389

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#Stores
https://access.redhat.com/documentation/en-US/Fuse_MQ_Enterprise/7.1/html/Security_Guide/files/SSL-SysProps.html

System Property Name Description

javax.net.ssl.trustStorePassword Password to unlock the keystore file (store
password) specified by
javax.net.ssl.trustStore.

javax.net.ssl.trustStoreType (Optional) For Java keystore file format, this
property has the value jks (or JKS). You do not
normally specify this property, because its
default value is already jks.

javax.net.debug To switch on logging for the SSL/TLS layer, set
this property to ssl. More details about possible
values can be found here.

19.2. Request Logging
HTTP requests logs for Jetty can be enabled by uncommenting the following snippet in
etc/jetty.xml:

<!-- NCSA Request Logging
 <Item>
 <New id="RequestLog" class="org.eclipse.jetty.server.handler.RequestLogHandler">
 <Set name="requestLog">
 <New id="RequestLogImpl" class="org.eclipse.jetty.server.NCSARequestLog">
 <Arg>logs/jetty-requests-yyyy_mm_dd.log</Arg>
 <Set name="retainDays">90</Set>
 <Set name="append">true</Set>
 <Set name="extended">true</Set>
 <Set name="logTimeZone">US/Central</Set>
 </New>
 </Set>
 </New>
 </Item>
-->

If you do not have a jetty.xml in the etc directory, you can start by copying the
example from etc/examples/jetty.xml.

If you would like the include the usernames associated with the requests in the log file, you must
also uncomment the following snippet in jetty-webapps/opennms/WEB-INF/web.xml:

390

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#Debug

<!-- Enable this filter mapping when using NCSA request logging
<filter-mapping>
 <filter-name>jettyUserIdentityFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
-->

After restarting OpenNMS Meridian, requests logs of the following form should be available in
logs/jetty-requests-*.log:

127.0.0.1 - - [02/Jun/2017:09:16:38 -0500] "GET / HTTP/1.1" 302 0 "-" "Mozilla/5.0
(X11; Fedora; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/5
8.0.3029.110 Safari/537.36"
127.0.0.1 - anonymousUser [02/Jun/2017:09:16:39 -0500] "GET /opennms/ HTTP/1.1" 302 0
"-" "Mozilla/5.0 (X11; Fedora; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/58.0.3029.110 Safari/537.36"
127.0.0.1 - admin [02/Jun/2017:09:16:46 -0500] "POST
/opennms/rest/datachoices?action=enable HTTP/1.1" 200 0
"http://127.0.0.1:8980/opennms/index.jsp" "Mozilla/5.0 (X11; Fedora; Linux x86_64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
127.0.0.1 - rtc [02/Jun/2017:09:16:45 -0500] "POST
/opennms/rtc/post/DNS+and+DHCP+Servers HTTP/1.1" 200 35 "-" "Java/1.8.0_121"

19.3. Geocoder Service
The Geocoder Service is used to resolve geolocation information within OpenNMS Meridian.
OpenNMS Meridian supports several Geocoder Services. By default geolocation resolution is
disabled.

To enable or configure the Geocoder Service please use the web based
configuration tool. This can be found in the administration section: Admin →
Configure Geocoder Service

The currently used Geocoder Service is configured via the property activeGeocoderId in
etc/org.opennms.features.geocoder.cfg.

19.3.1. Google

The Google Geocoder API requires at least an apiKey or a clientId and signature. For more details
please refer to the official documentation.

The following properties in etc/org.opennms.features.geocoder.google.cfg are supported:

391

https://developers.google.com/maps/documentation/javascript/get-api-key

Property Type Requi
red

Default Description

apiKey Strin
g

yes empty
string

Is only required if useEnterpriseCredentials is false. The
apiKey provided by the Google Cloud Platform.

useEnterpriseC
redentials

Boole
an

no false If authentication with clientId and signature is required,
set this to true.

clientId Strin
g

yes empty
string

Is only required if useEnterpriseCredentials is true The
Google Geocoder API Client ID.

signature Strin
g

yes empty
string

The Google Geocoder API Signature.

useSystemProxy Boole
an

no false Should the system wide proxy settings be used? The
system proxy settings can be configured in opennms.conf

timeout Integ
er

no 500 The connection timeout in milliseconds the Geocoder tries
to resolve a single geolocation.

19.3.2. Mapquest

For more details please refer to the official documentation.

The following properties in etc/org.opennms.features.geocoder.mapquest.cfg are supported:

Prope
rty

Typ
e

Req
uire
d

Default Description

apiKey Stri
ng

yes empty string The apiKey.

url Stri
ng

yes http://www.mapquestapi.com/geocoding/
v1/address?format=json&key={apiKey}&
maxResults=1&location={query}

The url template for the Mapquest
Geocoder API. The {apiKey} and
{query} strings are substituted before
making the request.

useSys
temPro
xy

Bool
ean

no false Should the system wide proxy settings
be used? The system proxy settings can
be configured in opennms.conf

19.3.3. Nominatim

For more details please refer to the official documentation and ensure to check out the Nominatim
Usage Policy before using the Geocoder Service.

The following properties in etc/org.opennms.features.geocoder.nominatim.cfg are supported:

392

#ga-opennms-system-properties
https://developer.mapquest.com/documentation/geocoding-api/
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
http://www.mapquestapi.com/geocoding/v1/address?format=json&key={apiKey}&maxResults=1&location={query}
#ga-opennms-system-properties
https://wiki.openstreetmap.org/wiki/Nominatim
https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/

Prope
rty

Typ
e

Required Default Description

accept
UsageT
erms

Boo
lea
n

yes false In order to use the Nominatim
Geocoder Service the Nominatim
Usage Policy must be accepted. Set
this to true to agree to their terms.

url Str
ing

yes https://nominatim.openstreetmap
.org/search?format=json&
email={email}&limit=1&q={query}

The url template for the Nominatim
Geocoder API. The {email} and
{query} strings are substituted
before making the request.

email Str
ing

yes empty string According to the official
documentation, this should be
provided in case you are making a
large number of requests.
Alternatively provide this
information in the userAgent
property.

refere
r

Str
ing

either referer
or userAgent is
required.

empty string According to the Nominatim Usage
Policy please provide either a
referer or userAgent

userAg
ent

Str
ing

either referer
or userAgent is
required.

OpenNMS-
NominatimGeocoderService/2.0

According to the Nominatim Usage
Policy please provide either a
referer or userAgent

useSys
temPro
xy

Boo
lea
n

no false Should the system wide proxy
settings be used? The system proxy
settings can be configured in
system properties

19.4. newts-repository-converter: Rrd/Jrb to Newts
migration utility
This utility can be used to migrate existing RRDTool- or JRobin-based data to a Newts cluster. This
will be achieved by traversing the share/rrd directory and its subdirectories, reading the data and
properties files and persisting this data to Newts.

19.4.1. Migration

The following suggestions try to minimize the data collection gap that occur when reconfiguring
OpenNMS Meridian for a different storage strategy. First, we determine the parameters needed for
migration of the existing data. After that, we reconfigure OpenNMS Meridian to persists all new
collected data to Newts storage. Finally, the Rrd- or JRobin-based data will be converted and
persisted to Newts using the newts-repository-converter utility.

393

https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://nominatim.openstreetmap.org/search?format=json&email={email}&limit=1&q={query}
https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/
#ga-opennms-system-properties

Prerequisites

• Working OpenNMS Meridian installation with RRDTool- or JRobin-based storage strategy
configured.

• Installed and working Newts cluster reachable by the OpenNMS Meridian instance.

Migration plan

1. Check and write down the values for the following options in your opennms.properties file. You
will need these information later to invoke the newts-repository-converter utility.

a. File etc/opennms.properties:

▪ Check for the entry org.opennms.rrd.storeByGroup whether storeByGroup is enabled.

▪ Check for the entry rrd.base.dir for the location where Rrd or Jrb files are stored.

▪ Check for the entry rrd.binary for the location of the RRDTool binary.

b. File etc/rrd-configuration.properties:

▪ Check for the entry org.opennms.rrd.strategyClass whether JRobinRrdStrategy (JRobin) or
JniRrdStrategy / MultithreadedJniRrdStrategy (RRDTool) is used.

2. Stop your OpenNMS Meridian instance.

3. Reconfigure OpenNMS Meridian to persist data to Newts - so, when correctly configured all new
samples will be persisted into Newts after OpenNMS Meridian is started. Note, that the converter
assumes storeByForeignSource to be enabled.

4. Start your OpenNMS Meridian instance.

5. Use the newts-repository-converter utility to convert the existing data to Newts by specifying the
options that correspond to the information gathered during step #1.

This procedure will minimize the data collection gap to the time needed to reconfigure OpenNMS
Meridian for Newts storage.

The newts_converter utility needs the path to the base directory of your OpenNMS
Meridian instance for reading the configuration files. For instance the utility needs
the datasource configuration during the migration process to query the database
to lookup node data.

19.4.2. Usage

The utility is installed by default and its wrapper script is located in the ${OPENNMS_HOME}/bin
directory.

$ cd /path/to/opennms/bin
$./newts-repository-converter

 When invoked without parameters the usage and help information is printed.

394

The newts-repository-converter tool provide the following options and parameters:

Short-
option

Long-
option

Description Default

h help Prints help and usage information false

o onms-home OpenNMS Meridian Home Directory /opt/opennms

r rrd-dir The path to the RRD data ONMS-
HOME/share/rrd

t rrd-tool Whether to use rrdtool or JRobin

T rrd-binary The binary path to the rrdtool command (only used
if rrd-tool is set)

/usr/bin/rrdtool

s store-by-
group

Whether store by group was enabled or not

n threads Number of conversion threads defaults to number
of CPUs

19.4.3. Example 1: convert Rrd-based data with storeByGroup enabled

The following example shows how to convert RRDTool-based data that was stored with
storeByGroup enabled. The OpenNMS Meridian home is /opt/opennms, the data directory is
/opt/opennms/share/rrd and the RRDTool binary located at /usr/local/bin/rrdtool. This program
call will use 16 concurrent threads to convert the Rrd files.

$./newts-repository-converter -t true -s true -T /usr/local/bin/rrdtool -n 16
<output omitted>

19.4.4. Example 2: convert JRobin-based data with storeByGroup disabled

The following example shows how to convert JRobin-based data located in the directory
/mnt/opennms/rrd that was collected with storeByGroup disabled. This program call will use 8
concurrent threads to convert the Jrb files.

$./newts-repository-converter -t false -s false -r /mnt/opennms/rrd -n 8
<output omitted>

19.5. Configuration Tester
To identify configuration problems there is a config-tester located in $OPENNMS_HOME/bin/. Use
config-tester to check configuration files. Type -l, --list to view the list of files checked. It prints
issues into output.log. The tool can be used while OpenNMS is running to check configuration
beforehand.

395

Possible Parameters:

 $OPENNMS_HOME/bin/config-tester -h
 usage: config-tester -a
 OR: config-tester [config files]
 OR: config-tester -l
 OR: config-tester -h
 -a,--all check all supported configuration files
 -h,--help print this help and exit
 -i,--ignore-unknown ignore unknown configuration files and continue
 processing
 -l,--list list supported configuration files and exit
 -v,--verbose list each configuration file as it is tested

19.6. Newts
This section describes how to configure OpenNMS Meridian to use Newts and how to use OpenNMS
Meridian to monitor your Cassandra cluster.

19.6.1. Configuration

Enabling Newts

OpenNMS Meridian can be configured to use Newts by setting the following property in in
${OPENNMS_HOME}/etc/opennms.properties:

org.opennms.timeseries.strategy=newts

It is also highly recommended that resources stored in Newts are referenced by their foreign source
and foreign ID, as opposed to their database ID. To this end, the following property should also be
set in the same file:

org.opennms.rrd.storeByForeignSource=true

With these set, OpenNMS Meridian will begin persisting metrics using the Newts engine when
restarted.

Additional configuration options are presented in the next section.

Configuration Reference

The following properties, found in ${OPENNMS_HOME}/etc/opennms.properties, can be used to
configure and tune Newts.

396

General

Name Default Description

org.opennms.newts.config.keys
pace

newts Name of the keyspace to use.

org.opennms.newts.config.host
name

localhost IP address or hostnames of the Cassandra nodes.
Multiple hosts can be separated by a comma.

org.opennms.newts.config.port 9042 CQL port used to connect to the Cassandra nodes.

org.opennms.newts.config.user
name

cassandra Username to use when connecting to Cassandra via
CQL.

org.opennms.newts.config.pass
word

cassandra Password to use when connecting to Cassandra via
CQL.

org.opennms.newts.config.ssl false Enable/disable SSL when connecting to Cassandra.

org.opennms.newts.config.core
-connections-per-host

Driver
default

Core number of connections per host.

org.opennms.newts.config.max-
connections-per-host

Driver
default

Maximum number of connections per host.

org.opennms.newts.config.max-
requests-per-connection

Driver
default

Maximum amount of requests that can be in-flight on a
single connection at the same time.

org.opennms.newts.config.read
_consistency

ONE Consistency level used for read operations. See
Configuring data consistency for a list of available
options.

org.opennms.newts.config.writ
e_consistency

ANY Consistency level used for write operations. See
Configuring data consistency for a list of available
options.

org.opennms.newts.config.max_
batch_size

16 Maximum number of records to insert in a single
transaction. Limited by the size of the Cassandra
cluster’s batch_size_fail_threshold_in_kb property.

org.opennms.newts.config.ring
_buffer_size

8192 Maximum number of records that can be held in the
ring buffer. Must be a power of two.

org.opennms.newts.config.writ
er_threads

16 Number of threads used to pull samples from the ring
buffer and insert them into Newts.

org.opennms.newts.config.ttl 31540000 Number of seconds after which samples will
automatically be deleted. Defaults to one year.

org.opennms.newts.config.reso
urce_shard

604800 Duration in seconds for which samples will be stored at
the same key. Defaults to 7 days in seconds.

org.opennms.newts.query.minim
um_step

300000 Minimum step size in milliseconds. Used to prevent
large queries.

397

http://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_config_consistency_c.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_config_consistency_c.html

Name Default Description

org.opennms.newts.query.inter
val_divider

2 If no interval is specified in the query, the step will be
divided into this many intervals when aggregating
values.

org.opennms.newts.query.heart
beat

450000 Duration in milliseconds. Used when no heartbeat is
specified. Should generally be 1.5x your largest
collection interval.

org.opennms.newts.query.paral
lelism

Number
of cores

Maximum number of threads that can be used to
compute aggregates. Defaults to the number of
available cores.

org.opennms.newts.config.cach
e.strategy

See
bellow

Canonical name of the class used for resource level
caching. See the table bellow for all of the available
options.

org.opennms.newts.config.cach
e.max_entries

8192 Maximum number of records to keep in the cache
when using an in-memory caching strategy.

org.opennms.newts.nan_on_coun
ter_wrap

false Disables the processing of counter wraps, replacing
these with NaNs instead.

org.opennms.newts.config.cach
e.priming.disable

false Disables the cache primer, which pre-emptively loads
the cache with indexed resources on start-up.

org.opennms.newts.config.cach
e.priming.block_ms

120000 Block startup for this many milliseconds while waiting
for the cache to be primed. Set this value to -1 to
disable blocking. Set this value to 0 to block indefinitely
waiting for all of the records to be read.

Available caching strategies include:

Name Class Defaul
t

In-Memory Cache org.opennms.netmgt.newts.support.GuavaSearchableResourceMetadataCac
he

Y

Redis-based
Cache

org.opennms.netmgt.newts.support.RedisResourceMetadataCache N

Redis Cache

When enabled, the following options can be used to configure the Redis-based cache.

Name Default Description

org.opennms.newts.config.cache.redis_hostna
me

localhos
t

IP address of hostname of the Redis
server.

398

Name Default Description

org.opennms.newts.config.cache.redis_port 6379 TCP port used to connect to the Redis
server.

Recommendations

You will likely want to change the values of cache.max_entries and the ring_buffer_size to suit your
installation.

Meta-data related to resources are cached in order to avoid writing redundant records in
Cassandra. If you are collecting data from a large number of resources, you should increase the
cache.max_entries to reflect the number of resources you are collecting from, with a suitable buffer.

The samples gathered by the collectors are temporarily stored in a ring buffer before they are
persisted to Cassandra using Newts. The value of the ring_buffer_size should be increased if you
expect large peaks of collectors returning at once or latency in persisting these to Cassandra.
However, note that the memory used by the ring buffer is reserved, and larger values may require
an increased heap size.

Cache priming is used to help reduce the number of records that need to be indexed after restarting
OpenNMS Meridian. This works by rebuilding the cache using the index data that has already been
persisted in Cassandra. If you continue to see large spikes of index related inserts after rebooting
you may want to consider increasing the amount of time spent priming the cache.

19.6.2. Cassandra Monitoring

This section describes some of the metrics OpenNMS Meridian collects from a Cassandra cluster.

JMX must be enabled on the Cassandra nodes and made accessible from
_OpenNMS Meridian in order to collect these metrics. See Enabling JMX
authentication for details.

The data collection is bound to the agent IP interface with the service name JMX-
Cassandra. The JMXCollector is used to retrieve the MBean entities from the
Cassandra node.

Client Connections

The number of active client connections from org.apache.cassandra.metrics.Client are collected:

Name Description

connectedNativeClients Metrics for connected native clients

connectedThriftClients Metrics for connected thrift clients

399

https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureJmxAuthentication.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureJmxAuthentication.html

Compaction Bytes

The following compaction manager metrics from org.apache.cassandra.metrics.Compaction are
collected:

Name Description

BytesCompacted Number of bytes compacted since node started

Compaction Tasks

The following compaction manager metrics from org.apache.cassandra.metrics.Compaction are
collected:

Name Description

CompletedTasks Estimated number of completed compaction tasks

PendingTasks Estimated number of pending compaction tasks

Storage Load

The following storage load metrics from org.apache.cassandra.metrics.Storage are collected:

Nam
e

Description

Load Total disk space (in bytes) used by this node

Storage Exceptions

The following storage exception metrics from org.apache.cassandra.metrics.Storage are collected:

Name Description

Exceptions Number of unhandled exceptions since start of this Cassandra instance

Dropped Messages

Measurement of messages that were DROPPABLE. These ran after a given timeout set per message
type so was thrown away. In JMX these are accessible via
org.apache.cassandra.metrics.DroppedMessage. The number of dropped messages in the different
message queues are good indicators whether a cluster can handle its load.

Name Stage Description

Mutation MutationStage If a write message is processed after its timeout
(write_request_timeout_in_ms) it either sent a failure to the client or
it met its requested consistency level and will relay on hinted
handoff and read repairs to do the mutation if it succeeded.

400

Name Stage Description

Counter_Mut
ation

MutationStage If a write message is processed after its timeout
(write_request_timeout_in_ms) it either sent a failure to the client or
it met its requested consistency level and will relay on hinted
handoff and read repairs to do the mutation if it succeeded.

Read_Repair MutationStage Times out after write_request_timeout_in_ms.

Read ReadStage Times out after read_request_timeout_in_ms. No point in servicing
reads after that point since it would of returned error to client.

Range_Slice ReadStage Times out after range_request_timeout_in_ms.

Request_Res
ponse

RequestRespons
eStage

Times out after request_timeout_in_ms. Response was completed
and sent back but not before the timeout

Thread pools

Apache Cassandra is based on a so called Staged Event Driven Architecture (SEDA). This seperates
different operations in stages and these stages are loosely coupled using a messaging service. Each
of these components use queues and thread pools to group and execute their tasks. The
documentation for Cassandra Thread pool monitoring is originated from Pythian Guide to
Cassandra Thread Pools.

Table 126. Collected metrics for Thread Pools

Name Description

ActiveTasks Tasks that are currently running

CompletedTasks Tasks that have been completed

CurrentlyBlockedTasks Tasks that have been blocked due to a full queue

PendingTasks Tasks queued for execution

Memtable FlushWriter

Sort and write memtables to disk from org.apache.cassandra.metrics.ThreadPools. A vast majority of
time this backing up is from over running disk capability. The sorting can cause issues as well
however. In the case of sorting being a problem, it is usually accompanied with high load but a
small amount of actual flushes (seen in cfstats). Can be from huge rows with large column names,
i.e. something inserting many large values into a CQL collection. If overrunning disk capabilities, it
is recommended to add nodes or tune the configuration.

 Alerts: pending > 15 || blocked > 0

Memtable Post Flusher

Operations after flushing the memtable. Discard commit log files that have had all data in them in
sstables. Flushing non-cf backed secondary indexes.

401

http://www.pythian.com/blog/guide-to-cassandra-thread-pools
http://www.pythian.com/blog/guide-to-cassandra-thread-pools

 Alerts: pending > 15 || blocked > 0

Anti Entropy Stage

Repairing consistency. Handle repair messages like merkle tree transfer (from Validation
compaction) and streaming.

 Alerts: pending > 15 || blocked > 0

Gossip Stage

Post 2.0.3 there should no longer be issue with pending tasks. Instead monitor logs for a message:

Gossip stage has {} pending tasks; skipping status check ...

Before that change, in particular older versions of 1.2, with a lot of nodes (100+) while using vnodes
can cause a lot of CPU intensive work that caused the stage to get behind. Been known to of been
caused with out of sync schemas. Check NTP working correctly and attempt nodetool

resetlocalschema or the more drastic deleting of system column family folder.

 Alerts: pending > 15 || blocked > 0

Migration Stage

Making schema changes

 Alerts: pending > 15 || blocked > 0

MiscStage

Snapshotting, replicating data after node remove completed.

 Alerts: pending > 15 || blocked > 0

Mutation Stage

Performing a local including:

• insert/updates

• Schema merges

• commit log replays

• hints in progress

Similar to ReadStage, an increase in pending tasks here can be caused by disk issues, over loading a
system, or poor tuning. If messages are backed up in this stage, you can add nodes, tune hardware
and configuration, or update the data model and use case.

402

 Alerts: pending > 15 || blocked > 0

Read Stage

Performing a local read. Also includes deserializing data from row cache. If there are pending
values this can cause increased read latency. This can spike due to disk problems, poor tuning, or
over loading your cluster. In many cases (not disk failure) this is resolved by adding nodes or
tuning the system.

 Alerts: pending > 15 || blocked > 0

Request Response Stage

When a response to a request is received this is the stage used to execute any callbacks that were
created with the original request.

 Alerts: pending > 15 || blocked > 0

Read Repair Stage

Performing read repairs. Chance of them occurring is configurable per column family with
read_repair_chance. More likely to back up if using CL.ONE (and to lesser possibly other non-CL.ALL
queries) for reads and using multiple data centers. It will then be kicked off asynchronously outside
of the queries feedback loop. Note that this is not very likely to be a problem since does not happen
on all queries and is fast providing good connectivity between replicas. The repair being droppable
also means that after write_request_timeout_in_ms it will be thrown away which further mitigates
this. If pending grows attempt to lower the rate for high read CFs.

 Alerts: pending > 15 || blocked > 0

JVM Metrics

Some key metrics from the running Java virtual machine are also collected:

java.lang:type=Memory

The memory system of the Java virtual machine. This includes heap and non-heap memory

java.lang:type=GarbageCollector,name=ConcurrentMarkSweep

Metrics for the garbage collection process of the Java virtual machine

If you use Apache Cassandra for running Newts you can also enable additional
metrics for the Newts keyspace.

19.6.3. Newts Monitoring

This section describes the metrics OpenNMS Meridian collects for monitoring the Newts keyspace
from org.apache.cassandra.metrics.Keyspace on an Cassandra node.

403

JMX must be enabled on the Cassandra nodes and made accessible from
_OpenNMS Meridian in order to collect these metrics. See Enabling JMX
authentication for details.

The data collection is bound to the agent IP interface with the service name JMX-Cassandra-Newts.
The JMXCollector is used to retrieve the MBean entities from the Cassandra node.

All Memory Table Data Size

Name Description

AllMemtablesLiveData
Size

Total amount of live data stored in the memtables (2i and pending flush
memtables included) that resides off-heap, excluding any data structure
overhead

AllMemtablesOffHeapD
ataSize

Total amount of data stored in the memtables (2i and pending flush
memtables included) that resides off-heap.

AllMemtablesOnHeapDa
taSize

Total amount of data stored in the memtables (2i and pending flush
memtables included) that resides on-heap.

Memtable Switch Count

Name Description

MemtableSwitchCount Number of times flush has resulted in the memtable being switched out.

Memtable Columns Count

Name Description

MemtableColumnsCount Total number of columns present in the memtable.

Memory Table Data Size

Name Description

MemtableLiveDataSi
ze

Total amount of live data stored in the memtable, excluding any data
structure overhead

MemtableOffHeapDat
aSize

Total amount of data stored in the memtable that resides off-heap, including
column related overhead and partitions overwritten.

MemtableOnHeapData
Size

Total amount of data stored in the memtable that resides on-heap, including
column related overhead and partitions overwritten.

Read and Write Latency

404

https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureJmxAuthentication.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureJmxAuthentication.html

Name Description

ReadTotalLatency Local read metrics.

WriteTotalLatency Local write metrics.

Range Latency

Name Description

RangeLatency 99th Percentile Local range slice metrics 99th percentile.

Latency

Name Descriptio
n

CasCommitTotalLatency

CasPrepareTotalLatency

CasProposeTotalLatency

Bloom Filter Disk Space

Name Description

BloomFilterDiskSpaceUsed Disk space used by bloom filter

Bloom Filter Off Heap Memory

Name Description

BloomFilterOffHeapMemoryUsed Off heap memory used by bloom filter

Newts Memory Used

Name Description

 CompressionMetadataOffHeapMemoryUsed Off heap memory used by compression meta data

IndexSummaryOffHeapMemoryUsed Off heap memory used by index summary

Pending

Name Description

PendingCompactions Estimate of number of pending compactions for this column family

PendingFlushes Estimated number of tasks pending for this column family

405

Disk Space

Name Description

TotalDiskSpaceU
sed

Total disk space used by SSTables belonging to this column family including
obsolete ones waiting to be garbage collected.

LiveDiskSpaceUs
ed

Disk space used by SSTables belonging to this column family

19.7. Timeseries Integration Layer
This section describes how to configure OpenNMS Meridian to use the Time Series Integration Layer.

Traditionally OpenNMS Meridian supports storing time series data in RRD files on disk or via Newts
in Cassandra. These implementations require a deep knowledge of OpenNMS. It is hard to add
another time series database.

With the rise of many new time series databases, we want to provide an easy way to support other
time series databases with minimal effort. This lead to the development of the Time Series
Integration Layer.

The Time Series Integration Layer allows users to integrate a new time series database via OSGi
plugin.

Examples of time series plugins:

• In Memory

• InfluxDB

• TimescaleDB

19.7.1. Configuration

Enabling Time Series Integration Layer

OpenNMS Meridian can be configured to use the Time Series Integration Layer by setting the
following property in ${OPENNMS_HOME}/etc/opennms.properties:

org.opennms.timeseries.strategy=integration

After activating the Time Series Integration Layer, you need to start an actual implementation. Do
this via Karaf. Here is an example of how to activate the in memory time series plugin:

406

https://github.com/opennms-forge/opennms-tss-plugin-inmemory
https://github.com/opennms-forge/timeseries-integration-influxdb
https://github.com/opennms-forge/timeseries-integration-timescale

clone & build:
git clone git@github.com:opennms-forge/timeseries-integration-inmemory.git
mvn install

in Karaf shell:
bundle:install -s mvn:org.opennms.plugins.timeseries.inmemory/timeseries-inmemory-
plugin/1.0.0-SNAPSHOT

For specific instructions, check your plugin description.

We also highly recommend that you reference resources stored in the Time Series Integration Layer
by their foreign source and foreign ID, as opposed to their database ID. To this end, set the
following property in the same file:

org.opennms.rrd.storeByForeignSource=true

With these set, OpenNMS Meridian will begin persisting metrics using the Time Series Integration
Layer when restarted.

Additional configuration options are presented in the next section.

Configuration Reference

The following properties, found in ${OPENNMS_HOME}/etc/opennms.properties, can be used to
configure and tune the Time Series Integration Layer.

General

Name Default Description

org.opennms.timeseries.config
.ring_buffer_size

8192 Maximum number of records that can be held in the
ring buffer. Must be a power of two.

org.opennms.timeseries.config
.writer_threads

16 Number of threads used to pull samples from the ring
buffer and insert them into the Time Series Database.

org.opennms.timeseries.query.
minimum_step

300000 Minimum step size in milliseconds. Used to prevent
large queries.

org.opennms.timeseries.query.
interval_divider

2 If no interval is specified in the query, the step will be
divided into this many intervals when aggregating
values.

org.opennms.timeseries.query.
heartbeat

450000 Duration in milliseconds. Used when no heartbeat is
specified. Should generally be 1.5x your largest
collection interval.

407

Name Default Description

org.opennms.timeseries.query.
parallelism

Number
of cores

Maximum number of threads that can be used to
compute aggregates. Defaults to the number of
available cores.

cache.timeseriesPersisterMeta
TagCache.expireAfterRead

300 Expiry time in seconds for MetaTagCache.

cache.timeseriesPersisterMeta
TagCache.maximumSize

8192 Maximum size for MetaTagCache.

cache.timeseriesPersisterMeta
TagCache.recordStats

true Should cache statistics be exposed via JMX for
MetaTagCache?

cache.timeseriesSearcherCache
.expireAfterRead

300 Expiry time in seconds for TimeseriesSearcherCache.

cache.timeseriesSearcherCache
.maximumSize

8192 Maximum size for TimeseriesSearcherCache.

cache.timeseriesSearcherCache
.recordStats

true Should cache statistics be exposed via JMX for
TimeseriesSearcherCache?

cache.timeseriesMetaDataCache
.expireAfterRead

300 Expiry time in seconds for TimeseriesMetaDataCache.

cache.timeseriesMetaDataCache
.maximumSize

8192 Maximum size for TimeseriesMetaDataCache.

cache.timeseriesMetaDataCache
.recordStats

true Should cache statistics be exposed via JMX for
TimeseriesMetaDataCache?

Recommendations

Caches have been introduced to improve performance. You might need to tune the cache settings to
suit your needs. See parameters above.

Name Description

TimeseriesMetaDataCache Caches metadata that uses OpenNMS Meridian internally.

TimeseriesSearcherCache Caches metrics by tag to improve the resource lookup.

TimeseriesPersisterMetaTagC
ache

Caches all additionally configured and resolved meta-tag values by
resource.

The samples gathered by the collectors are temporarily stored in a ring buffer before they are
persisted to the Time Series Integration Layer. The value of the ring_buffer_size should be
increased if you expect large peaks of collectors returning at once or latency in persisting these.
However, note that the memory used by the ring buffer is reserved, and larger values may require
an increased heap size.

408

Expose additional meta tags

Metrics that are stored via the time series plugin contain the minimal set of tags for OpenNMS
Meridian to work. This might not be sufficient if the data is used outside of OpenNMS Meridian as
well. Configure additional meta tags via ${OPENNMS_HOME}/etc/opennms.properties.

The configuration of the tags has the following form: prefix.tagKey=${query expression}

• The prefix is: org.opennms.timeseries.tin.metatags.tag

• The tagKey can by an arbitrary string as long as it doesn’t break the java property file syntax.

• The query expression allows to query the value. Hereby we can make use of the Meta-Data-DSL

Examples: org.opennms.timeseries.tin.metatags.tag.nodelabel=${node:label}
org.opennms.timeseries.tin.metatags.tag.sysObjectID=${node:sys-object-id}

Expose categories by setting org.opennms.timeseries.tin.metatags.exposeCategories to true.

Example: org.opennms.timeseries.tin.metatags.exposeCategories=true will lead to:
Tag("cat_myFirstCategory", "myFirstCategory") Tag("cat_mySecondCategory", "mySecondCategory")

19.8. Daemon Configuration Files
Configuration changes require a restart of OpenNMS and some daemons are able to reload
configuration changes triggered by a daemon reload event. This section gives an overview about all
daemons and the related configuration files and which can be reloaded without restarting
OpenNMS.

19.8.1. Eventd

Internal Daemon
Name

Reload Event

Eventd uei.opennms.org/internal/reloadDaemonConfig -p 'daemonName Eventd'

Table 127. Eventd configuration file overview

File Restart
Required

Reload
Event

Description

eventd-
configuration.x
ml

yes no Configure generic behavior of Eventd, i.e. TCP and UDP port
numbers with IP addresses to listen for Events and socket
timeouts.

eventconf.xml no yes Main configuration file for Eventd.

events/* no yes Out-of-the-box, all files in this folder are included via
include directives in eventconf.xml.

409

https://en.wikipedia.org/wiki/.properties
#ga-meta-data-dsl

19.8.2. Notifd

Internal Daemon
Name

Reload Event

Notifd uei.opennms.org/internal/reloadDaemonConfig -p 'daemonName Notifd'

Table 128. Notifd configuration file overview

File Restart
Required

Reload
Event

Description

notifd-
configuration.xml

no yes Describes auto-acknowledge prefix, e.g. prefix
"RESOLVED: " for nodeUp/nodeDown events.

notificationCommands
.xml

no no Configuration for notification media, e.g. scripts,
XMPP or HTTP Post, immediately applied.

notifications.xml no no Event notification definitions and changes are
immediately applied.

destinationPaths.xml no no Contains paths for notification targets, e.g. JavaMail,
XMPP or external scripts.

users.xml no no Contain pager and address information for
notification destination paths.

groups.xml no no Groups can be used as target for notifications.

javamail-
configuration.proper
ties

no no Configuration to send notification mails via specific
mail servers.

19.8.3. Pollerd

Internal Daemon
Name

Reload Event

Pollerd uei.opennms.org/internal/reloadDaemonConfig -p 'daemonName Pollerd'

Table 129. Pollerd configuration file overview

File Restart
Required

Reload
Event

Description

poller-
configuration.x
ml

yes yes Restart is required in case new monitors are created or
removed. Reload Event loads changed configuration
parameters of existing monitors.

response-
graph.propertie
s

no no Graph definition for response time graphs from monitors

410

File Restart
Required

Reload
Event

Description

poll-
outages.xml

no yes Can be reloaded with
uei.opennms.org/internal/schedOutagesChanged

19.8.4. Syslogd

Internal Daemon
Name

Reload Event

Syslogd uei.opennms.org/internal/reloadDaemonConfig -p 'daemonName Syslogd'

Syslogd reload event stops and starts daemon and loads all the syslogd configuration changes.

Syslog daemon can be reloaded with following shell command on karaf.

$ ssh -p 8101 admin@localhost
...
admin@opennms> opennms:reload-daemon syslogd

19.8.5. Trapd

Internal Daemon
Name

Reload Event

Trapd uei.opennms.org/internal/reloadDaemonConfig -p 'daemonName Trapd'

Trapd reload event stops and starts daemon and loads all the trapd configuration changes.

Trapd daemon can also be reloaded with following shell command on karaf.

$ ssh -p 8101 admin@localhost
...
admin@opennms> opennms:reload-daemon trapd

411

Chapter 20. System Properties
The global behavior of OpenNMS Meridian is configured with properties files. Configuration can
also affect the Java Virtual Machine under which OpenNMS Meridian runs. Changes in these
properties files require a restart of OpenNMS Meridian. The configuration files can be found in
${OPENNMS_HOME}/etc.

The priority for Java system properties is as follows:

1. Those set via the Java command line i.e. in opennms.conf via ADDITIONAL_MANAGER_OPTIONS

2. opennms.properties.d/*.properties

3. opennms.properties

4. libraries.properties

5. rrd-configuration.properties

6. bootstrap.properties

Property files in opennms.properties.d/ are sorted alphabetically.

To avoid conflicts with customized configurations, all custom properties can be
added to one or more files in ${OPENNMS_HOME}/etc/opennms.properties.d/. It is
recommended to avoid modification of OpenNMS properties from the default
installation. Create dedicated files with your customized properties in
opennms.properties.d/.

20.1. Configuring system proxies
System proxy settings may be used with certain OpenNMS Meridian components via the use-system-
proxy or useSystemProxy parameters. To configure system proxy servers, set some or all of the
following properties:

Property Defau
lt

Description

http.proxyHost None Hostname or IP address of proxy server to use for plain HTTP requests

http.proxyPort 3128 TCP port of proxy server to use for plain HTTP requests

https.proxyHost None Hostname or IP address of proxy server to use for HTTPS requests

https.proxyPort 3128 TCP port of proxy server to use for HTTPS requests

http.nonProxyHost
s

None Pipe-separated list of hostnames or IP addresses which bypass HTTP
proxying

https.nonProxyHos
ts

None Pipe-separated list of hostnames or IP addresses which bypass HTTPS
proxying

412

Depending on the JVM in use, the properties http.proxyUser, http.proxyPassword,
and their https.* equivalents may enable the use of proxy servers that require
authentication.

 Setting these properties may have unintended effects. Use with care.

413

Chapter 21. Ticketing
The ticketing integration allows OpenNMS Meridian to create trouble tickets in external systems.
Tickets can be created and updated in response to new and/or resolved alarms.

To activate the ticketing integration, the following properties in
${OPENNMS_HOME}/etc/opennms.properties must be set accordingly:

Property Default Description

opennms.ticketer.plugin NullTickete
rPlugin

The plugin implementation to use. Each ticketer
integration should define which value to set. The
NullTicketerPlugin does nothing when attempting to
create/update/delete tickets.

opennms.alarmTroubleTick
etEnabled

false Defines if the integration is enabled. If enabled various
links to control the issue state is shown on the alarm
details page.

opennms.alarmTroubleTi
cketLinkTemplate

${id} A template to generate a link to the issue, e.g.
http://issues.opennms.org/browse/${id}

21.1. JIRA Ticketing Plugin
The JIRA Ticketing Plugin is used to create JIRA Issues in response to OpenNMS Meridian alarms.

21.1.1. Setup

First, you’ll need to install the opennms-plugin-ticketer-jira package for your system. The JIRA
ticketing plugin and its dependencies are not part of the core packages.

Now, in order to enable the plugin start by setting following property in
${OPENNMS_HOME}/etc/opennms.properties:

opennms.ticketer.plugin=org.opennms.netmgt.ticketd.OSGiBasedTicketerPlugin

Configure the plugin options by setting the following properties in
${OPENNMS_HOME}/etc/jira.properties:

Name Description

jira.host JIRA Server Url

jira.username Username

jira.password Password

jira.project The key of the project to use. Use jira:list-projects command to determine
the project key.

414

http://issues.opennms.org/browse/${id}
http://issues.opennms.org/browse/${id}
http://issues.opennms.org/browse/${id}
http://issues.opennms.org/browse/${id}
http://issues.opennms.org/browse/${id}

Name Description

jira.type The Issue Type Id to use when opening new issues. Use jira:list-issue-types
command to determine the issue type id.

jira.resolve Name of the transition to use when resolving issues

jira.reopen Name of the transition to use when re-opening issues

jira.status.open Comma-separated list of JIRA status names for which the ticket should be
considered 'Open'

jira.status.close
d

Comma-separated list of JIRA status names for which the ticket should be
considered 'Closed'

jira.status.cance
lled

Comma-separated list of JIRA status names for which the ticket should be
considered 'Cancelled'

jira.cache.reload
Time

The time in milliseconds it takes to reload the fields cache. This is required to
prevent the plugin to read the issue type’s meta data every time an issue is
created. A value of 0 disables the cache. Default value is 300000 (5 minutes).

The transition names for resolve and reopen are typically found on buttons when
looking at the ticket in JIRA

Either use opennms:jist-list-issue-types OSGI Command or
https://confluence.atlassian.com/display/JIRA050/Finding+the+Id+for+Issue+Types
for determining the appropriate issue type id.

Next, add jira-troubleticketer to the featuresBoot property in the
${OPENNMS_HOME}/etc/org.apache.karaf.features.cfg

Restart OpenNMS Meridian.

When OpenNMS Meridian has started again, login to the Karaf Shell and install the feature:

feature:install jira-troubleticketer

The plugin should be ready to use.

21.1.2. Jira Commands

The JIRA Ticketing Plugin provides various OSGI Commands which can be used on the Karaf Shell to
help set up the plugin.

There are OSGI Commands to list all available projects, versions, components, groups, issue types
and even more.

To list all available commands simply type help | grep jira in the Karaf Shell.

415

https://confluence.atlassian.com/display/JIRA050/Finding+the+Id+for+Issue+Types

Afterwards you can type for example opennms:jira-list-projects --help to determine the usage of
a command.

21.1.3. Custom fields

The OpenNMS Meridian Ticketer model is limited to the most common fields provided by all
ticketing systems.

Besides the common fields creator, create date, description or subject, ticket system proprietary
fields usually need to be set.

In some cases, even additional - so called - custom fields are defined.

In order to set these fields, the JIRA Ticketing Plugin provides the possibility to define those in the
OpenNMS Ticket attributes which can be overwritten with the Usage of Drools.

To enable the Drools Ticketing integration, the following property in
${OPENNMS_HOME}/etc/opennms.properties must be set:

opennms.ticketer.servicelayer=org.opennms.netmgt.ticketd.DroolsTicketerServiceLayer

In addition the property in ${OPENNMS_HOME/etc/drools-ticketer.properties must point to a drools-
ticketer-rules.drl file:

drools-ticketer.rules-file=${OPENNMS_HOME/etc/drools-ticketer-rules.drl

Finally a Drools Rule file named drools-ticketer-rules.drl must be placed in ${OPENNMS_HOME}/etc.

The following drools example snippet defines attributes to set custom fields:

// Set ticket defaults
rule "TicketDefaults"
salience 100
 when
 $alarm : OnmsAlarm()
 then
 ticket.setSummary($alarm.logMsg);
 ticket.setDetails($alarm.description);
 ticket.addAttribute("customfield_10111", "custom-value");
 ticket.addAttribute("customfield_10112", "my-location");
 ticket.addAttribute("customfield_10113", "some classification");
end

Fields must be referenced by their id. To identify the id of a field, the opennms:jira-list-fields
command can be used. By default only custom fields are shown. The -s options allows to show all
fields. This may be necessary if JIRA default values need to be set as well, e.g. the Component, the
Reporter, the Asignee, etc. Even the project key or issue type can be defined differently than

416

originally in the jira.properties.

The OpenNMS Ticketer Attribute model only allows to set a String value. However the JIRA model is
slightly different. Therefore each String value must be converted to a JIRA field type. The following
table describes valid values for an OpenNMS attribute.

Type Description

any Any string.

date Any date in the format of YYYY-MM-DD.

datetime Any datetime in ISO 8601 format: YYYY-MM-DDThh:mm:ss.sTZD.

group The name of the group.

user The name of the user.

project The key of the project (e.g. NMS)

version The name of the version. To list all available versions, use jira:list-versions.

string Any string.

option The name of the option.

issuetype The name of the issuetpye, e.g. Bug. To list all issue types, use jira:list-issue-
types.

priority The name of the priority, e.g. Major. To list all priorites, use jira:list-priorities.

option-with-
child

Either the name of the option, or a comma separated list (e.g. parent,child).

number Any valid number (e.g. 1000)

array If the type is array the value must be of the containing type. E.g. to set a custom
field which defines multiple groups, the value jira-users,jira-administrators is
mapped properly. The same is valid for versions: 18.0.3,19.0.0.

As described above the values are usually identified by their name instead of their id (projects are
identified by their key). This is easier to read, but may break the mapping code, if for example the
name of a component changes in the future. To change the mapping from name (or key) to id an
entry in jira.properties must be made:

jira.attributes.customfield_10113.resolution=id

To learn more about the Jira REST API please consult the following pages:

• https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-
example-create-issue#JIRARESTAPIExample-CreateIssue-MultiSelect

• https://docs.atlassian.com/jira/REST/cloud/

417

https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-example-create-issue#JIRARESTAPIExample-CreateIssue-MultiSelect
https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-example-create-issue#JIRARESTAPIExample-CreateIssue-MultiSelect
https://docs.atlassian.com/jira/REST/cloud/

The following jira (custom) fields have been tested with jira version 6.3.15:

• Checkboxes

• Date Picker

• Date Time Picker

• Group Picker (multiple groups)

• Group Picker (single group)

• Labels

• Number Field

• Project Picker (single project)

• Radio Buttons

• Select List (cascading)

• Select List (multiple choices)

• Select List (single choice)

• Text Field (multi-line)

• Text Field (read only)

• Text Field (single line)

• URL Field

• User Picker (multiple user)

• User Picker (single user)

• Version Picker (multiple versions)

• Version Picker (single version)

 All other field types are mapped as is and therefore may not work.

Examples

The following output is the result of the command opennms:jira-list-fields -h

http://localhost:8080 -u admin -p testtest -k DUM -i Bug -s and lists all available fields for
project with key DUM and issue type Bug:

418

http://localhost:8080

Name Id Custom Type
Affects Version/s versions false array
Assignee assignee false user
Attachment attachment false array
Component/s components false array ①
Description description false string
Environment environment false string
Epic Link customfield_10002 true any
Fix Version/s fixVersions false array ②
Issue Type issuetype false issuetype ③
Labels labels false array
Linked Issues issuelinks false array
Priority priority false priority ④
Project project false project ⑤
Reporter reporter false user
Sprint customfield_10001 true array
Summary summary false string
custom checkbox customfield_10100 true array ⑥
custom datepicker customfield_10101 true date

① Defined Components are core, service, web

② Defined versions are 1.0.0 and 1.0.1

③ Defined issue types are Bug and Task

④ Defined priorities are Major and Minor

⑤ Defined projects are NMS and HZN

⑥ Defined options are yes, no and sometimes

The following snipped shows how to set the various custom fields:

ticket.addAttribute("components", "core,web"); ①
ticket.addAttribute("assignee", "ulf"); ②
ticket.addAttribute("fixVersions", "1.0.1"); ③
ticket.addAttribte("issueType", "Task"); ④
ticket.addAttribute("priority", "Minor"); ⑤
ticket.addAttribute("project", "HZN"); ⑥
ticket.addAttribute("summary", "Custom Summary"); ⑦
ticket.addAttribute("customfield_10100", "yes,no"); ⑧
ticket.addAttribute("customfield_10101", "2016-12-06"); ⑨

① Sets the components of the created issue to core and web.

② Sets the Asignee of the issue to the user with login ulf.

③ Sets the fix version of the issue to 1.0.1

④ Sets the issue type to Task, overwriting the value of jira.type.

⑤ Sets the priority of the created issue to Minor.

⑥ Sets the project to HZN, overwriting the value of jira.project.

419

⑦ Sets the summary to Custom Summary, overwriting any previous summary.

⑧ Checks the checkboxes yes and no.

⑨ Sets the value to 2016-12-06.

21.1.4. Troubleshooting

When troubleshooting, consult the following log files:

• ${OPENNMS_HOME}/data/log/karaf.log

• ${OPENNMS_HOME}/logs/trouble-ticketer.log

You can also try the opennms:jira-verify OSGI Command to help identifying problems in your
configuration.

21.2. Remedy Ticketing Plugin
The Remedy Ticketing Plugin is used to create requests in the BMC Remedy ARS Help Desk Module
in response to OpenNMS Meridian alarms.

21.2.1. Remedy Product Overview

It’s important to be specific when discussing Remedy, because BMC Remedy is a suite of products.
The OpenNMS Meridian Remedy Ticketing Plugin requires the core Remedy ARS and the Help Desk
Module. The Help Desk Module contains a Help Desk Interface Web Service, which serves as the
endpoint for creating, updating, and fetching tickets.

The Help Desk Interface (HDI) Web Service requires extensive configuration for its basic operation,
and may need additional customization to interoperate with the OpenNMS Meridian Remedy
Ticketing Plugin. Contact your Remedy administrator for help with required configuration tasks.

21.2.2. Supported Remedy Product Versions

Currently supported Remedy product versions are listed below:

Product Version

Remedy ARS 7.6.04 Service Pack 2

Help Desk Module 7.6.04 Service Pack 1

HDI Web Service Same as Help Desk Module

21.2.3. Setup

The Remedy Ticketing Plugin and its dependencies are part of the OpenNMS Meridian core
packages.

Start by enabling the plugin and the ticket controls in the OpenNMS Meridian web interface, by
setting the following properties in ${OPENNMS_HOME}/etc/opennms.properties:

420

opennms.ticketer.plugin=org.opennms.netmgt.ticketer.remedy.RemedyTicketerPlugin
opennms.alarmTroubleTicketEnabled = true

In the same file, set the property opennms.alarmTroubleTicketLinkTemplate to a value appropriate for
constructing a link to tickets in the Remedy web interface. A sample value is provided but must be
customized for your site; the token ${id} will be replaced with the Remedy ticket ID when the link
is rendered.

Now configure the plugin itself by setting the following properties in
${OPENNMS_HOME}/etc/remedy.properties:

Name Requi
red

Description

remedy.username requir
ed

Username for authenticating to Remedy

remedy.password requir
ed

Password for authenticating to Remedy

remedy.authentication option
al

Authentication style to use

remedy.locale option
al

Locale for text when creating and updating tickets

remedy.timezone option
al

Timezone for interaction with Remedy

remedy.endpoint requir
ed

The endpoint URL of the HPD web service

remedy.portname requir
ed

The Port name of the HPD web service

remedy.createendpoint requir
ed

The endpoint location of the Create-HPD web service

remedy.createportname requir
ed

The Port name of the Create-HPD web service

remedy.targetgroups option
al

Colon-separated list of Remedy groups to which created
tickets may be assigned ({group} below refers to values from
this list)

remedy.assignedgroup.{grou
p}

option
al

Assigned group for the target group {group}

remedy.assignedsupportcomp
any.{group}

option
al

Assigned support company for the target group {group}

421

Name Requi
red

Description

remedy.assignedsupportorga
nization.{group}

option
al

Assigned support organization for the target group {group}

remedy.assignedgroup requir
ed

Default group to assign the ticket in case the ticket itself lacks
information about a target assigned group

remedy.firstname requir
ed

First name for ticket creation and updating. Must exist in
Remedy.

remedy.lastname requir
ed

Last name for ticket creation and updating. Must exist in
Remedy.

remedy.serviceCI requir
ed

A valid Remedy Service CI for ticket creation

remedy.serviceCIReconID requir
ed

A valid Remedy Service CI Reconciliation ID for ticket creation

remedy.assignedsupportcomp
any

requir
ed

A valid default assigned support company for ticket creation

remedy.assignedsupportorga
nization

requir
ed

A valid default assigned support organization for ticket
creation

remedy.categorizationtier1 requir
ed

A valid categorization tier (primary) for ticket creation

remedy.categorizationtier2 requir
ed

A valid categorization tier (secondary) for ticket creation

remedy.categorizationtier3 requir
ed

A valid categorization tier (tertiary) for ticket creation

remedy.serviceType requir
ed

A valid service type for ticket creation

remedy.reportedSource requir
ed

A valid Reported Source for ticket creation

remedy.impact requir
ed

A valid value for Impact, used in ticket creation

remedy.urgency requir
ed

A valid value for Urgency, used in ticket creation

remedy.reason.reopen requir
ed

The reason code set in Remedy when the ticket is reopened in
OpenNMS Meridian

remedy.resolution requir
ed

The reason code set in Remedy when the ticket is closed in
OpenNMS Meridian

422

Name Requi
red

Description

remedy.reason.cancelled requir
ed

The reason code set in Remedy when the ticket is cancelled in
OpenNMS Meridian

The values for many of the required properties are site-specific; contact your
Remedy administrator for assistance.

Restart OpenNMS Meridian.

The plugin should be ready to use. When troubleshooting, consult the following log files:

• ${OPENNMS_HOME}/logs/trouble-ticketer.log

21.3. TSRM Ticketing Plugin
The TSRM Ticketing Plugin is used to create TSRM incidents in response to OpenNMS Meridian
alarms.

21.3.1. Setup

In order to enable the plugin start by setting following property in
${OPENNMS_HOME}/etc/opennms.properties:

opennms.ticketer.plugin=org.opennms.netmgt.ticketd.OSGiBasedTicketerPlugin

Configure the plugin options by setting the following properties in
${OPENNMS_HOME}/etc/tsrm.properties:

Name Description

tsrm.url TSRM Endpoint URL

tsrm.ssl.strict Strict SSL Check (true/false)

tsrm.status.open TSRM status for open ticket

tsrm.status.close TSRM status for close ticket

Next, add tsrm-troubleticketer to the featuresBoot property in the
${OPENNMS_HOME}/etc/org.apache.karaf.features.cfg

Restart OpenNMS.

When OpenNMS has started again, login to the Karaf Shell and install the feature:

feature:install tsrm-troubleticketer

423

The plugin should be ready to use. When troubleshooting, consult the following log files:

• ${OPENNMS_HOME}/data/log/karaf.log

• ${OPENNMS_HOME}/logs/trouble-ticketer.log

21.3.2. Mapping OpenNMS Ticket with TSRM Incident

Following tables shows mapping between OpenNMS ticket and TSRM Incident

Ticket
Field

TSRM Incident Field

id TICKETID

state STATUS

summary DESCRIPTION

details DESCRIPTIONLONGDESCRIPTION

user REPORTEDBY

Below fields are not part of Ticket, they have to be added as attributes.

Ticket Field TSRM Incident
Field

affectedPerson AFFECTEDPERSON

assetNum ASSETNUM

classId CLASS

classStructureId CLASSSTRUCTUREID

commodity COMMODITY

location LOCATION

ownerGroup OWNERGROUP

shsCallerType SHSCALLERTYPE

shsReasonForOutage SHSREASONFOROUTAGE

shsResolution SHSRESOLUTION

shsRoomNumber SHSROOMNUMBER

siteId SITEID

source source

statusIface STATUSIFACE

424

Chapter 22. Enabling RMI
By default, the RMI port in the OpenNMS Meridian server is disabled, for security reasons. If you
wish to enable it so you can access OpenNMS Meridian through jconsole, remote-manage OpenNMS
Meridian, or use the remote poller over RMI, you will have to add some settings to the default
OpenNMS Meridian install.

22.1. Enabling RMI
To enable the RMI port in OpenNMS Meridian, you will have to add the following to the
${OPENNMS_HOME}/etc/opennms.conf file. If you do not have an opennms.conf file, you can create it.

Configure remote JMX
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.port=18980"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.local.only=false"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.authenticate=true"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.ssl=false"

Listen on all interfaces
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dopennms.poller.server.serverHost=0.0.0.0"
Accept remote RMI connections on this interface
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Djava.rmi.server.hostname=<your-server-ip-address>"

This tells OpenNMS Meridian to listen for RMI on port 18980, and to listen on all interfaces.
(Originally, RMI was only used for the Remote Poller, so despite the porperty name mentioning the
"opennms poller server" it applies to RMI as a whole.) Note that you must include the
-Djava.rmi.server.hostname= option or OpenNMS Meridian will accept connections on the RMI port,
but not be able to complete a valid connection.

Authentication will only be allowed for users that are in the admin role (i.e. ROLE_ADMIN), or the jmx
role (i.e. ROLE_JMX). To make a user an admin, be sure to add only the ROLE_ADMIN role to the user in
users.xml. To add the jmx role to the user, add the ROLE_JMX role to the user in users.xml, and also the
ROLE_USER role if is required to provide access to the WebUI.

Make sure $OPENNMS_HOME/etc/jmxremote.access has the appropriate settings:

admin readwrite
jmx readonly

The possible types of access are:

425

readwrite

Allows retrieving JMX metrics as well as executing MBeans.

readonly

Allows retrieving JMX metrics but does not allow executing MBeans, even if they just return
simple values.

22.2. Enabling SSL
To enable SSL on the RMI port, you will need to have an existing keystore for the OpenNMS
Meridian server. For information on configuring a keystore, please refer to the official OpenNMS
Meridian Wiki article Standalone HTTPS with Jetty.

You will need to change the com.sun.management.jmxremote.ssl option to true, and tell OpenNMS
Meridian where your keystore is.

Configure remote JMX
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.port=18980"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.local.only=false"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.authenticate=true"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.ssl=true"

Configure SSL Keystore
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Djavax.net.ssl.keyStore=/opt/opennms/etc/opennms.keystore"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Djavax.net.ssl.keyStorePassword=changeit"

Listen on all interfaces
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dopennms.poller.server.serverHost=0.0.0.0"
Accept remote RMI connections on this interface
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Djava.rmi.server.hostname=<your-server-ip-address>"

22.3. Connecting to RMI over SSL
Note that if you are using a self-signed or otherwise untrusted certificate, you will need to configure
a truststore on the client side when you attempt to connect over SSL-enabled RMI. To create a
truststore, follow the example in the HTTPS client instructions in the operator section of the
manual. You may then use the truststore to connect to your OpenNMS Meridian RMI server.

For example, when using jconsole to connect to the OpenNMS Meridian RMI interface to get JVM
statistics, you would run:

426

http://wiki.opennms.org/wiki/Standalone_HTTPS_with_Jetty

jconsole -J-Djavax.net.ssl.trustStore=/path/to/opennms.truststore -J
-Djavax.net.ssl.trustStorePassword=changeit

427

Chapter 23. Minion

23.1. Using JMS
By default, OpenNMS Meridian uses the JMS protocol with an ActiveMQ broker to communicate
with Minions. This is used for both issuing remote procedure calls (RPCs, ie. ping this host) and for
transporting unsolicited messages such as SNMP traps and syslog messages. OpenNMS Meridian
provides an embedded ActiveMQ broker to help simplify installation.

It is also possible (and recommended for large installations) to use an external
broker.

23.1.1. Tuning the ActiveMQ broker

The settings for the embedded ActiveMQ broker are found in $OPENNMS_HOME/etc/opennms-

activemq.xml. Memory and storage limits are conservative by default and should be tuned to
accommodate your workload. Consider increasing the memoryUsage (defaults to 20MB) to 512MB or
greater, assuming you have enough heap available.

If the memory limit is reached, flow control will prevent messages from being
published to the broker.

23.1.2. Monitoring the ActiveMQ broker using the Karaf shell

The opennms:activemq-stats command available via the Karaf shell can be used to show statistics
about the embedded broker:

opennms:activemq-stats

If the command is not available, try installing the feature using feature:install
opennms-activemq-shell

This command reports some high level broker statistics as well as message, enqueue and dequeue
counts for the available queues. Pay close attention to the memory usage that is reported. If the
usage is high, use the queue statistics to help isolate which queue is consuming most of the memory.

The opennms:activemq-purge-queue command can be used to delete all of the available messages in a
particular queue:

opennms:activemq-purge-queue OpenNMS.Sink.Trap

23.1.3. Authentication and authorization with ActiveMQ

The embedded ActiveMQ broker is pre-configured to authenticate clients using the same
authentication mechanisms (JAAS) as the OpenNMS Meridian web application.

428

https://activemq.apache.org/producer-flow-control.html

Users associated with the ADMIN role can read, write or create any queue or topic.

Users associated with the MINION role are restricted in such a way that prevents them from making
RPC requests to other locations, but can otherwise read or write to the queues they need.

See the authorizationPlugin section in $OPENNMS_HOME/etc/opennms-activemq.xml for details.

23.1.4. Multi-tenancy with OpenNMS Meridian and ActiveMQ

The queue names used by OpenNMS Meridian are prefixed with a constant value. If many OpenNMS
Meridian are configured to use the same broker, then these queues would end up being shared
amongst the instances, which is not desired. In order to isolate multiple instances on the same
broker, you can customize the prefix by setting the value of the org.opennms.instance.id system
property to something that is unique per instance.

echo 'org.opennms.instance.id=MyNMS' >
"$OPENNMS_HOME/etc/opennms.properties.d/instance-id.properties"

If you change the instance id setting when using the embedded broker, you will
need to update the authorization section in the broker’s configuration to reflect
the updated prefix.

23.1.5. Tuning the RPC client in OpenNMS

The following system properties can be used to tune the thread pool used to issue RPCs:

General

Name Defa
ult

Description

org.opennms.ipc.rpc.t
hreads

10 Number of threads which are always active.

org.opennms.ipc.rpc.t
hreads.max

20 Maximum number of threads which can be active. These will exit
after remaining unused for some period of time.

org.opennms.ipc.rpc.q
ueue.max

1000 Maximum number of requests to queue. Set to -1 to be unlimited.

Use the opennms:stress-rpc Karaf shell command to help evaluate and tune
performance.

23.1.6. Diagnosing RPC failures

Symptoms of RPC failures may include missed polls, missed data collection attempts and the
inability to provision or re-scan existing nodes. For these reasons, it is important to ensure that RPC
related communication with Minion at the various monitoring locations remains healthy.

429

If you want to verify that a specific location is operating correctly make sure that:

1. Nodes exist and were automatically provisioned for all of the Minions at the location

2. The Minion-Heartbeat, Minion-RPC and JMX-Minion services are online for one or more Minions at
the location

3. Response time graphs for the Minion-RPC service are populated and contain reasonable values

◦ These response time graphs can be found under the 127.0.0.1 response time resource on the
Minion node

◦ Values should typically be under 100ms but may vary based on network latency

4. Resource graphs for the JMX-Minion service are populated and reasonable values

To interactively test RPC communication with a remote location use the opennms:poll command
from the Karaf shell:

opennms:poll -l LOCATION -c org.opennms.netmgt.poller.monitors.IcmpMonitor 127.0.0.1

Replace LOCATION in the command above with the name of the location you want to
test.

23.2. Using AWS SQS
By default, OpenNMS Meridian uses an ActiveMQ broker to communicate with Minions. This broker
is used for both issuing remote procedure calls (RPCs, ie. ping this host) and for transporting
unsolicited messages such as SNMP traps and syslog messages.

AWS SQS can be used as an alternative to ActiveMQ for both remote procedure calls and
transporting the unsolicited messages.

AWS SQS must be enabled on both OpenNMS Meridian and Minion to function.

23.2.1. OpenNMS Meridian Configuration

Enable and configure the AWS SQS on OpenNMS Meridian by using the following commands. The
initialSleepTime property will ensure that messages are not consumed from AWS SQS until the
OpenNMS Meridian system has fully initialized.

echo 'org.opennms.core.ipc.rpc.strategy=sqs
org.opennms.core.ipc.sink.strategy=sqs
org.opennms.core.ipc.sink.initialSleepTime=60000
org.opennms.core.ipc.aws.sqs.aws_region=us-east-1' >
"$OPENNMS_HOME/etc/opennms.properties.d/aws-sqs.properties"

AWS Credentials are required in order to access SQS. The default credential provider chain looks
for credentials in this order:

430

• Environment Variables (i.e. AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY)

• Java system properties (i.e. aws.accessKeyId and aws.secretKey. These keys can be added to
$OPENNMS_HOME/etc/opennms.conf)

• Default credential profiles file (i.e. ~/.aws/credentials)

• Amazon ECS container credentials (i.e. AWS_CONTAINER_CREDENTIALS_RELATIVE_URI)

• Instance profile credentials (i.e. through the metadata service when running on EC2)

Alternatively, the credentials can be specified inside the aws-sqs.properties file:

echo 'org.opennms.core.ipc.aws.sqs.aws_access_key_id=XXXXXXXXXXX
org.opennms.core.ipc.aws.sqs.aws_secret_access_key=XXXXXXXXXXX' >>
"$OPENNMS_HOME/etc/opennms.properties.d/aws-sqs.properties"

When running OpenNMS inside AWS, it is possible to use the default provider chain with an IAM
Role to avoid hard coding the AWS Credentials on a configuration file. The following shows an
example of the role that should be associated with the EC2 instance on which OpenNMS is going to
run:

If you require consistent ordering of the messages, you should use FIFO queues instead of Standard
queues. You can enable FIFO queues by adding the following parameter to the aws-sqs.properties
file referenced above:

org.opennms.core.ipc.aws.sqs.sink.FifoQueue=true

Restart OpenNMS Meridian to apply the changes.

431

23.2.2. Minion Configuration

Enable the AWS SQS on Minion using:

echo '!minion-jms
!opennms-core-ipc-rpc-jms
!opennms-core-ipc-sink-camel
opennms-core-ipc-rpc-aws-sqs
opennms-core-ipc-sink-aws-sqs' > "$MINION_HOME/etc/featuresBoot.d/aws-sqs.boot"

The snippet above prevents the default JMS related features from starting and
loads the SQS related features instead.

Next, configure AWS SQS on Minion using:

echo 'aws_region=us-east-1
aws_access_key_id=XXXXXXXXXXX
aws_secret_access_key=XXXXXXXXXXX' >
"$MINION_HOME/etc/org.opennms.core.ipc.aws.sqs.cfg"

The AWS credentials are required. If they are not specified on the configuration file, the default
credentials provider chain (explained above) will be used instead.

If you require consistent ordering to the messages, you should use FIFO queues instead of Standard
queues. You can enable FIFO queues by adding the following parameter to the
org.opennms.core.ipc.aws.sqs.cfg file referenced above:

sink.FifoQueue=true

Restart Minion to apply the changes.

 AWS credentials are required when the Minion is not running inside a VPC.

The Minion SQS settings must match what OpenNMS currently has. This is
particularly critical for the FifoQueue setting.

23.2.3. SQS Configuration Settings

From the Amazon SQS Documentation, the following tables list parameters which can be added to
either Minion (via MINION_HOME/etc/org.opennms.core.ipc.aws.sqs.cfg) or OpenNMS Meridian (via
OPENNMS_HOME/etc/opennms.properties.d/aws-sqs.properties), along with the correct syntax for each
environment.

432

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Sink Settings

Queues used for reception of unsolicited messages (e.g. SNMP traps, syslog messages) are
configured by setting properties with sink prepended to the SQS parameter name:

Parameter Notes OpenNMS Meridian Minion

DelaySeconds Default: 0 seconds org.opennms.core.ipc.a
ws.sqs.sink.DelaySecon
ds

sink.DelaySeconds

MaximumMessageSize Default: 262144 bytes org.opennms.core.ipc.a
ws.sqs.sink.MaximumMes
sageSize

sink.MaximumMessageSiz
e

MessageRetentionPeriod Default: 1209600
seconds

org.opennms.core.ipc.a
ws.sqs.sink.MessageRet
entionPeriod

sink.MessageRetentionP
eriod

ReceiveMessageWaitTime
Seconds

Default: 10 seconds (for
OpenNMS)

org.opennms.core.ipc.a
ws.sqs.sink.ReceiveMes
sageWaitTimeSeconds

sink.ReceiveMessageWai
tTimeSeconds

VisibilityTimeout Default: 30 seconds org.opennms.core.ipc.a
ws.sqs.sink.Visibility
Timeout

sink.VisibilityTimeout

Policy - org.opennms.core.ipc.a
ws.sqs.sink.Policy

sink.Policy

RedrivePolicy - org.opennms.core.ipc.a
ws.sqs.sink.RedrivePol
icy

sink.RedrivePolicy

KmsMasterKeyId - org.opennms.core.ipc.a
ws.sqs.sink.KmsMasterK
eyId

sink.KmsMasterKeyId

KmsDataKeyReusePeriodS
econds

- org.opennms.core.ipc.a
ws.sqs.sink.KmsDataKey
ReusePeriodSeconds

sink.KmsDataKeyReusePe
riodSeconds

FifoQueue Default: false org.opennms.core.ipc.a
ws.sqs.sink.FifoQueue

sink.FifoQueue

ContentBasedDeduplicat
ion

Valid only when
sink.FifoQueue is true

org.opennms.core.ipc.a
ws.sqs.sink.ContentBas
edDeduplication

sink.ContentBasedDedup
lication

RPC Settings

Queues used for provisioning, service polling, data collection, and other concerns apart from
unsolicited message reception are configured by setting properties with rpc prepended to the SQS
parameter name:

433

Parameter Notes OpenNMS Meridian Minion

DelaySeconds Default: 0 seconds org.opennms.core.ipc.a
ws.sqs.rpc.DelaySecond
s

rpc.DelaySeconds

MaximumMessageSize Default: 262144 bytes org.opennms.core.ipc.a
ws.sqs.rpc.MaximumMess
ageSize

rpc.MaximumMessageSize

MessageRetentionPeriod Default: 1209600
seconds

org.opennms.core.ipc.a
ws.sqs.rpc.MessageRete
ntionPeriod

rpc.MessageRetentionPe
riod

ReceiveMessageWaitTime
Seconds

Default: 10 seconds (for
OpenNMS)

org.opennms.core.ipc.a
ws.sqs.rpc.ReceiveMess
ageWaitTimeSeconds

rpc.ReceiveMessageWait
TimeSeconds

VisibilityTimeout Default: 30 seconds org.opennms.core.ipc.a
ws.sqs.rpc.VisibilityT
imeout

rpc.VisibilityTimeout

Policy - org.opennms.core.ipc.a
ws.sqs.rpc.Policy

rpc.Policy

RedrivePolicy - org.opennms.core.ipc.a
ws.sqs.rpc.RedrivePoli
cy

rpc.RedrivePolicy

KmsMasterKeyId - org.opennms.core.ipc.a
ws.sqs.rpc.KmsMasterKe
yId

rpc.KmsMasterKeyId

KmsDataKeyReusePeriodS
econds

- org.opennms.core.ipc.a
ws.sqs.rpc.KmsDataKeyR
eusePeriodSeconds

rpc.KmsDataKeyReusePer
iodSeconds

FifoQueue Default: false org.opennms.core.ipc.a
ws.sqs.rpc.FifoQueue

rpc.FifoQueue

ContentBasedDeduplicat
ion

Valid only when
rpc.FifoQueue is true

org.opennms.core.ipc.a
ws.sqs.rpc.ContentBase
dDeduplication

rpc.ContentBasedDedupl
ication

When FIFO queues are not required, there is no need to add FifoQueue=false to the
configuration files, as this is the default behavior.

23.2.4. Managing Multiple Environments

In order to support multiple OpenNMS Meridian environments in a single AWS region, the
aws_queue_name_prefix property can be used to prefix the queue names.

For example, if we set this property to be "PROD", the queue names will resemble PROD-OpenNMS-
Sink-Heartbeat, instead of OpenNMS-Sink-Heartbeat.

 This property must be properly configured at OpenNMS Meridian and Minion side.

434

23.2.5. AWS Credentials

The credentials (a.k.a. the Access Key ID and the Secret Access Key) are required in both sides,
OpenNMS and Minion.

In order to create credentials just for accessing SQS resources, follow this procedure:

• From the AWS Console, choose the appropriate region.

• Open the IAM Dashboard and click on "Add user".

• Choose a name for the user, for example opennms-minion.

• Check only Programmatic access for the Access type.

• On the permissions, click on Attach existing policies directly.

• On the search bar, write SQS, and then check on AmazonSQSFullAccess.

• Click on Create User

Finally, either click on Download .csv or click on "Show" to grab a copy of the Access key ID, and the
Secret access key.

23.2.6. Limitations

There are a number of limitations when using AWS SQS, in particular:

• A message can include only XML, JSON, and unformatted text. The following Unicode characters
are allowed: #x9 | #xA | #xD | #x20 to #xD7FF | #xE000 to #xFFFD | #x10000 to #x10FFFF. Any
characters not included in this list are rejected.

• The minimum message size is 1 byte (1 character). The maximum is 262,144 bytes (256 KB).

435

• Without batching, FIFO queues can support up to 300 messages per second (300 send, receive,
or delete operations per second).

See Amazon SQS Limits for further details.

Location names

Queue names in AWS SQS are limited to 80 characters. When issuing remote procedure calls, the
target location is used a part of the queue name. For this reason, it is important that:

• The length of the location name and queue name prefix (if used) must not exceed 32 characters
in aggregate.

• Both the location name and queue name prefix (if used) may only contain alphanumeric
characters, hyphens (-), and underscores (_). :imagesdir: ../../images

23.3. Using Off-heap Storage for Sink Messages
If a Minion loses connectivity with the broker (i.e. Kafka or ActiveMQ), then any received messages
(i.e. syslog, flows, SNMP traps) are queued until connectivity is restored. This queue is limited by a
fixed (and configurable) number of messages queued in the JVM heap and can optionally queue
additional messages by persisting directly to the filesystem avoiding heap memory usage. Once the
queue is full, additional messages will be dropped.

The off-heap storage feature allows us to extend the storage capacity by queuing messages outside
of the JVM heap.

23.3.1. Configuring Off-heap Storage

Configure storage limits:

echo 'offHeapSize = 1GB
entriesAllowedOnHeap = 100000
offHeapFilePath =' > "$MINION_HOME/etc/org.opennms.core.ipc.sink.offheap.cfg"

A file will be created for each module and the configuration will be applied to each module
individually. Therefore setting a size of 1GB for example means that the maximum size for each
module’s file is 1GB not that the total for all modules is 1GB.

The number of entries allowed to be queued on the heap can be controlled by setting the
entriesAllowedOnHeap value.

Specify offHeapSize in KB, MB or GB. For ex: 1, 128MB, 65536KB. The size specified must be a power
of 2. For example 128MB is a valid value but 140MB is not.

The offHeapSize can also be left empty or set to 0 to disable queueing off heap. In this case only
heap memory will be used for queueing.

The offHeapFilePath should be set to the path where the queue files should be stored and defaults

436

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-limits.html

to the Karaf data directory if left empty. :imagesdir: ../../images

23.4. Installing JDBC drivers in Minion
For any JDBC service to be detected/polled/collected, corresponding JDBC driver needs to be
installed in Minion. Following are steps to install JDBC driver.

• JDBC driver jar needs to be copied into minion/repositories/default by following maven
repositories pattern. For ex: Mysql driver jar should be placed in
repositories/core/mysql/mysql-connector-java/8.0.15/mysql-connector-java-8.0.15.jar

• Install the JDBC driver jar as a feature. Modify contents of following features-jdbc.xml relevant
to JDBC driver that is getting installed. Copy features-jdbc.xml file into ${MINION_HOME}/deploy/.
Multiple JDBC drivers can be added to this file each one as a new feature.

features-jdbc.xml

<?xml version="1.0" encoding="UTF-8"?>
<features
 name="opennms-${project.version}"
 xmlns="http://karaf.apache.org/xmlns/features/v1.4.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://karaf.apache.org/xmlns/features/v1.4.0
http://karaf.apache.org/xmlns/features/v1.4.0"
>
 <!-- Bootstrap mysql bundle to get loaded by default in minion -->
 <feature name="mysql-bundle" version="8.0.15" install="auto">
 <bundle>wrap:mvn:mysql/mysql-connector-java/8.0.15</bundle>
 </feature>
</features>

• Restart Minion with : systemctl restart minion and that should load the JDBC driver. :imagesdir:
../../images

23.5. Time to Live (TTL) for RPCs
Remote procedure calls (RPCs) between OpenNMS Meridian and Minion include a time limit which,
if exceeded, aborts the requests and discards any subsequent responses. We call this limit the time-
to-live or TTL. We make an effort to use logical values where possible and provide means to
configure the TTLs for circumstances where the default values are not suitable (i.e. for interacting
with devices or locations with high latency).

Our modules and services have different rules for determining the TTL.

To troubleshoot TTLs, consider enabling the OpenTracing integration on both
OpenNMS Meridian and Minion.

437

#opentracing

23.5.1. TTLs in Pollerd & Collectd

The TTL used when invoking monitors and collectors remotely is:

1. The value from the ttl parameter associated with the service

2. Fall-back to using the service interval as the TTL (this is the rate at which the service is
scheduled)

These rules apply to all monitors and collectors, excluding the SnmpCollector.

23.5.2. TTLs for the SNMP Collector

The TTL used when invoking the SnmpCollector remotely is:

1. The value of the ttl associate with the SNMP agent’s configuration

2. Fall-back to using the service interval as the TTL (this is the rate at which the service is
scheduled)

23.5.3. TTLs for the other SNMP communication

The TTL used when invoking other types of SNMP requests remotely is:

1. The value of the ttl associate with the SNMP agent’s configuration

2. Fall-back to using the service interval as the TTL (this is the rate at which the service is
scheduled)

These rules apply to SNMP queries like agent scans in provisiond, table scans in
enlinkd, etc…

23.5.4. TTLs for Provisiond Detectors

The TTL used when invoking detectors remotely is:

1. The value from the ttl parameter associated with the detector

2. Fall-back to using the global default TTL

23.5.5. Global TTL

For cases where we cannot derive a suitable TTL, a global value is used wich defaults to 20000 (20
seconds). This value can be configured. When using the JMS-based RPC implementation, set value of
the org.opennms.jms.timeout system property to the desired number of milliseconds. When using
the Kafka-based RPC implementation, set the value of the org.opennms.core.ipc.rpc.kafka.ttl
system property to the desired number of milliseconds.

23.5.6. Using meta-data for TTLs

For RPCs that derive TTLs from service parameters, the meta-data feature can be used to customize
these values on a node/interface/service basis.

438

#ga-meta-data

For example, the ICMP detector could be configured to use the value of the ttl associated with the
node meta-data, or default to 30 seconds if none is setup as follows:

<detector name="ICMP" class="org.opennms.netmgt.provision.detector.icmp.IcmpDetector">
 <parameter key="ttl" value="${requisition:ttl|300000}"/>
</detector>

439

Chapter 24. Sentinel
The goal of Sentinel is to scale out and distribute individual components from OpenNMS Meridian.

The sentinel feature is still in development and this is only a very rough
documentation, not covering all aspects. Please refer to the Limitations section for
more details

24.1. Limitations
Currently Sentinel is in a very early state of development and therefore the usage is limited:

• Only allows distribution of Telemetryd functionality (such as processing flows, or use the
existing telemetry adapters to store measurements data to Newts)

• Requires a Minion to work as a (message) producer

• In most cases, it is advised to disable those adapters and listeners in OpenNMS Meridian if they
are also running by a Sentinel instance.

24.2. Installation
If Minion is working, the ground work for Sentinel is already done. For more details on how to
install Sentinel refer to the Installation Guide.

24.3. Clean Start
On each start the cache of the Sentinel is cleared, that means the container returns in it’s original
state. To disable this functionality set karaf.clean.cache = false in
${SENTINEL_HOME}/etc/system.properties.

24.4. Configuration
It is assumed, that the Sentinel container is running on a different system than the OpenNMS
Meridian and Minion. Therefore at least the following configurations are necessary:

• Configure the datasource to connect to the Postgres database

• Configure the controller (identity and connection to communicate with OpenNMS - same as for
Minion)

• Configure the communication layer (for now either JMS or Kafka)

• Install features

24.4.1. Configure the datasource

This is required in order to have Sentinel connect to the PostgreSQL database OpenNMS Meridian.

440

config:edit org.opennms.netmgt.distributed.datasource
config:property-set datasource.url jdbc:postgresql://<db-host>:<db-port>/<db-name>
config:property-set datasource.username <db-user>
config:property-set datasource.password <db-password>
config:property-set datasource.databaseName <db-name>
config:update

24.4.2. Configure the controller

config:edit org.opennms.sentinel.controller
config:property-set location SENTINEL ①
config:property-set id 00000000-0000-0000-0000-000000ddba11 ②
config:property-set http-url http://127.0.0.1:8980/opennms ③
config:property-set broker-url failover:tcp://127.0.0.1:61616 ④
config:update

① used only for tracing, must be provided

② used only for tracing, must be provided

③ url which points to OpenNMS Meridian (required)

④ url which points to the OpenNMS Meridian Active MQ Broker (only required if using feature
sentinel-jms, otherwise may be omitted)

Basically the same properties as for the Minion Controller are supported, but must
be placed in config file org.opennms.sentinel.controller.cfg instead of
org.opennms.minion.controller.cfg.

24.4.3. Configure Connectivity

By default the Sentinel consumes messages from the OpenNMS Meridian ActiveMQ Broker. See
Configure the Controller for more details.

As with Minion the Sentinel can also be configured to consume messages from Kafka

Using Kafka

When Using Sentinel with Kafka the same rules for using Kafka with Minions apply.

Kafka Configuration

Each Minion works as a Producer and must be configured beforehead. Please refer to section
Minion Kafka Producer Configuration on how to configure Minion as a Kafka Producer.

Each Sentinel works as a Consumer and can be configured in the file
${SENTINEL_HOME}/etc/org.opennms.core.ipc.sink.kafka.consumer.cfg. Either manually or via the
config:edit org.opennms.core.ipc.sink.kafka.consumer statement. For supported properties, see
here

441

https://kafka.apache.org/10/documentation.html#newconsumerconfigs

By default each Kafka Consumer starts consuming messages immediately after the feature has been
started. It is possible to set a property org.opennms.core.ipc.sink.initialSleepTime to define an
initial sleep time in ms before any messages are consumed. In order to set this up, please add an
entry to the end of the file ${SENTINEL_HOME}/etc/system.properties:

Initial delay of 5 seconds before consuming of messages is started in milliseconds
org.opennms.core.ipc.sink.initialSleepTime=5000

24.4.4. Available features

The following list contains some features which may be installed manually:

Feature Required Description

sentinel-core true Base feature, installing all
required bundles such as
opennms:health-check and
service requirements for other
bundles, e.g. sentinel-
persistence.

sentinel-jms false Provides connectivity to the
OpenNMS Meridian ActiveMQ
Broker.

sentinel-kafka false Provides connectivity to Kafka.

sentinel-flows false Feature which starts all
dependencies to start
processing flows.

sentinel-newts false Provides functionality to persist
measurement data to Newts.

sentinel-telemetry-nxos false Allows using the NxosGpbAdapter

sentinel-telemetry-jti false Allows using the JtiGpbAdapter

sentinel-telemetry-bmp false Allows using the
BmpTelemetryAdapter

24.4.5. Auto install

In some cases it is desired to automatically configure the Sentinel instance and also start required
features/bundles. As Sentinel is based on Apache Karaf - which supports auto deployment by simply
copying any kind of data to the deploy folder, Sentinel can make use of that mechanism to enable
auto or hot deployment.

In order to do so, in most cases it is sufficient to copy a features.xml file to ${SENTINEL_HOME}/deploy.
This can be done even if the container is running.

442

The chapter Configure Flow Processing contains an example on how to automatically start them
with Sentinel

24.4.6. Auto Start

In some cases it might not be sufficient to auto-deploy/configure the container with a features.xml
file. If more flexibility is required it is suggested to modify/copy .cfg and .properties files directly
to the ${SENTINEL_HOME}/etc directory. To automatically start features with the container, the file
${SENTINEL_HOME}/etc/org.apache.karaf.features.cfg must be updated:

...
featuresBoot = \
 (aries-blueprint, \
 deployer), \
 instance/4.2.2, \
 package/4.2.2, \
 log/4.2.2, \
 scv/2020.1.26, \
 ssh/4.2.2, \
 framework/4.2.2, \
 system/4.2.2, \
 eventadmin/4.2.2, \
 feature/4.2.2, \
 shell/4.2.2, \
 management/4.2.2, \
 service/4.2.2, \
 system/4.2.2, \
 eventadmin/4.2.2, \
 feature/4.2.2, \
 shell/4.2.2, \
 management/4.2.2, \
 service/4.2.2, \
 jaas/4.2.2, \
 shell-compat/4.2.2, \
 diagnostic/4.2.2, \
 wrap, \
 bundle/4.2.2, \
 config/4.2.2, \
 kar/4.2.2, \
 sentinel-jms, \ ①
 sentinel-flows ②

....

① Install and Start JMS communication feature

② Install and Start Sentinel Flows feature

443

24.4.7. Health Check / Troubleshooting

The opennms:health-check command allows to verify the health of the Sentinel container. It performs
various health checks depending on the installed features to calculate the overall container health.
For more information please try opennms:health-check --help.

In order to run the opennms:health-check command, the feature sentinel-core must
be installed.

This is also available in Minion Containers and will replace the now deprecated
command minion:ping.

24.5. Flow Processing
In order to process flows via Sentinel ensure that OpenNMS Meridian, Minion and Sentinel are all
installed according to the official Installation Guide.

Afterwards the following configuration examples help setting everything up.

24.5.1. Configure Sentinel

In order to process flows, Sentinel must start appropriate flow adapters. In Sentinel flow adapters
are configured by either be placing a .cfg file in ${SENTINEL_HOME}/etc or via config:edit statement.

The following example will configure the consumption of Netflow5 flows and saves the
configuration in ${SENTINEL_HOME/etc/org.oennms.features.telemetry.adaters-netflow5.cfg.

First login to the Karaf Shell

$ ssh -p 8301 admin@localhost

admin@sentinel> config:edit --alias netflow5 --factory
org.opennms.features.telemetry.adapters
admin@sentinel> config:property-set name Netflow-5
admin@sentinel> config:property-set adapters.0.name Netflow-5-Adapter
admin@sentinel> config:property-set adapters.0.class-name
org.opennms.netmgt.telemetry.protocols.netflow.adapter.netflow5.Netflow5Adapter
admin@sentinel> config:update

Afterwards the feature sentinel-flows can be installed:

admin@sentinel> feature:install sentinel-jms ①
admin@sentinel> feature:install sentinel-flows

① or sentinel-kafka

444

 Only processing of Netflow5 flows has been tested.

To check everything is working as expected, run the opennms:health-check command, e.g.:

admin@sentinel> opennms:health-check
Verifying the health of the container

Verifying installed bundles [Success]
Connecting to JMS Broker [Success]
Connecting to OpenNMS ReST API [Success]
Retrieving NodeDao [Success]
Connecting to ElasticSearch ReST API (Flows) [Success]

=> Everything is awesome

24.5.2. Configure Minion

The Minion must be configured to listen to incoming flow packages, e.g.:

$ ssh -p 8201 admin@localhost

admin@minion()> config:edit --alias udp-8877 --factory
org.opennms.features.telemetry.listeners
admin@minion()> config:property-set name Netflow-5
admin@minion()> config:property-set class-name
org.opennms.netmgt.telemetry.listeners.UdpListener
admin@minion()> config:property-set parameters.port 8877
admin@minion()> config:property-set parsers.0.name Netflow-5-Parser
admin@minion()> config:property-set parsers.0.class-name
org.opennms.netmgt.telemetry.protocols.netflow.parser.Netflow5UdpParser
admin@minion()> config:update

The name of the listener, in this case Netflow-5 must match with the name of the
adapter configuration in the Sentinel container.

24.5.3. Configure OpenNMS

OpenNMS Meridian must expose its ActiveMQ Broker to have a Minion and Sentinel connect to it.
This can be done in $OPENNMS_HOME/etc/opennms-activemq.xml. For more details please refer to the
Minion Installation Guide.

24.5.4. Auto configure flow processing for Sentinel

The following examples illustrate a features.xml which configures the Sentinel instance and
automatically starts all required features to either consume messages via JMS (ActiveMQ) or Kafka.

445

Simply copy it to ${SENTINEL_HOME}/deploy/.

446

JMS

<?xml version="1.0" encoding="UTF-8"?>
<features
 name="opennms-${project.version}"
 xmlns="http://karaf.apache.org/xmlns/features/v1.4.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://karaf.apache.org/xmlns/features/v1.4.0
http://karaf.apache.org/xmlns/features/v1.4.0"
>
 <!-- Bootstrap feature to start all flow related features automatically -->
 <feature name="autostart-sentinel-flows" version="${project.version}" start-level
="100" install="auto">
 <!-- Configure the controller itself -->
 <config name="org.opennms.sentinel.controller">
 location = SENTINEL
 id = 00000000-0000-0000-0000-000000ddba11
 http-url = http://127.0.0.1:8980/opennms
 broker-url = failover:tcp://127.0.0.1:61616
 </config>

 <!-- Configure datasource connection -->
 <config name="org.opennms.netmgt.distributed.datasource">
 datasource.url = jdbc:postgresql://localhost:5432/opennms
 datasource.username = postgres
 datasource.password = postgres
 datasource.databaseName = opennms
 </config>
 <!--
 Starts the Netflow5Adapter to process Netflow5 Messages.
 Be aware, that this requires a Listener with name "Netflow-5" on the
Minion-side to have messages
 processed properly.
 -->
 <config name="org.opennms.features.telemetry.adapters-netflow5">
 name = Netflow-5
 class-name =
org.opennms.netmgt.telemetry.adapters.netflow.v5.Netflow5Adapter
 </config>
 <!-- Point sentinel to the correct elastic endpoint -->
 <config name="org.opennms.features.flows.persistence.elastic">
 elasticUrl = http://elasticsearch:9200
 </config>
 <!-- Install JMS related features -->
 <feature>sentinel-jms</feature>
 <!-- Install Flow related features -->
 <feature>sentinel-flows</feature>
 </feature>
</features>

447

Kafka

<?xml version="1.0" encoding="UTF-8"?>
<features
 name="opennms-${project.version}"
 xmlns="http://karaf.apache.org/xmlns/features/v1.4.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://karaf.apache.org/xmlns/features/v1.4.0
http://karaf.apache.org/xmlns/features/v1.4.0"
>
 <!-- Bootstrap bootstrap feature to start all flow related features automatically
-->
 <feature name="autostart-sentinel-telemetry-flows" version="${project.version}"
start-level="200" install="auto">
 <!-- Configure the controller itself -->
 <config name="org.opennms.sentinel.controller">
 location = SENTINEL
 id = 00000000-0000-0000-0000-000000ddba11
 http-url = http://127.0.0.1:8980/opennms
 broker-url = failover:tcp://127.0.0.1:61616
 </config>

 <!-- Configure datasource connection -->
 <config name="org.opennms.netmgt.distributed.datasource">
 datasource.url = jdbc:postgresql://localhost:5432/opennms
 datasource.username = postgres
 datasource.password = postgres
 datasource.databaseName = opennms
 </config>
 <!--
 Starts the Netflow5Adapter to process Netflow5 Messages.
 Be aware, that this requires a Listener with name "Netflow-5" on the
Minion-side to have messages
 processed properly.
 -->
 <config name="org.opennms.features.telemetry.adapters-netflow5">
 name = Netflow-5
 class-name =
org.opennms.netmgt.telemetry.adapters.netflow.v5.Netflow5Adapter
 </config>
 <!-- Point sentinel to the correct elastic endpoint -->
 <config name="org.opennms.features.flows.persistence.elastic">
 elasticUrl = http://elasticsearch:9200
 </config>
 <!--
 Configure as Kafka Consumer.
 All properties desribed at
https://kafka.apache.org/0100/documentation.html#newconsumerconfigs are supported.
 -->
 <config name="org.opennms.core.ipc.sink.kafka.consumer">
 group.id = OpenNMS

448

 bootstrap.servers = localhost:9092
 </config>
 <!--
 Configure as Kafka Producer for sending Events from Sentinel.
 All properties desribed at
https://kafka.apache.org/0100/documentation.html#producerconfigs are supported.
 -->
 <config name="org.opennms.core.ipc.sink.kafka">
 bootstrap.servers = localhost:9092
 </config>
 <!-- Install Kafka related features -->
 <feature>sentinel-kafka</feature>
 <!-- Install flow related features -->
 <feature>sentinel-flows</feature>
 </feature>
</features>

24.6. Persisting Collection Sets to Newts
In the previous chapter it is described on how to setup OpenNMS Meridian, Minion and Sentinel in
order to distribute the processing of flows. However, it only covered flow processing adapters, but
there are more, e.g. the NxosGpbAdapter, which can also be run on a Sentinel.

24.6.1. Adapters

This chapter describes the various adapters which may contain sample data which may be stored to
a Persistence Storage and can also run on a Sentinel. At the moment only Newts is supported as a
Persistence Storage. See chapter Configure Newts on how to configure Newts.

In order to get it to work properly, please note, that an apropriate listener on the Minion must also
be configured. The name of the listener should share the same name on Sentinel.

SFlowTelemetryAdapter

In order to use this adapter, the feature sentinel-flows and sentinel-newts must be installed. In
addition either sentinel-jms or sentinel-kafka should be installed and configured properly. See the
previous Flow Processing chapter for more details.

If only sample data should be persisted, the following commands can be run on the Sentinel's Karaf
Shell

$ ssh -p 8301 admin@localhost

449

admin@sentinel> config:edit --alias sflow --factory
org.opennms.features.telemetry.adapters
admin@sentinel> config:property-set name SFlow-Telemetry
admin@sentinel> config:property-set class-name
org.opennms.netmgt.telemetry.adapters.netflow.sflow.SFlowTelemetryAdapter
admin@sentinel> config:property-set parameters.script /opt/sentinel/etc/sflow-
host.groovy
admin@sentinel> config:update

If SFlow flows and the sample data should be processed, multiple adapters can be configured:

config:edit --alias sflow-telemetry --factory org.opennms.features.telemetry.adapters
config:property-set name SFlow
config:property-set adapters.1.name SFlow-Adapter
config:property-set adapters.1.class-name
org.opennms.netmgt.telemetry.adapters.netflow.sflow.SFlowAdapter
config:property-set adapters.2.name SFlow-Telemetry
config:property-set adapters.2.class-name
org.opennms.netmgt.telemetry.adapters.netflow.sflow.SFlowTelemetryAdapter
config:property-set adapters.2.parameters.script /opt/sentinel/etc/sflow-host.groovy
config:update

Please note, that in both cases the file /opt/sentinel/etc/sflow-host.groovy must be provided
manually, e.g. by manually copying it over from OpenNMS Meridian.

NxosGpbAdapter

In order to use this adapter, the feature sentinel-telemetry-nxos and sentinel-newts must be
installed. In addition either sentinel-jms or sentinel-kafka should be installed and configured
properly. See the previous Flow Processing chapter for more details.

Besides this, configuration files from OpenNMS Meridian must be copied to Sentinel to
/opt/sentinel/etc. The following files and directories are required:

• ${OPENNMS_HOME}/etc/datacollection

• ${OPENNMS_HOME}/etc/datacollection-config.xml

• ${OPENNMS_HOME}/etc/resource-types.d

Afterwards the adapter can be set up:

$ ssh -p 8301 admin@localhost

450

admin@sentinel> config:edit --alias nxos --factory
org.opennms.features.telemetry.adapters
admin@sentinel> config:property-set name NXOS
admin@sentinel> config:property-set class-name
org.opennms.netmgt.telemetry.protocols.nxos.adapter.NxosGpbAdapter
admin@sentinel> config:property-set parameters.script /opt/sentinel/etc/cisco-nxos-
telemetry-interface.groovy
admin@sentinel> config:update

Please note, that the file /opt/sentinel/etc/cisco-nxos-telemetry-interface.groovy must also be
provided manually, e.g. by manually copying it over from OpenNMS Meridian.

JtiGpbAdapter

In order to use this adapter, the feature sentinel-telemetry-jti and sentinel-newts must be
installed. In addition either sentinel-jms or sentinel-kafka should be installed and be configured
properly. See the previous Flow Processing chapter for more details.

Besides this, configuration files from OpenNMS Meridian must be copied to Sentinel to
/opt/sentinel/etc. The following files and directories are required:

• ${OPENNMS_HOME}/etc/datacollection

• ${OPENNMS_HOME}/etc/datacollection-config.xml

• ${OPENNMS_HOME}/etc/resource-types.d

Afterwards the adapter can be set up:

$ ssh -p 8301 admin@localhost

admin@sentinel> config:edit --alias jti --factory
org.opennms.features.telemetry.adapters
admin@sentinel> config:property-set name JTI
admin@sentinel> config:property-set class-name
org.opennms.netmgt.telemetry.protocols.jti.adapter.JtiGpbAdapter
admin@sentinel> config:property-set parameters.script /opt/sentinel/etc/junos-
telemetry-interface.groovy
admin@sentinel> config:update

Please note, that the file /opt/sentinel/etc/junos-telemetry-interface.groovy must also be provided
manually, e.g. by manually copying it over from OpenNMS Meridian.

24.6.2. Configure Newts

The configuration of Newts for Sentinel uses the same properties as for OpenNMS Meridian. The
only difference is, that the properties for Sentinel are stored in
/opt/sentinel/etc/org.opennms.newts.config.cfg instead of *.properties files. The name of each

451

property is the same as for OpenNMS Meridian without the org.opennms.newts.config prefix. The
following example shows a custom Newts configuration using the Sentinel's Karaf Shell.

$ ssh -p 8301 admin@localhost

admin@sentinel> config:edit org.opennms.newts.config
admin@sentinel> config:property-set hostname localhost
admin@sentinel> config:property-set port 9042
admin@sentinel> config:property-set cache.strategy
org.opennms.netmgt.newts.support.GuavaSearchableResourceMetadataCache
admin@sentinel> config:update

452

Chapter 25. Special Cases and Workarounds

25.1. Overriding SNMP Client Behavior
By default, the SNMP subsystem in OpenNMS Meridian does not treat any RFC 3416 error-status as
fatal. Instead, it will attempt to continue the request, if possible. However, only a subset of errors
will cause OpenNMS Meridian’s SNMP client to attempt retries. The default SNMP error-status
handling behavior is as follows:

Table 130. Default SNMP Error Status
Behavior

error-status Fatal
?

Retry
?

noError(0) false false

tooBig(1) false true

noSuchName(2) false true

badValue(3) false false

readOnly(4) false false

genErr(5) false true

noAccess(6) false true

wrongType(7) false false

wrongLength(8) false false

wrongEncoding(9) false false

wrongValue(10) false false

noCreation(11) false false

inconsistentValue(12) false false

resourceUnavailable(13) false false

commitFailed(14) false false

undoFailed(15) false false

authorizationError(16) false true

notWritable(17) false false

inconsistentName(18) false false

You can override this behavior by setting a property inside ${OPENNMS_HOME}/etc/opennms.properties
in the form:

453

https://tools.ietf.org/html/rfc3416

org.opennms.netmgt.snmp.errorStatus.[statusCode].[type]

For example, to make authorizationError(16) abort and not retry, you would set:

org.opennms.netmgt.snmp.errorStatus.16.fatal=true
org.opennms.netmgt.snmp.errorStatus.16.retry=false

454

Chapter 26. IFTTT Integration
The free web-based service IFTTT allows to combine web applications using simple conditional
instructions. Each supported service has several triggers that can be used to trigger actions of other
services. This allows for example to change brightness and color of a smart bulb, send messages or
date to IoT devices.

The OpenNMS Meridian integration makes uses of the so-called "Webhooks" service, that allows to
trigger actions when a specific web-request was received. The basic operation is as follows:
OpenNMS Meridian polls for alarms and matches the alarm reduction key against a given filter and
the alarm’s associated nodes against a given category filter. For the resulting alarm set the
maximum severity and total count is computed. If one of these values changed compared to the last
poll one or more events specified for the computed maximum severity will be sent to IFTTT.

26.1. IFTTT Configuration
In order to use the IFTTT integration in OpenNMS Meridian you need an IFTTT account. With this
account you are able to create so-called applets that combine a trigger with an action. In our case
we use the "Webhooks" service as the trigger and define the event name OpenNMS. After this step you
can combine this trigger with any of the possible supported services and their actions.

Webhooks service trigger definition

455

In your account service settings for the "Webhooks" service you find your key in the given service
URL. In the following example this key is X71dfUZsH4Wkl6cjsLjdV.

Webhooks service settings

456

On the side of OpenNMS Meridian you need a configuration that defines which event names to send
on an alarm count or severity change. The configuration file ifttt-config.xml contains so called
trigger packages.

The operation is as follows: OpenNMS Meridian retrieves all alarms that have a node associated.
Each trigger package defines whether only acknowledged alarms should be taken into account. It
then computes the maximum severity and alarm count for each trigger package’s category filter
and reduction key filter. After that it triggers all events defined in the corresponding trigger sets for
the computed maximum severity. The category and reduction key filter accepts Java regular
expressions. Using an empty category filter will use all unacknowledged alarms regardless of
whether these alarms have nodes assigned or not.

Each trigger inside a trigger set defines the event name to be triggered and three additional values.
These values can be used to set additional attributes for the corresponding IFTTT applet action. The
following trigger sets can be defined:

Name Execution

ON on start of the IFTTT alarm polling daemon to switch on a device

OFF on stop of the IFTTT alarm polling daemon to switch off a device

NORMAL if severity is NORMAL

457

Name Execution

WARNING if severity is WARNING

MINOR if severity is MINOR

MAJOR if severity is MAJOR

CRITICAL if severity is CRITICAL

There are also ON and OFF available for the trigger set definition. The ON event will be sent when the
polling daemon is started and the OFF when it is stopped. These events can be used to powering
up/down and initializing devices.

26.2. OpenNMS Configuration
IFTTT alarm polling will be enabled by setting the attribute enabled to true in the ifttt-config.xml
file. It is also possible to configure the polling interval. The following trigger package defined the
trigger sets which itself define a sequence of events to be triggered at IFTTT. Each trigger defines
the eventName and an additional delay. This allows to defer the execution of the next trigger in a
trigger set.

26.3. Example
The following example shows the configuration file for a WiFi light bulb controlled via IFTTT. The
defined applets use value1 for setting the color and value2 for setting the brightness. The third value
demonstrate the use of placeholders. For the severity-based trigger sets the following placeholders
can be used in the three value fields: %os%/%oldSeverity for old severity, %ns%/%newSeverity% for new
severity, %oc%/%oldCount for old alarm count and %nc%/``%newCount% for new alarm count. This is
useful for sending messages or operating LED displays via IFTTT.

<ifttt-config enabled="true" key="X71dfUZsH4Wkl6cjsLjdV" pollInterval="30">
 <trigger-package categoryFilter="Routers|Switches" reductionKeyFilter=".*"
onlyUnacknowledged="true">
 <trigger-set name="ON">
 <trigger eventName="on" delay="0">
 <value1></value1>
 <value2></value2>
 <value3></value3>
 </trigger>
 </trigger-set>

 <trigger-set name="OFF">
 <trigger eventName="off" delay="0">
 <value1></value1>
 <value2></value2>
 <value3></value3>
 </trigger>
 </trigger-set>

458

 <trigger-set name="NORMAL">
 <trigger eventName="OpenNMS" delay="0">
 <value1>#336600</value1>
 <value2>0.40</value2>
 <value3>%os%,%ns%,%oc%,%nc%</value3>
 </trigger>
 </trigger-set>

 <trigger-set name="WARNING">
 <trigger eventName="OpenNMS" delay="0">
 <value1>#FFCC00</value1>
 <value2>0.50</value2>
 <value3>%os%,%ns%,%oc%,%nc%</value3>
 </trigger>
 </trigger-set>

 <trigger-set name="MINOR">
 <trigger eventName="OpenNMS" delay="0">
 <value1>#FF9900</value1>
 <value2>0.60</value2>
 <value3>%os%,%ns%,%oc%,%nc%</value3>
 </trigger>
 </trigger-set>

 <trigger-set name="MAJOR">
 <trigger eventName="OpenNMS" delay="0">
 <value1>#CC3300</value1>
 <value2>0.70</value2>
 <value3>%os%,%ns%,%oc%,%nc%</value3>
 </trigger>
 </trigger-set>

 <trigger-set name="CRITICAL">
 <trigger eventName="OpenNMS" delay="0">
 <value1>#FF0000</value1>
 <value2>0.80</value2>
 <value3>%os%,%ns%,%oc%,%nc%</value3>
 </trigger>
 </trigger-set>
 <trigger-package>
</ifttt-config>

459

Chapter 27. DNS Resolver
The DNS Resolver is used internally by OpenNMS modules and functions to provide lookup
functionality as required.

27.1. Modules that use DNS Resolution
• TelemetryD

27.2. Configuring DNS Resolution
In order to customize the DNS servers that are queried, the following commands can be used:

$ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit org.opennms.features.dnsresolver.netty
admin@minion()> property-set nameservers 8.8.8.8,4.2.2.2:53,[::1]:5353
admin@minion()> property-set query-timeout-millis 5000
admin@minion()> property-set max-cache-size 10000
admin@minion()> config:update

If no nameservers are set (or set to an empty string), the servers configured by the system running
the JVM will be used.

The resolved host names are cached for their TTL as specified in the returned DNS records. TTL
handling can be customized by setting the min-ttl-seconds, max-ttl-seconds and negative-ttl-
seconds properties in the configuration above.

27.3. Configuring Circuit Breaker
Circuit Breaker functionality exist that helps prevent your DNS infrastructure from being flooded
with requests when multiple failures occur. It is enabled by default but can be disabled by setting
breaker-enabled to false.

Additional parameters can be modified to tune the functionality of the circuit breaker:

$ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit org.opennms.features.dnsresolver.netty
admin@minion()> property-set breaker-enabled true
admin@minion()> property-set breaker-failure-rate-threshold 80
admin@minion()> property-set breaker-wait-duration-in-open-state 15
admin@minion()> property-set breaker-ring-buffer-size-in-half-open-state 10
admin@minion()> property-set breaker-ring-buffer-size-in-closed-state 100
admin@minion()> config:update

460

If the circuit breaker is disabled, the lookup statistics lookupsSuccessful and
lookupsFailed are no longer tracked.

27.4. Configuring Bulkhead
A bulkhead is used to limit the number of concurrent DNS lookups that can be made.

Additional parameters can be modified to tune the functionality of the circuit breaker:

$ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit org.opennms.features.dnsresolver.netty
admin@minion()> property-set bulkhead-max-concurrent-calls 1000
admin@minion()> property-set bulkhead-max-wait-duration-millis 5100
admin@minion()> config:update

461

Chapter 28. Telemetry Daemon
The telemetry daemon (telemetryd) provides an extensible framework you can use to handle
sensor data pushed to OpenNMS Meridian. Use the framework to support applications that use
different protocols to transfer metrics. With telemetryd, operators can define listeners supporting
different protocols to receive the telemetry data and adapters transferring the received data into
generic formats like flows or performance data.

Figure 41. Generic component overview of components in telemetryd

The configuration is split in two parts. Listeners and attached Parsers on one side, receive telemetry
data transported over a specific protocol and parse the protocol according to its specification. On
the other side, Adapters pick up the parsed data and enrich it before persisting it.

Queues transport the parsed telemetry data from Parsers to Adapters by binding a specific Parser to
a specific Adapter.

28.1. Listeners and Parsers
Listeners receive sensor data from an external source and hand them off to Parsers, which handle
the transport protocol format and extract the transported data.

A Listener does the transport protocol handling like opening a socket and accepting incoming
connections. The received messages are then passed to the parser configured for the Listener which
parses the concrete protocol implementation and extracts all available information out of the
received message. For further processing, the extracted data is handed over to the configured
queue.

For example: a Listener may open a UDP socket for receiving packets and an assigned Parser parses
the incoming IPFIX packets.

Parsers and Listeners must work together closely. Therefore, they cannot be combined in any
random way. Which Parser is supported by which Listener is described in the documentation of
each respective Parser.

28.2. Adapters
Adapters enrich and process the data dispatched over a queue. They receive the data from queue
and transform it into a format usable by OpenNMS Meridian. Adapters can also enrich the incoming
data to attach node or interface information, depending on information already available.

462

For example: an Adapter may be used to transform telemetry data received via sFlow into
performance data and persist it to the applicable node.

As an Adapter must handle data dependent to a transport protocol, not all Adapters can be used in
combination with any possible Parser. Which Parsers are supported by which Adapters is described
in the documentation of each respective Adapter.

If you have multiple Adapters, the execution order is the same as defined in the
telemetryd-configuration.xml.

28.2.1. Working with Minions

Listeners and parsers run on Minion, but adapters do not. Adapters run on Sentinel, while the main
OpenNMS Meridian instance can run listeners, parsers, and adapters. When using Minion as a
listener, you must use adapters on OpenNMS Meridian or Sentinel to transform the data.

28.3. Queues
Queues transfer data between Parsers and Adapters and are represented by a channel in the
messaging system.

28.3.1. Configuring Queues

The following options can help fine-tune queue behavior:

Queue
attribute
(OpenNMS)

Key
(Minion/Sen
tinel)

Description Default
value

threads queue.thread
s

Number of threads used for consuming & dispatching
messages.

(2 * number
of cores)

queue-size queue.size Maximum number of messages to keep in memory
while waiting to be dispatched.

10000

use-routing-key queue.use-
routing-key

Whether to use the routing key when forwarding
messages to the broker. This enforces ordering of the
messages.

true

batch-size batch.size Messages are aggregated in batches before being
dispatched. When the batch reaches this size, it will
be dispatched.

1000

batch-interval batch.interv
al

Messages are aggregated in batches before being
dispatched. When the batch has been created for
longer than this interval (ms) it will be dispatched,
regardless of the current size.

500

463

When using Kafka as a message broker, setting use-routing-key to false allows the
messages to be balanced across all partitions. This can be done safely for flows, but
is not supported for metrics when using thresholding (order is required).

When setting these options in OpenNMS they can be added as an attribute to the <queue> element.
For example:

<queue name="IPFIX" use-routing-key="false">
 ...
</queue>

When setting these options on Minion you can add them as parser properties, and on Sentinel as
adapter properties:

name=IPFIX-Listener
class-name=org.opennms.netmgt.telemetry.listeners.UdpListener
parameters.host=0.0.0.0
parameters.port=4738
parsers.0.name=IPFIX
parsers.0.class-
name=org.opennms.netmgt.telemetry.protocols.netflow.parser.IpfixUdpParser
parsers.0.queue.use-routing-key=false

28.4. Push Sensor Data through Minion
Listeners and their Parsers may run on either OpenNMS Meridian or Minion, whereas adapters run
on OpenNMS Meridian or Sentinel. If a Listener and its Parsers are running on Minion, the received
messages will be automatically dispatched to the associated Adapters running in OpenNMS
Meridian or Sentinel via a Queue. Minions can listen (receive) data, but requires OpenNMS Meridian
or Sentinel to process.

Figure 42. Running Listener on a Minion forwarding packets using the messaging system

28.5. Reverse hostname resolution
Some Parsers support reverse hostname resolution to annotate IP addresses with the actual
hostname. The Minion performs the reverse name lookup while parsing the protocol data. The
resolved hostname, if found, is attached to the address information and both are sent to the Adapter
for further processing.

464

For more information see DNS Resolver

The following Parsers currently support reverse hostname resolution: Netflow v5, Netflow v9, IPFIX
and sFlow.

28.6. Listener Reference

28.6.1. TCP Listener

The TCP Listener accepts incoming TCP connections and forwards the TCP stream to a single Parser.

Facts

Class Name org.opennms.netmgt.telemetry.listeners.TcpListener

Supported on Minion Yes

Parameters

Table 131. Listener-specific parameters for the TcpListener

Paramete
r

Description Require
d

Default
value

host IP address on which to bind the TCP port optional 0.0.0.0

port TCP port number on which to listen optional 50000

28.6.2. UDP Listener

The UDP Listener can be used to open a UDP socket and forward the received packets to a Parser.

The UDP Listener can support multiple Parsers if all of these Parsers support protocol detection. If
this is the case, each Parser defined for the Listener will be asked if it can handle the incoming
packet. The first Parser that accepts the packet is then used to parse the packet and dispatch it to its
Queue.

If only a single Parser is defined in the Listener, the packet is directly handed over for parsing.

Facts

Class Name org.opennms.netmgt.telemetry.listeners.UdpListener

Supported on Minion Yes

Parameters

Table 132. Listener-specific parameters for the UdpListener

465

Parameter Description Require
d

Default
value

host IP address on which to bind the UDP port optional 0.0.0.0

port UDP port number on which to listen optional 50000

maxPacketSiz
e

Maximum packet size in bytes (anything greater will be
truncated)

optional 8096

28.7. Protocol Reference

28.7.1. BGP Monitoring Protocol

The BGP Monitoring Protocol (BMP) provides a convenient interface for obtaining route views. The
integration in OpenNMS Meridian allows you to use these route views, status updates and statistics
for monitoring and management.

BMP integration overview

466

BMP TCP Parser

The BMP Parser accepts BMP connections from router packets using a TCP Listener.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.bmp.parser.BmpParser

Parameters

Table 133. Parameters for the BMP Parser

467

Parameter Description Requir
ed

Default
value

dnsLookupsEnabled Enable or disable DNS resolution of router and peer
hostnames.

no true

bulkhead.maxConcurre
ntCalls

Limits the number of parallel parsing operations. no 1000

bulkhead.maxWaitDura
tionMs

Limits the amount of time to wait for a saturated
bulkhead (in milliseconds).

no 5 Minutes

Configure BMP Listener on a Minion

To enable and configure a TCP Listener for BMP on Minion, connect to the Karaf Console and set the
following properties:

$ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit --alias tcp-5000 --factory
org.opennms.features.telemetry.listeners
admin@minion()> config:property-set name BMP
admin@minion()> config:property-set class-name
org.opennms.netmgt.telemetry.listeners.TcpListener
admin@minion()> config:property-set parameters.port 5000
admin@minion()> config:property-set parsers.0.name BMP
admin@minion()> config:property-set parsers.0.class-name
org.opennms.netmgt.telemetry.protocols.bmp.parser.BmpParser
admin@minion()> config:update

The protocol must also be enabled on OpenNMS Meridian for the messages to be
processed. If you do not specify the queue name, the fallback is the name of the
parser.

BMP Telemetry Adapter

The BMP Telemetry Adapter handles BMP statistics received and parsed by the BMP Parser.
Statistics received from the router are associated as performance data with that router. The router
must exist as a regular node in OpenNMS Meridian.

OpenNMS Meridian uses the IP address exporting BMP messages to associate a router with the
particular OpenNMS Meridian node. In addition, the node’s metadata can specify a BGP ID, which
will then be used to associate routers. If the parameter metaDataNodeLookup is not empty, it will be
interpreted as a context:key metadata name, which will be used to lookup a node that has stored
the queried BGP ID as a value in exactly this key.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.bmp.adapter.BmpTelemetryAdapter

468

Parameters

Table 134. Parameters for the BMP Telemetry Adapter

Parameter Description Require
d

Default
value

metaDataNodeLookup Enables lookup using BGP IDs. no

BMP Peer Status Adapter

The BMP Peer Status Adapter creates events for peer status changes. It handles BMP Peer Up and
Down messages that the BMP Parser receives and parses, and converts to OpenNMS Meridian
events. OpenNMS Meridian associates the created events with the router sending the messages. This
router must exist as regular node in OpenNMS Meridian.

The events are called uei.opennms.org/bmp/peerUp and uei.opennms.org/bmp/peerDown.

OpenNMS Meridian uses the IP address exporting BMP messages to associate a router with the
particular OpenNMS Meridian node. In addition, the node’s metadata can specify a BGP ID, which
will then be used to associate routers. If the parameter metaDataNodeLookup is not empty, it will be
interpreted as a context:key metadata name, which will be used to lookup a node that has stored
the queried BGP ID as a value in exactly this key.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.bmp.adapter.BmpPeerStatusAdapter

Parameters

Table 135. Parameters for the BMP Telemetry Adapter

Parameter Description Require
d

Default
value

metaDataNodeLookup Enables lookup using BGP IDs. no

OpenBMP Integration Adapter

The OpenBMP Integration Adapter integrates with an existing OpenBMP installation. It handles
BMP messages the BMP Parser receives and parses, and creates OpenBMP-compatible messages,
which are then passed to the OpenBMP Kafka cluster.

This setup replaces the Collector component of OpenBMP.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.bmp.adapter.openbmp.BmpIntegrationAdapter

469

https://github.com/OpenBMP

Parameters

Table 136. Parameters for the OpenBMP Integration Adapter

Parame
ter

Description Requi
red

Default
value

kafka.* Uses options to create OpenBMP Kafka producer. Allows all known
Kafka settings, but prefixed with kafka..

no

topicPre
fix

Prefix used before each Kafka topic. no

28.7.2. IPFIX

The IP Flow Information Export (IPFIX) protocol is a vendor-neutral standard for transmitting
traffic flow information. See Flow Support for details on flow support in OpenNMS Meridian.

IPFIX UDP Parser

The IPFIX UDP Parser accepts packets received by a UDP Listener and must forward them to an
IPFIX Adapter.

The IPFIX UDP Parser supports protocol detection.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.netflow.parser.IpfixUdpParser

Parameters

Table 137. Parameters for the IPFIX UDP Parser

Parameter Description Requir
ed

Default
value

templateTimeou
t

Templates must be redeclared in the given duration or they
will be dropped.

no 30 minutes

maxClockSkew The maximum delta in seconds between exporter and
Minion timestamps.

no 0

clockSkewEvent
Rate

Used to rate-limit clock skew events in seconds. no 3600

dnsLookupsEnab
led

Used to enable or disable DNS resolution for flows. no true

IPFIX TCP Parser

The IPFIX TCP Parser accepts packets received by a TCP Listener and must forward them to a IPFIX
Adapter.

470

Facts

Class Name org.opennms.netmgt.telemetry.protocols.netflow.parser.IpfixTcpParser

Parameters

This parser does not currently have any configurable parameters.

Configure IPFIX Listener on a Minion

To enable and configure a TCP Listener for IPFIX on Minion, connect to the Karaf Console and set
the following properties:

$ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit --alias tcp-50000 --factory
org.opennms.features.telemetry.listeners
admin@minion()> config:property-set name IPFIX
admin@minion()> config:property-set class-name
org.opennms.netmgt.telemetry.listeners.TcpListener
admin@minion()> config:property-set parameters.port 50000
admin@minion()> config:property-set parsers.0.name IPFIX
admin@minion()> config:property-set parsers.0.class-name
org.opennms.netmgt.telemetry.protocols.netflow.parser.IpfixParser
admin@minion()> config:update

The protocol must also be enabled on OpenNMS Meridian for the messages to be
processed. If you do not specify the queue name, the fallback is the name of the
parser.

IPFIX Adapter

The IPFIX Adapter handles IPFIX telemetry data received and parsed by either of the IPFIX UDP
Parser or IPFIX TCP Parser. Received flows are decoded from the messages into the canonical flow
format and published to the flow repository.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.netflow.adapter.ipfix.IpfixAdapter

Parameters

Table 138. Parameters for the IPFIX TCP Parser

Parameter Description Requir
ed

Default
value

templateTimeou
t

Templates must be redeclared in the given duration or they
will be dropped.

no 30 minutes

471

Parameter Description Requir
ed

Default
value

maxClockSkew The maximum delta in seconds between exporter and
Minion time stamps.

no 0

clockSkewEvent
Rate

Used to rate-limit clock skew events in seconds. no 3600

dnsLookupsEnab
led

Used to enable or disable DNS resolution for flows. no true

The parameter maxClockSkew in your parser definition enables clock skew detection
for exporters. It specifies the maximum delta in seconds between exporter and
Minion timestamps. If exceeded, an alarm will be generated for the exporting
device. The default value is 0, so clock skew detection is disabled. Furthermore, a
parameter clockSkewEventRate can be used to rate-limit clock skew events. The
default is 3600 seconds, so every hour an event will be sent.

28.7.3. Junos Telemetry Interface

The Junos Telemetry Interface (JTI) allows users to push operational statistics asynchronously to
OpenNMS Meridian. OpenNMS Meridian sends a request to stream periodic updates once to the
device. Data is generated as Google protocol buffers (gpb) structured messages over UDP. For
detailed information about JTI, see the Juniper Documentation.

To enable support for JTI, edit ${OPENNMS_HOME}/etc/telemetryd-configuration.xml set enabled=true
for JTI protocol.

472

https://www.juniper.net/documentation/en_US/junos/topics/concept/junos-telemetry-interface-oveview.html

Enable JTI protocol in telemetryd-configuration.xml

<listener name="JTI-UDP-50000" class-name=
"org.opennms.netmgt.telemetry.listeners.simple.Udp" enabled="false">
 <parameter key="port" value="50000"/>

 <parser name="JTI-Parser" class-name=
"org.opennms.netmgt.telemetry.protocols.common.parser.ForwardParser" queue="JTI" />
</listener>

<queue name="JTI">
 <adapter name="JTI-GPB" class-name=
"org.opennms.netmgt.telemetry.protocols.jti.adapter.JtiGpbAdapter" enabled="false">
 <parameter key="script" value="${install.dir}/etc/telemetryd-adapters/junos-
telemetry-interface.groovy"/>

 <package name="JTI-Default">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 </package>
 </adapter>
</queue>

Apply the changes without restarting by sending a reloadDaemonConfig event in the CLI or the Web
UI:

Send a reloadDaemonConfig event through CLI

${OPENNMS_HOME}bin/send-event.pl -p 'daemonName Telemetryd'
uei.opennms.org/internal/reloadDaemonConfig

By default, this will open a UDP socket bound to 0.0.0.0:50000 to which JTI messages can be
forwarded.

Configure JTI Listener on a Minion

To enable and configure a UDP Listener for JTI on Minion, connect to the Karaf Console and set the
following properties:

473

$ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit --alias udp-50000 --factory
org.opennms.features.telemetry.listeners
admin@minion()> config:property-set name JTI
admin@minion()> config:property-set class-name
org.opennms.netmgt.telemetry.listeners.UdpListener
admin@minion()> config:property-set parameters.port 50000
admin@minion()> config:property-set parsers.0.name JTI
admin@minion()> config:property-set parsers.0.class-name
org.opennms.netmgt.telemetry.protocols.common.parser.ForwardParser
admin@minion()> config:update

The protocol must also be enabled on OpenNMS Meridian for the messages to be
processed.

JTI Adapter

The JTI adapter handles Junos Telemetry Interface payloads. Messages are decoded using the
published protobuf specifications and forwarded to a JSR-223-compatible script (i.e., Beanshell or
Groovy) for further processing. Use the script extension to extract the desired metrics from the JTI
messages and persist the results as time series data.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.jti.adapter.JtiGpbAdapter

Parameters

Table 139. Adapter specific parameters for the JtiGpbAdapter

Paramete
r

Description Require
d

Default
value

script Full path to the script used to handle the JTI messages required (none)

Scripting

The script will be invoked for every JTI message that is received and succesfully decoded.

The following globals will be passed to the script:

Table 140. Globals passed to the script

Param
eter

Description Type

agent The agent (node) against which the metrics
will be associated.

org.opennms.netmgt.collection.api.Collectio
nAgent

474

Param
eter

Description Type

builder Builder in which to add the resources and
metrics.

org.opennms.netmgt.collection.support.build
er.CollectionSetBuilder

msg Decoded JTI message from which the
metrics should be extracted.

org.opennms.netmgt.telemetry.adapters.jti.p
roto.TelemetryTop

28.7.4. NetFlow v5

See Flow Support for details on flow support in OpenNMS Meridian.

Netflow v5 UDP Parser

The Netflow v5 UDP Parser accepts packets received by a UDP Listener and must forward them to a
Netflow v5 Adapter.

The Netflow v5 UDP Parser supports protocol detection.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.netflow.parser.Netflow5UdpParser

Parameters

Table 141. Parameters for the Netflow v5 UDP Parser

Parameter Description Requir
ed

Default
value

maxClockSkew The maximum delta in seconds between exporter and
Minion timestamps.

no 0

clockSkewEventR
ate

Used to rate-limit clock skew events in seconds. no 3600

dnsLookupsEnabl
ed

Used to enable or disable DNS resolution for flows. no true

Netflow v5 Adapter

The Netflow v5 Adapter is used to handle Netflow v5 payloads received and parsed by by the
Netflow v5 UDP Parser. Flows are decoded from the messages into the canonical flow format and
are published to the flow repository

Facts

Class Name org.opennms.netmgt.telemetry.protocols.netflow.adapter.netflow5.Netflow5Adapter

475

Parameters

This adapter does not currently have any configurable parameters.

28.7.5. NetFlow v9

See Flow Support for details on flow support in OpenNMS Meridian.

Netflow v9 UDP Parser

The Netflow v9 UDP Parser accepts packets received by a UDP Listener and must forward them to a
Netflow v9 Adapter.

The Netflow v9 UDP Parser supports protocol detection.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.netflow.parser.Netflow9UdpParser

Parameters

Table 142. Parameters for the Netflow v9 UDP Parser

Parameter Description Requir
ed

Default
value

templateTimeou
t

Templates must be re-declared in the given duration or they
will be dropped.

no 30 minutes

maxClockSkew The maximum delta in seconds between exporter and
Minion timestamps.

no 0

clockSkewEvent
Rate

Used to rate-limit clock skew events in seconds. no 3600

dnsLookupsEnab
led

Used to enable or disable DNS resolution for flows. no true

Netflow v9 Adapter

The Netflow v9 Adapter is used to handle Netflow v9 payloads received and parsed by by the
Netflow v9 UDP Parser. Flows are decoded from the messages into the canonical flow format and
are published to the flow repository

Facts

Class Name org.opennms.netmgt.telemetry.protocols.netflow.adapter.netflow9.Netflow9Adapter

Parameters

This adapter does not currently have any configurable parameters.

476

The parameter maxClockSkew in your parser definition enables clock skew detection
for exporters. It specifies the maximum delta in seconds between exporter and
Minion time stamps. If exceeded, an alarm will be generated for the exporting
device. The default value is 0, so clock skew detection is disabled. Furthermore, a
parameter clockSkewEventRate can be used to rate-limit clock skew events. The
default is 3600 seconds, so every hour an event will be sent.

28.7.6. Cisco NX-OS Telemetry

The Cisco NX-OS Telemetry allows to push operational statistics asynchronously to OpenNMS
Meridian. OpenNMS Meridian sends a request to stream periodic updates once to the device. Data is
generated as Google protocol buffers (gpb) structured messages over UDP. Detailed information
about NX-OS can be found in NXOS Documentation.

To enable support for NX-OS Telemetry, edit ${OPENNMS_HOME}/etc/telemetryd-configuration.xml set
enabled=true for NXOS protocol.

Enable NX-OS protocol in telemetryd-configuration.xml

<listener name="NXOS-UDP-50001" class-name=
"org.opennms.netmgt.telemetry.listeners.simple.Udp" enabled="false">
 <parameter key="port" value="50001"/>

 <parser name="NXOS-GPB" class-name=
"org.opennms.netmgt.telemetry.protocols.common.parser.ForwardParser" queue="NXOS" />
</listener>

<queue name="NXOS">
 <adapter name="NXOS-GPB" class-name=
"org.opennms.netmgt.telemetry.protocols.nxos.adapter.NxosGpbAdapter" enabled="false">
 <parameter key="script" value="${install.dir}/etc/telemetryd-adapters/cisco-
nxos-telemetry-interface.groovy"/>

 <package name="NXOS-Default">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 </package>
 </adapter>
</queue>

Apply the changes without restarting by sending a reloadDaemonConfig event in the CLI or the
WebUI:

477

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x_chapter_011000.html

Send a reloadDaemonConfig event through CLI

${OPENNMS_HOME}bin/send-event.pl -p 'daemonName Telemetryd'
uei.opennms.org/internal/reloadDaemonConfig

By default, this will open a UDP socket bound to 0.0.0.0:50001 to which NXOS messages can be
forwarded.

Configure NX-OS Listener on a Minion

To enable and configure an UDP Listener for NX-OS on Minion, connect to the Karaf Console and set
the following properties:

$ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit --alias udp-50001-nxos --factory
org.opennms.features.telemetry.listeners
admin@minion()> config:property-set name NXOS
admin@minion()> config:property-set class-name
org.opennms.netmgt.telemetry.listeners.UdpListener
admin@minion()> config:property-set parameters.port 50001
admin@minion()> config:property-set parsers.0.name NXOS
admin@minion()> config:property-set parsers.0.class-name
org.opennms.netmgt.telemetry.protocols.common.parser.ForwardParser
admin@minion()> config:update

The protocol must also be enabled on OpenNMS Meridian for the messages to be
processed.

Cisco NX-OS Adapter

The NX-OS adapter is used to handle Cisco NX-OS Telemetry payloads. Messages are decoded using
the published protobuf (proto3) specifications and forwarded to a JSR-223 compatible script (i.e.
Beanshell or Groovy) for further processing. Using the script extension you can extract the desired
metrics from the NX-OS messages and persist the results as time series data.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.nxos.adapter.NxosGpbAdapter

Parameters

Table 143. Adapter specific parameters for the NxosGpbAdapter

Paramete
r

Description Require
d

Default
value

script Full path to the script used to handle the NXOS messages required (none)

478

Scripting

The script will be invoked for every NX-OS message that is received and succesfully decoded.

The following globals will be passed to the script:

Table 144. Globals passed to the script

Param
eter

Description Type

agent The agent (node) against which the metrics
will be associated

org.opennms.netmgt.collection.api.Collecti
onAgent

builder Builder in which the resources and metrics
should be added

org.opennms.netmgt.collection.support.buil
der.CollectionSetBuilder

msg Decoded NX-OS message from which the
metrics should be extracted

org.opennms.netmgt.telemetry.adapters.nxos
.proto.TelemetryBis

28.7.7. sFlow

sFlow is capable of transporting both, telemetry data and flow information. OpenNMS Meridian can
utilize both data types and extract and persist accordingly.

See Flow Support for details on flow support in OpenNMS Meridian.

sFlow UDP Parser

The sFlow UDP Parser accepts packets received by a UDP Listener and must forward them to a
sFlow Adapter.

The sFlow UDP Parser supports protocol detection.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.sflow.parser.SFlowUdpParser

Parameters

Table 145. Parameters for the Netflow v5 UDP Parser

Parameter Description Require
d

Default
value

dnsLookupsEnabled Used to enable or disable DNS resolution for flows. no true

sFlow Adapter

The sFlow Adapter is used to handle sFlow data received and parsed by the sFlow Parser. Flows are
decoded from the messages into the canonical flow format and are published to the flow repository.

479

Facts

Class Name org.opennms.netmgt.telemetry.protocols.sflow.adapter.SFlowAdapter

Parameters

This adapter does not currently have any configurable parameters.

sFlow Telemetry Adapter

The sFlow Telemetry Adapter is used to handle sFlow telemetry data received and parsed by the
sFlow UDP Parser. The telemetry data is forwarded to a JSR-223 compatible script (i.e. Beanshell or
Groovy) for further processing. Using the script extension you can extract the desired metrics from
the sFlow messages and persist the results as time series data.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.sflow.adapter.SFlowTelemetryAdapter

Parameters

Table 146. Adapter specific parameters

Paramete
r

Description Require
d

Default
value

script Full path to the script used to handle the sFlow messages required (none)

Scripting

The script will be invoked for every sFlow (extended) counter sample that is received.

The following globals will be passed to the script:

Table 147. Globals passed to the script

Param
eter

Description Type

agent The agent (node) against which the
metrics will be associated

org.opennms.netmgt.collection.api.Collection
Agent

builder Builder in which the resources and
metrics should be added

org.opennms.netmgt.collection.support.builde
r.CollectionSetBuilder

msg sFlow (extended) counter sample dynamic Map

See sFlow Specification for the contained fields and their meaning.

28.7.8. Graphite Telemetry

The Graphite telemetry adapter allows you to push telemetry data over UDP to OpenNMS Meridian

480

https://sflow.org/developers/specifications.php

using the plaintext protocol.

To enable support for plaintext Graphite over UDP, edit ${OPENNMS_HOME}/etc/telemetryd-

configuration.xml set enabled=true for the Graphite protocol.

Enable Graphite protocol in telemetryd-configuration.xml

 <listener name="Graphite-UDP-2003" class-name=
"org.opennms.netmgt.telemetry.listeners.UdpListener" enabled="true">
 <parameter key="port" value="2003"/>
 <parser name="Graphite-Parser" class-name=
"org.opennms.netmgt.telemetry.protocols.common.parser.ForwardParser" queue="Graphite"
/>
 </listener>

 <queue name="Graphite">
 <adapter name="Graphite" class-name=
"org.opennms.netmgt.telemetry.protocols.graphite.adapter.GraphiteAdapter" enabled=
"true">
 <parameter key="script" value="/Users/ranger/git/opennms-
work/target/opennms-2020.1.26/etc/telemetryd-adapters/graphite-telemetry-
interface.groovy"/>
 <package name="Graphite-Default">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 </package>
 </adapter>
 </queue>

Apply the changes without restarting by sending a reloadDaemonConfig event in the CLI or the
WebUI:

Send a reloadDaemonConfig event through CLI

${OPENNMS_HOME}bin/send-event.pl -p 'daemonName Telemetryd'
uei.opennms.org/internal/reloadDaemonConfig

By default, this will open a UDP socket bound to 0.0.0.0:2003 to which Graphite messages can be
forwarded.

Configure Graphite Listener on a Minion

To enable and configure a UDP Listener for Graphite on Minion, connect to the Karaf Console and
set the following properties:

481

https://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol

$ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit --alias udp-2003 --factory
org.opennms.features.telemetry.listeners
admin@minion()> config:property-set name Graphite
admin@minion()> config:property-set class-name
org.opennms.netmgt.telemetry.listeners.UdpListener
admin@minion()> config:property-set parameters.port 2003
admin@minion()> config:property-set parsers.0.name Graphite
admin@minion()> config:property-set parsers.0.class-name
org.opennms.netmgt.telemetry.protocols.common.parser.ForwardParser
admin@minion()> config:update

The protocol must also be enabled on OpenNMS Meridian for the messages to be
processed.

Graphite Adapter

The Graphite adapter is used to handle Graphite payloads. Messages are decoded and forwarded to
a JSR-223 compatible script (i.e. Beanshell or Groovy) for further processing. Using the script
extension you can extract the desired metrics from the Graphite messages and persist the results as
time series data.

Facts

Class Name org.opennms.netmgt.telemetry.protocols.graphite.adapter.GraphiteAdapter

Parameters

Table 148. Adapter specific parameters for the GraphiteAdapter

Paramete
r

Description Require
d

Default
value

script Full path to the script used to handle the Graphite messages required (none)

Scripting

The script will be invoked for every Graphite message that is received and succesfully decoded.

The following globals will be passed to the script:

Table 149. Globals passed to the script

Param
eter

Description Type

agent The agent (node) against which the
metrics will be associated

org.opennms.netmgt.collection.api.CollectionAg
ent

482

Param
eter

Description Type

builder Builder in which the resources and
metrics should be added

org.opennms.netmgt.collection.support.builder.
CollectionSetBuilder

msg Decoded message from which the
metrics should be extracted

org.opennms.netmgt.telemetry.protocols.graphit
e.adapter.GraphiteMetric

483

Chapter 29. Elasticsearch Integration
OpenNMS Meridian persists/forwards certain data to Elasticsearch.

The following chapters describe the configuration possibilities as well as the available features.

Internally all Elasticsearch integrations use the Jest library to access the Elasticsearch ReST
interface.

29.1. Configuration
The location of the configuration file depends on the feature. For flows, it can be found in
${OPENNMS_HOME}/etc/org.opennms.features.flows.persistence.elastic.cfg.

The following properties can be set:

Property Description Requ
ired

default

elasticUrl URL(s) to Elasticsearch nodes. Can either point
directly to ReST API or seed nodes. The format is:
<host>:<port>. Comma separate multiple values.

requi
red

http://localhost:
9200

elasticIndexStrateg
y

Index strategy for data, allowed values yearly,
monthly, daily, hourly

optio
nal

daily

globalElasticUser Username to use for all nodes, when X-Pack
Security is configured.

optio
nal

-

globalElasticPassw
ord

Password to use for all nodes, when X-Pack Security
is configured.

optio
nal

-

ignoreCertificates Set this to ignore HTTPS/SSL/TLS certificates. optio
nal

false

defaultMaxTotalCo
nnectionPerRoute

Sets the default max connections per route. If a
negative value is given, the value is ignored.

optio
nal

<available
processors> * 2

maxTotalConnectio
n

Sets the default max total connections. If a negative
value is given, the value is ignored.

optio
nal

<max connections
per route> * 3

nodeDiscovery Enable/Disable node discovery. Valid values are
true|false.

optio
nal

false

nodeDiscoveryFreq
uency

Defines the frequency in seconds in which the
nodes are re-discovered. Must be set, if
discovery=true

optio
nal

-

proxy Allows defining a HTTP proxy. Only accepts valid
URLs.

optio
nal

-

484

https://github.com/searchbox-io/Jest
http://localhost:9200
http://localhost:9200
https://www.elastic.co/guide/en/x-pack/current/setting-up-authentication.html
https://www.elastic.co/guide/en/x-pack/current/setting-up-authentication.html

Property Description Requ
ired

default

httpCompression Allows the use of HTTP compression. optio
nal

-

retries Defines how many times an operation is retried
before considered failed.

optio
nal

0

retryCooldown Defines the cooldown in ms to wait before retrying.
Value of 0 means no cooldown. Value must be >= 0.

optio
nal

500

connTimeout Defines the connection timeout in ms. optio
nal

5000

readTimeout Defines the read timeout in ms. optio
nal

30000

bulkRetryCount Defines the number of retries performed before a
bulk operation is considered as failed. When bulk
operations fail, only the failed items are retried.

optio
nal

5

settings.index.numb
er_of_shards

The number of primary shards that an index should
have. Refer to Elasticsearch Reference → Index
Modules for more details.

optio
nal

-

settings.index.numb
er_of_replicas

The number of replicas each primary shard has.
Refer to Elasticsearch Reference → Index Modules
for more details.

optio
nal

-

settings.index.refres
h_interval

How often to perform a refresh operation, which
makes recent changes to the index visible to search.
Refer to Elasticsearch Reference → Index Modules
for more details.

optio
nal

-

settings.index.routi
ng_partition_size

The number of shards a custom routing valuce can
go to. Refer to Elasticsearch Reference → Index
Modules for more details.

optio
nal

-

indexPrefix Prefix is prepended to the index and template
names. Can be used in cases where you want to
share the same Elasticsearch cluster with many
OpenNMS Meridian instances.

optio
nal

-

If a configuration management tool is used, the properties file can be created and
is used as startup configuration

If credentials are provided preemptive auth is used for all defined Elasticsearch
nodes.

485

https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html#index-modules-setting
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html#index-modules-setting
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html#index-modules-setting
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html#index-modules-setting
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html#index-modules-setting
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html#index-modules-setting

Configuration Example to access Elasticsearch

elasticUrl=http://elastic:9200
elasticIndexStrategy=daily
globalElasticUser=elastic
globalElasticPassword=changeme

29.2. Credentials
It is possible to define credentials for each Elasticsearch node individually. Credentials for each
node must be stored in ${OPENNMS_HOME}/etc/elastic-credentials.xml.

Custom credentials

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<elastic-credentials>
 <credentials url="http://localhost:9200" username="ulf" password="ulf" />
 <credentials url="https://10.10.0.1:9333" username="ulf" password="flu" />
</elastic-credentials>

 Credentials are globally defined and will be used by each feature.

29.3. Features

29.3.1. Feature Matrix

The following features leverage Elasticsearch and are compatible with version 7.x.x.

Name Enabled by default Feature

Event and Alarm Forwarder no opennms-es-rest

Flow Support yes opennms-flows

Situation Feedback (ALEC) no opennms-situation-feedback

Alarm History yes opennms-alarm-history-elastic

29.3.2. Event Forwarder

The Event Forwarder (formerly known as the Elasticsearch ReST plugin) forwards events to
Elasticsearch.

The events in Elasticsearch can then be used for indexing, long time archival, plotting with Grafana
and browsing with Kibana.

This feature uses the Elasticsearch ReST interface and can interact with cloud-
hosted Elasticsearch instances.

486

https://github.com/elastic/elasticsearch

If you use Kibana, make sure you are using the version that is compatible with
your version of Elasticsearch.

Configuration

The configuration is held in
${OPENNMS_HOME}/etc/org.opennms.plugin.elasticsearch.rest.forwarder.cfg. Please refer to section
Configuring Elasticsearch in order to configure Elasticsearch connection settings.

Besides the general Elasticsearch connection settings, the following properties are supported to
configure the Event Forwarder:

Parameter Default
Value

Requi
red

Description

logEventDescr
iption

true option
al

Whether to forward the event description field to Elasticsearch.
It can be disabled because it contains a long text field that can be
redundant with the rest of the metadata included in the event.

archiveAssetD
ata

true option
al

If true The following attributes representing useful node asset
fields from the node asset table are included in archived events
and alarms. These are included only where the values are not
null or empty strings in the table.

(asset-latitude,asset-longitude,asset-region,asset-building,asset-
floor,asset-room,asset-rack,asset-slot,asset-port,asset-
category,asset-displaycategory,asset-notifycategory,asset-
pollercategory,asset-thresholdcategory,asset-
managedobjecttype,asset-managedobjectinstance,asset-
manufacturer,asset-vendor,asset-modelnumber,parent-
nodelabel,parent-nodeid,parent-foreignsource,parent-foreignid)

groupOidParam
eters

false option
al

If true all oid from the event parameters are stored in a single
array p_oids instead of a flattened structue.

logAllEvents false option
al

If changed to true, then archive all events even if they have not
been persisted in the OpenNMS Meridian database.

batchSize 200 option
al

Increase this value to enable batch inserts into Elasticsearch. This
is the maximum size of a batch of events that is sent to
Elasticsearch in a single connection.

batchInterval 500 option
al

The maximum time interval in milliseconds between batch
events (recommended: 500ms) when a batchSize value greater
than 1 is being used.

Once you are sure everything is correctly configured, you can activate the Event Forwarder by
logging into the OSGi console and installing the feature: opennms-es-rest.

487

OSGi login and installation of the Elasticsearch forwarder

ssh admin@localhost -p 8101
feature:install opennms-es-rest

Loading Historical Events

It is possible to load historical OpenNMS Meridian events into Elasticsearch from the OpenNMS
Meridian database using a karaf console command. The command uses the OpenNMS Meridian
Events ReST interface to retrieve a set number of historical events and forward them to
Elasticsearch. Because we are using the ReST interface it is also possible to contact a remote
OpenNMS Meridian and download its events into Elasticsearch by using the correct remote URL and
credentials.

The following example sends historic events to Elasticsearch using the karaf console:

open karaf command prompt using
ssh -p 8101 admin@localhost
karaf> opennms:send-events-to-elasticsearch --username admin --password admin --url
http://localhost:8980 --limit 10 --offset 0

 For more details, consolidate the --help option of the command.

Index Definition

The index names used to store the events uses the following form: opennms-raw-events-<index-
strategy>/type/id

For example (assuming an index strategy of monthly):

opennms-events-raw-2017-01/eventdata/11549

Viewing events using Kibana Sense

Kibana Sense is a Kibana app which allows you to run queries directly against Elasticsearch.
(https://www.elastic.co/guide/en/sense/current/installing.html)

If you install Kibana Sense you can use the following commands to view the events sent to
Elasticsearch You should review the Elasticsearch ReST API documentation to understand how
searches are specified. (See https://www.elastic.co/guide/en/elasticsearch/reference/current/
search.html)

Example searches to use in Kibana Sense (you can copy the whole contents of this panel into Kibana
Sense as a set of examples)

488

https://www.elastic.co/guide/en/sense/current/installing.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html

Search all the events indexes

GET /opennms-events-*/_search

Search all the raw events indexes

GET /opennms-events-raw*/_search

Delete all the events indexes

DELETE /opennms-events-*/

Get all the raw events indexes

GET /opennms-events-raw*/

Mapping of Events to Elasticsearch

Overview of index mapping

In OpenNMS Meridian, Event table entries contain references to associated node, asset, service and
journal message tables. In Elasticsearch, we must flatten these entries into a single index entry for
each insertion. Thus each index entry contains more context information than would be found in
the actual OpenNMS Meridian event. This context information includes the associated node and
asset table information which was current when (but may have changed since) the event was
archived.

In the Table of Index Mappings below we have example event JSON entries retrieved using a sense
command. The table helps illustrate how OpenNMS Meridian saves data in Elasticsearch.

Internal Elasticsearch fields always begin with an underscore character. The internal fields id,
_index and _type are combined to give the unique identifier for an entry as described above
under Index Definitions. All of the fields under _source represent the stored event

(_Elasticsearch documentation refers to source entries as indexed documents). The ID of each
event is included in the _source id field and also duplicated in the internal _id.

Events in the OpenNMS Meridian events table (i.e. those corresponding to logs or traps) are copied
directly to the opennms-events-raw- indexes. In OpenNMS Meridian events can contain parameters
which are key-value pairs referencing additional data stored when the event is created. In
Elasticsearch these parameters are always stored in separate fields in the index with names
beginning with p_

Events have severity fields defined as integers (long) and also corresponding severity_text fields
which give the text equivalent (Critical, Major, Minor, Normal, Cleared).

Table of Index Mapping

The following table describes the mapping of simple OpenNMS Meridian events to the Raw Events
Index. Note that fields that begin with an underscore (_) are internal to Elasticsearch.

489

Event Index Fields Description

Event
Field

Example Event JSON Ty
pe

Description

"_index": "_index": "opennms-raw-events-
2017.03",

stri
ng

_index is the index in which this event is
stored.

"_type": "_type": "eventdata", stri
ng

_type either alarmdata or eventdata

"_id": "_id": "1110", stri
ng

_id field matches the event or alarm ID, if
present.

"_score": "_score": 1, lon
g

Internal Elasticsearch ranking of the
search result.

"_source": "_source": { stri
ng

_source contains the data of the index
entry.

"@timesta
mp":

"@timestamp": "2017-03-
02T15:20:56.861Z",

dat
e

event time from event.getTime().

"dom": "dom": "2", lon
g

Day of month from @timestamp.

"dow": "dow": "5", lon
g

Day of week from @timestamp.

"hour": "hour": "15", lon
g

Hour of day from @timestamp.

"eventdes
cr":

"eventdescr": "<p>Alarm <a
href=\"/opennms/alarm/detail.htm?id=
30\">30 Cleared<p>…",

stri
ng

Event description.

"eventsev
erity":

"eventseverity": "3", lon
g

Event severity.

"eventsev
erity_text
":

"eventseverity_text": "Normal", stri
ng

Text representation of severity value.

"eventsou
rce":

"eventsource": "AlarmChangeNotifier", stri
ng

OpenNMS event source.

"eventuei
":

"eventuei":
"uei.opennms.org/plugin/AlarmChange
NotificationEvent/AlarmCleared",

stri
ng

OpenNMS universal event identifier (UEI)
of the event.

"id": "id": "1110", stri
ng

Event ID.

490

Event Index Fields Description

"interface
":

"interface": "127.0.0.1", stri
ng

IP address of the event.

"ipaddr": "ipaddr": "/127.0.0.1", stri
ng

IP address of the event.

"logmsg": "logmsg": "<p>Alarm <a
href=\"/opennms/alarm/detail.htm?id=
30\">30 Cleared<p>",

stri
ng

Log message of the event.

"logmsgd
est":

"logmsgdest": "logndisplay", stri
ng

Log Destination of the Event.

"asset-
category":

"asset-category": "Power", stri
ng

All asset_ entries correspond to fields in
the Asset Table of the node referenced in
the event. These fields are only present if
populated in the asset table.

"asset-
building":

"asset-building": "55", stri
ng

"asset-
room":

"asset-room": "F201", stri
ng

"asset-
floor":

"asset-floor": "Gnd", stri
ng

"asset-
rack":

"asset-rack": "2101", stri
ng

"categorie
s":

"categories": "", stri
ng

categories corresponds to node categories
table. This is a comma-separated list of
categories associated with this node ID.
This field is indexed so separate values
can be searched.

"foreignid
":

"foreignid": "1488375237814", stri
ng

Foreign ID of the node associated with the
event.

"foreigns
ource":

"foreignsource": "LocalTest", stri
ng

Foreign source of the node associated
with event.

"nodeid": "nodeid": "88", stri
ng

Node ID of the node associated with the
alarm or event.

"nodelabe
l":

"nodelabel": "localhost", stri
ng

Node label of the node associated with the
alarm or event.

"nodesysl
ocation":

"nodesyslocation": "Unknown (edit
/etc/snmp/snmpd.conf)",

stri
ng

SNMP syslocation of the node associated
with the alarm or event.

491

Event Index Fields Description

"nodesys
name":

"nodesysname":
"localhost.localdomain",

stri
ng

SNMP sysname of the node associated with
the alarm or event.

"qosalar
mstate":
null,

"qosalarmstate":

29.3.3. Flow Support

 Flow Support is described in detail here.

When persisting flows into Elasticsearch, every flow is represented by a single document.

The following table describes a subset of the fields in the flow document:

Field Description

@timestamp Timestamp in milliseconds at which the flow was sent by the exporter.

location Monitoring location at which the flow was received. This will be Default unless
you are using Minion.

netflow.bytes Number of bytes transferred in the flow.

netflow.last_swit
ched

Timestamp in milliseconds at which the last packet of the flow was
transferred.

netflow.direction ingress or egress

netflow.first_swi
tched

Timestamp in milliseconds at which the first packet of the flow was
transferred.

netflow.input_snm
p

SNMP interface index on which packets related to this flow were received.

netflow.output_sn
mp

SNMP interface index on which packets related to this flow were forwarded.

29.3.4. Situation Feedback

 Full documentation on Situation Feedback is available here.

When persisting Situation Feedback, feedback on each related alarm is represented by a document
as follows:

Field Description

@timestamp Timestamp in milliseconds when the feedback was submitted.

situation_key The reduction key of the situation.

492

Field Description

alarm_key The reduction key of the related alarm.

feedback_type One of CORRECT, FALSE_POSITIVE or FALSE_NEGATIVE

situation_fingerprint A hash calculated on the situation when the feedback was submitted.

reason A text string provided with the feedback.

user The user that submitted the feedback.

29.3.5. Alarm History

See Alarm History.

493

Chapter 30. Flow Support

30.1. Introduction
OpenNMS Meridian supports receiving, decoding and persisting flow information sent via Netflow
v5, Netflow v9, IPFIX and sFlow. While flows offer a great breadth of information, the current focus
of the support in OpenNMS Meridian is aimed at:

• Network diagnostic: Being able to view the top protocols and top talkers within the context of a
particular network interface.

• Forensic analysis: Persisting the flows for long term storage.

30.1.1. How it works

At a high level:

• telemetryd is used to receive and decode flows on both OpenNMS Meridian and Minion.

• The telemetryd adapters convert the flows to a canonical flow model and dispatch these to the
flow repository.

• The flow repository enriches the flows and persists them to Elasticsearch:

◦ Flows are tagged with an application name via the Classification Engine.

◦ Metadata related to associated nodes such as ids and categories are also added to the flows.

• The REST API supports generating both summaries and time series data from the flows stored in
the flow repository.

• OpenNMS Helm is used to visualize the flow data using the flow datasource that interfaces with
the OpenNMS Meridian REST API.

30.2. Setup
Here we assume that you already have:

• An Elasticsearch cluster setup with the elasticsearch-drift-plugin installed on every
Elasticsearch node.

• An instance of Grafana OpenNMS Helm v2.0.0 or greater installed.

30.2.1. Configuration Elasticsearch persistence

From a Karaf shell on your OpenNMS Meridian instance, start by configuring the flow persistence to
use your Elasticsearch cluster:

494

https://github.com/OpenNMS/elasticsearch-drift-plugin
https://github.com/OpenNMS/opennms-helm

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.flows.persistence.elastic
admin@opennms()> config:property-set elasticUrl http://elastic:9200
admin@opennms()> config:update

This configuration is stored in
${OPENNMS_HOME/etc/org.opennms.features.flows.persistence.elastic.cfg. See
General Elasticsearch Configuration for a complete set of options.

30.2.2. Enabling a protocol

Next, enable one or more of the protocols you would like to handle in
${OPENNMS_HOME}/etc/telemetryd-configuration.xml.

In this example we enable the NetFlow v5 protocol, but the same process can be
repeated for any of the other flow related protocols.

Enable NetFlow v5 in telemetryd-configuration.xml

<listener name="Netflow-5-UDP-8877" class-name=
"org.opennms.netmgt.telemetry.listeners.UdpListener" enabled="true">
 <parameter key="port" value="8877"/>

 <parser name="Netflow-5-Parser" class-name=
"org.opennms.netmgt.telemetry.protocols.netflow.parser.Netflow5UdpParser" queue=
"Netflow-5" />
</listener>

<queue name="Netflow-5">
 <adapter name="Netflow-5-Adapter" class-name=
"org.opennms.netmgt.telemetry.protocols.netflow.adapter.netflow5.Netflow5Adapter"
enabled="true">
 </adapter>
</queue>

Apply the changes without restarting by sending a reloadDaemonConfig event via the CLI:

Send a reloadDaemonConfig event through CLI

${OPENNMS_HOME}bin/send-event.pl -p 'daemonName Telemetryd'
uei.opennms.org/internal/reloadDaemonConfig

This will open a UDP socket bound to 0.0.0.0:8877 to which NetFlow v5 messages can be forwarded.

495

30.2.3. Linking to OpenNMS Helm in the Web UI

In order to access flow related graphs from the OpenNMS Meridian web interface, you must
configure a link to your instance of OpenNMS Helm.

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.netmgt.flows.rest
admin@opennms()> config:property-set flowGraphUrl
'http://grafana:3000/dashboard/flows?node=$nodeId&interface=$ifIndex'
admin@opennms()> config:update

This URL can optionally point to other tools as well. It supports placeholders for
$nodeId, $ifIndex, $start and $end.

Once configured, an icon will appear on the top right corner of a resource graph for an SNMP
interface if there is flow data for that interface.

Configuring a listener on a Minion (Optional)

In this example we’ll look at enabling a generic listener for the NetFlow v5 protocol on Minion.

NetFlow v5 uses the generic UDP listener, but other protocols require a specific
listener. See the examples in ${OPENNMS_HOME}/etc/telemetryd-configuration.xml, or
Telemetryd Listener Reference for details.

To enable and configure a Listener for NetFlow v5 on Minion, connect to the Karaf Console and set
the following properties:

$ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit --alias udp-8877 --factory
org.opennms.features.telemetry.listeners
admin@minion()> config:property-set name Netflow-5
admin@minion()> config:property-set class-name
org.opennms.netmgt.telemetry.listeners.UdpListener
admin@minion()> config:property-set parameters.port 8877
admin@minion()> config:property-set parsers.0.name Netflow-5-Parser
admin@minion()> config:property-set parsers.0.class-name
org.opennms.netmgt.telemetry.protocols.netflow.parser.Netflow5UdpParser
admin@minion()> config:update

If a configuration management tool is used, the properties file can be created and
is used as startup configuration in
${MINION_HOME}/etc/org.opennms.features.telemetry.listeners-udp-8877.cfg.

496

name = Netflow-5
class-name = org.opennms.netmgt.telemetry.listeners.UdpListener
parameters.port = 8877
parsers.0.name Netflow-5-Parser
parsers.0.class-name
org.opennms.netmgt.telemetry.protocols.netflow.parser.Netflow5UdpParser

The associated protocol, in this case Netflow-5 must also be enabled on OpenNMS
Meridian for the messages to be processed.

In some scenarios the exporters address is altered due to network address translation. In this case
you can use node meta-data to identify the exporter. Use the metaDataNodeLookup parameter to
specify a context-key pair in the form of context:key for the lookup.

This value used for the lookup corresponds to the following fields from the various protocols:

Property Description

NetFlow v5 engineId

NetFlow v9 sourceId

IPFix observationDomainId

SFlow agent_address:sub_agent_id

BMP bgpId

30.2.4. Node cache configuration (Optional)

By default each Flow Document is - if known by OpenNMS Meridian - enriched with node
information. To reduce the number of queries to the database, the data is cached.

The following cache properties are available to be set in
${OPENNMS_HOME/etc/org.opennms.features.flows.persistence.elastic.cfg:

Property Description Requi
red

defa
ult

nodeCache.maximumS
ize

The maximum size of the cache false 1000

nodeCache.expireAf
terWrite

Number of seconds until an entry in the node cache is evicted.
Set to 0 to disable eviction.

false 300

nodeCache.recordSt
ats

Defines if cache statistics are exposed via JMX. Set to false to
disable statistic recording.

false true

30.2.5. Classification Exporter Filter cache configuration (Optional)

A rule in the Classification Engine may define an exporterFilter. In order to resolve if the filter

497

criteria matches the address of an exporter a database query is executed. A cache can be
configured to cache the result to improve performance.

The following cache properties are available to be set in
${OPENNMS_HOME/etc/org.opennms.features.flows.classification.cfg:

Property Description Requi
red

defa
ult

cache.classificationFilte
r.enabled

Enables or disables the cache. false fals
e

cache.classificationFilte
r.maxSize

The maximum size of the cache false 5000

cache.classificationFilte
r.expireAfterRead

Number of seconds until an entry in the node cache is
evicted. Set to 0 to disable eviction. The timer is reset
every time an entry is read.

false 300

nodeCache.recordStats Defines if cache statistics are exposed via JMX. Set to false
to disable statistic recording.

false true

30.2.6. Configure Kafka forwarder

Enriched flows (with OpenNMS Node data) can also be forwarded to kafka.

Enriched flows are stored in flowDocuments topic and the payloads are encoded using Google
Protocol Buffers (GPB). See flowdocument.proto in the corresponding source distribution for the
model definitions.

Enable kafka forwarding:

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.flows.persistence.elastic
admin@opennms()> config:property-set enableForwarding true
admin@opennms()> config:update

Configure Kafka server for flows:

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.flows.persistence.kafka
admin@opennms()> config:property-set bootstrap.servers 127.0.0.1:9092
admin@opennms()> config:update

30.3. Classification Engine
The Classification Engine applies a set of user- and/or system-defined rules to each flow to classify it.

498

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

This allows users to group flows by applications, e.g. if all flows to port 80 are marked as http.

In order to classify a flow, a rule must be defined. A rule defines at least a name, which the flow is
classified with, and additional parameters which must match for a successful classification.

30.3.1. Rule definition

A rule has the following fields:

Name Mandatory Description

group mandatory The group in which this rule
was placed, e.g. system-defined,
see also Rule Groups

position mandatory The position at which it is
placed within its group,
relevant for the Order of
evaluation.

name mandatory The name the flow is classified
with, e.g. http

dstPort optional The dstPort of the flow must
match this port. May be a range
or list of ports, e.g. 80,8080,8980,
or 8000-9000.

dstAddress optional The dstAddress of the flow must
match this address. May contain
wildcards.

srcPort optional The srcPort of the flow must
match this port. See dstPort for
more details.

srcAddress optional The srcAddress of the flow must
match this address. See
dstAddress for more details.

exporterFilter optional The exporter of the flow must
match this criteria. It supports
all capabilities of the OpenNMS
Meridian Filters API.

protocol optional The ip protocol of the flow must
match this criteria.

Even if all fields (besides group, position and name) are optional, at least one of them must be
defined to be considered a valid rule.

A list of pre-defined rules already exist in the group pre-defined. The pre-defined rules are inspired

499

https://wiki.opennms.org/wiki/Filters
https://wiki.opennms.org/wiki/Filters

by the IANA Service Name and Transport Protocol Port Number Registry. New rules can be defined
using the Classification UI which can be found in the Admin Menu: Admin → Configure OpenNMS
→ Manage Flow Classification

30.3.2. Omnidirectional Rules

Rules can be marked as omnidirectional which additionally evaluates the rules with interchanged
endpoint addresses and ports. This is helpful if traffic related to a matching classification should be
classified the same way.

30.3.3. Rule Groups

Rules live within a rule group. New groups can be added, edited and deleted via the Classification
UI. The pre-defined group is read only. It (and it’s rules) can not be altered.

30.3.4. Order of evaluation

Rules and groups have a position. Lower positions are evaluated first. The position of a rules group
is more important than the rules position within its group. The system defined group is always
evaluated last.

An example of an evaluation:

Group Position Group Rule Position Rule

1 group 1 1 rule 1.1

1 group 1 2 rule 1.2

1 group 1 3 rule 1.3

1 group 1 4 rule 1.4

2 group 2 1 rule 2.1

2 group 2 2 rule 2.2

2 group 2 3 rule 2.3

2 group 2 4 rule 2.4

3 group 3 1 rule 3.1

3 group 3 2 rule 3.2

The positions of rules and groups can be changed by drag and drop or by editing the position field
in the edit dialogs.

30.3.5. Verification

With a more complex set of rules it is not always easy to verify if everything is configured correctly.
To make things a bit easier, the Classification UI allows to test/verify a classification. To do so, please
navigate to the Classification UI: Admin → Configure OpenNMS → Manage Flow Classification
and select the Test Classification action in the top right. This allows to simulate a flow being send to

500

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

the Classification Engine with certain fields.

30.3.6. Example

Let’s assume the following rules are defined:

name srcAddress srcPort dstAddress dstPort protocol exporterFilt
er

OpenNMS 10.0.0.1 8980 tcp,udp

http 80,8980,8080
,9000

udp,tcp

https 443

Exporters categoryNa
me ==
'Exporters'

The following flows are send to OpenNMS Meridian and with the rules defined above classified
accordingly.

Flow Classification

protocol: tcp,

srcAddress: 10.0.0.5, srcPort: 60123,

dstAddress: 54.246.188.65, dstPort: 80,

exporterAddress: 10.0.0.55

http

protocol: tcp,

srcAddress: 10.0.0.5, srcPort: 60123,

dstAddress: 54.246.188.65, dstPort: 443,

exporterAddress: 10.0.0.55

https

protocol: tcp,

srcAddress: 10.0.0.5, srcPort: 60123,

dstAddress: 10.0.0.1, dstPort: 8980,

exporterAddress: 10.0.0.55

OpenNMS

501

30.4. Aggregation
The flow query engine supports rendering Top-N metrics from pre-aggregated documents stored in
Elasticsearch. These can be used to help alleviate compute load on the Elasticsearch cluster,
particularly for environments with large volumes of flows (>10,000 flows/sec).

In order to use this functionality you must enable the Kafka forwarder as described in [ga-flow-
support-kafka-forwarder] and setup Nephron to process the flows.

 Nephron currently requires an Apache Flink cluster to deploy the job.

The following properties can bet set in
${OPENNMS_HOME/etc/org.opennms.features.flows.persistence.elastic.cfg to control the query
engine to use aggregated flows:

Property Description Requ
ired

default

alwaysUseRawForQuerie
s

Set to true to use raw flow documents to respond to all
queries and effectively disable the use of aggregated
flows.

false true

alwaysUseAggForQuerie
s

Set to true to use raw aggregated flow documents to
respond to all queries and effectively disable the use of
raw flows.

false false

timeRangeDurationAggr
egateThresholdMs

Queries with time range filters that have a duration
greater than this value will use aggregated flows when
possible.

false 120000 (2
minutes)

timeRangeEndpointAggr
egateThresholdMs

Queries with time range filters that have an endpoint
that is older than this value will use aggregated flows
when possible.

false 604800000

(7 days)

502

https://github.com/OpenNMS/nephron
https://flink.apache.org/

Chapter 31. Kafka Producer

31.1. Overview
The Kafka Producer feature allows events, alarms, nodes, topologies and metrics from OpenNMS
Meridian to be forwarded to Kafka.

These objects are stored in different topics and the payloads are encoded using Google Protocol
Buffers (GPB). See opennms-kafka-producer.proto and collectionset.proto in the corresponding
source distribution for the model definitions.

31.1.1. Events

The Kafka Producer listens for all events on the event bus and forwards these to a Kafka topic. The
records are keyed by event Id and contain a GPB encoded model of the event.

By default, all events are forwarded to a topic named events.

The name of the topic used can be configured, and an optional filtering expression can be set to
help control which events are sent to the topic.

31.1.2. Alarms

The Kafka Producer listens for changes made to the current set of alarms and forwards the
resulting alarms to a Kafka topic. The records are keyed by alarm reduction key and contain a GPB
encoded model of the alarm. When an alarm is deleted, a null value is sent with the corresponding
reduction key. Publishing records in this fashion allows the topic to be used as a KTable. The Kafka
Producer will also perform periodic synchronization tasks to ensure that the contents of the Kafka
topic reflect the current state of alarms in the OpenNMS Meridian database.

By default, all alarms (and subsequent updates) are forwarded to a topic named alarms.

The name of the topic used can be configured, and an optional filtering expression can be set to
help control which alarms are sent to the topic.

31.1.3. Nodes

If an event or alarm being forwarded reference a node, then the corresponding node is also
forwarded. The records are keyed by "node criteria" (see bellow) and contain a GPB encoded model
of the alarm. A caching mechanism is in place to help avoid forwarding nodes that have been
successfully forwarded, and have not changed since.

The name of the topic used can be configured.

The node topic is not intended to include all of the nodes in the system, it only
includes records for nodes that relate to events or alarms that have been
forwarded.

503

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://docs.confluent.io/current/streams/concepts.html#ktable

Node Criteria

The node criteria is a string representation of the unique identifier for a given node. If the node is
associated with a foreign source (fs) and foreign id (fid), the node criteria resulting node criteria will
be the name of the foreign source, followed by a colon (:) and then the foreign id i.e. (fs:fid). If the
node is not associated with both a foreign source and foreign id, then the node id (database id) will
be used.

31.1.4. Topologies

The Kafka Producer listens for changes made to the current set of topologies (bridge, cdp, isis, lldp
and ospf) and forwards the resulting messages to Kafka topics. A topic is defined either for
Topology Vertex Update Message and another topic is defined for Topology Edge Update Message.
The topologies are provided by the enhanced linkd updaters via the OnmsTopology API. An Updater
send OnmsTopologyMessage to the subscribers. The records are keyed by GPB encoded key of
protocol and TopologyRef and contain a GPB encoded model of the Vertex or Edge. When a Vertex
or an Edge is deleted, a null value is sent with the corresponding encoded GBP key. Publishing
records in this fashion allows the topic to be used as a KTable.

The topologies topic are not intended to include all of the vertices in the system, it
only includes records for vertex that relate to topology messages that have been
forwarded.

31.1.5. Metrics

The Kafka Producer can be used to write metrics to Kafka either exclusively, or in addition to an
existing persistence strategy i.e. RRD or Newts. The metrics are written in the form of "collection
sets" which correspond to the internal representation used by the existing collectors and
persistence strategies. The records are keyed by Node ID or by IP Address if no Node ID is available
and contain a GPB encoded version of the collection sets. The records are keyed in this fashion to
help ensure that collection sets related to the same resources are written to the same partitions.

When enabled (this functionality is disabled by default), the metrics are written to a topic named
metrics.

When exclusively writing to Kafka, no metrics or resource graphs will be available
on the OpenNMS Meridian instance.

31.2. Enabling the Kafka Producer
The Kafka Producer is disabled by default and can be enabled as follows.

First, login to the Karaf shell of your OpenNMS Meridian instance and configure the Kafka client
settings to point to your Kafka broker. See Producer Configs for a complete list of available options.

504

https://docs.confluent.io/current/streams/concepts.html#ktable
https://kafka.apache.org/10/documentation.html#producerconfigs

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.kafka.producer.client
admin@opennms()> config:property-set bootstrap.servers 127.0.0.1:9092
admin@opennms()> config:update

Next, install the opennms-kafka-producer feature from that same shell using:

admin@opennms()> feature:install opennms-kafka-producer

In order to ensure that the feature continues to be installed as subsequent restarts, add opennms-
kafka-producer to the featuresBoot property in the
${OPENNMS_HOME}/etc/org.apache.karaf.features.cfg.

31.3. Configuring the Kafka Producer
The Kafka Producer exposes the following options to help fine tune its behavior.

Name Default
Value

Description

eventTopic events Name of the topic used for events. Set this to an empty string to
disable forwarding events.

alarmTopic alarms Name of the topic used for alarms. Set this to an empty string to
disable forwarding alarms.

alarmFeedbackTopic alarmFeedba
ck

Name of the topic used for alarm feedback. Set this to an empty
string to disable forwarding alarm feedback.

nodeTopic nodes Name of the topic used for nodes. Set this to an empty string to
disable forwarding nodes. Set this to an empty string to disable
forwarding topologies.

topologyVertexTopi
c

vertices Name of the topic used for topology vertices.

topologyEdgeTopic edges Name of the topic used for topology edges.

metricTopic metrics Name of the topic used for metrics.

eventFilter - A Spring SpEL expression (see bellow) used to filter events. Set
this to an empty string to disable filtering, and forward all
events.

alarmFilter - A Spring SpEL expression (see bellow) used to filter alarms. Set
this to an empty string to disable filtering, and forward all
alarms.

forward.metrics false Set this value to true to enable forwarding of metrics.

505

Name Default
Value

Description

nodeRefreshTimeout
Ms

300000 (5
minutes)

Number of milliseconds to wait before looking up a node in the
database again. Decrease this value to improve accuracy at the
cost of additional database look ups.

suppressIncrementa
lAlarms

true Suppresses forwarding alarms that differ only by count or last
event time. Set this to false to prevent suppressing these alarms.

kafkaSendQueueCapa
city

1000 The capacity for the queue of Kafka messages that is used when
a Kafka message is pushed but Kafka is unavailable.

startAlarmSyncWith
CleanState

false Set this to true to force the Kafka Streams client to start with a
clean state on every boot.

31.3.1. Configuring Filtering

Filtering can be used to selectively forward events and/or alarms to the Kafka topics.

Filtering is performed using a Spring SpEL expression which is evaluated against each object to
determine if it should be forwarded. The expression must return a boolean value i.e. true or false.

Enabling Event Filtering

To enable event filtering, set the value of the eventFilter property to a valid SpEL expression.

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.kafka.producer
admin@opennms()> config:property-set eventFilter
'getUei().equals("uei.opennms.org/internal/discovery/newSuspect")'
admin@opennms()> config:update

In the example above, the filter is configured such that only events with the given UEI are
forwarded. Consult the source code of the org.opennms.netmgt.xml.event.OnmsEvent class in your
distribution for a complete list of available properties.

Enabling Alarm Filtering

To enable alarm filtering, set the value of the alarmFilter property to a valid SpEL expression.

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.kafka.producer
admin@opennms()> config:property-set alarmFilter 'getTTicketId() != null'
admin@opennms()> config:update

In the example above, the filter is configured such that only alarms that are associated with a ticket

506

https://docs.spring.io/spring/docs/4.2.9.RELEASE/spring-framework-reference/html/expressions.html

id are forwarded. Consult the source code of the org.opennms.netmgt.model.OnmsAlarm class in your
distribution for a complete list of available properties.

31.3.2. Enabling Metric Forwarding

To enable metric forward, set the value of the forward.metrics property to true.

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.kafka.producer
admin@opennms()> config:property-set forward.metrics true
admin@opennms()> config:update

Enabling Exclusive Metric Forwarding

Once metric forwarding is enabled, you can use this as the exclusive persistence strategy as follows
by setting the following system property:

echo 'org.opennms.timeseries.strategy=osgi' >
"$OPENNMS_HOME/etc/opennms.properties.d/kafka-for-metrics.properties"

31.3.3. Configuring Topic Names

By default five topics are created i.e. events, alarms, nodes,vertices, and edges . To change these, you
can use:

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.kafka.producer
admin@opennms()> config:property-set eventTopic ""
admin@opennms()> config:property-set nodeTopic "opennms-nodes"
admin@opennms()> config:update

In the example above, we disable event forwarding by setting an empty topic name and change the
node topic name to opennms-nodes.

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.kafka.producer
admin@opennms()> config:property-set topologyVertexTopic "opennms-bridge-vertex"
admin@opennms()> config:property-set topologyEdgeTopic "opennms-edge-vertex"
admin@opennms()> config:update

In the example above, we set the vertex and edge topics to be different to default.

507

31.4. Shell Commands
The Kafka Producer also provides a series of shell commands to help administering and debugging
the service.

31.4.1. opennms:kafka-list-alarms

The list-alarms command can be used to enumerate the reduction keys and show the associated
event labels for the alarms that are present in the topic. This command leverages functionality used
by the alarm synchronization process, and as a result this must be enabled in for this command to
function.

$ ssh -p 8101 admin@localhost
...
admin@opennms> opennms:kafka-list-alarms
uei.opennms.org/alarms/trigger:n33:0.0.0.0:HTTPS_POOLs
 Alarm: Generic Trigger

31.4.2. kafka-producer:sync-alarms

The sync-alarms command can be used to manually trigger the alarm synchronization process.

$ ssh -p 8101 admin@localhost
...
admin@opennms> opennms:kafka-sync-alarms
Performing synchronization of alarms from the database with those in the ktable.
Executed 1 updates in 47ms.

Number of reduction keys in ktable: 4
Number of reduction keys in the db: 4 (4 alarms total)
Reduction keys added to the ktable: (None)
Reduction keys deleted from the ktable: (None)
Reduction keys updated in the ktable:
 uei.opennms.org/nodes/nodeLostService::1:127.0.0.1:Minion-RPC

31.4.3. opennms:kafka-evaluate-filter

The evaluate-filter command can be used to test arbitrary SpEL filtering expressions against
alarms or events.

Evaluating filters against alarms

To test a filter against an alarm, specify the database id of the alarm and the expression to test:

508

admin@opennms> opennms:kafka-evaluate-filter --alarm-id 57
"getReductionKey().contains('n33')"
SPEL Expression: getReductionKey().contains('n33')
Alarm with ID 57 has reduction key:
uei.opennms.org/alarms/trigger:n33:0.0.0.0:HTTPS_POOLs
Result: true

Evaluating filters against events

To test a filter against an event, specify the UEI of the event and the expression to test:

admin@opennms> opennms:kafka-evaluate-filter --event-uei
uei.opennms.org/alarms/trigger "getUei().contains('alarm')"
SPEL Expression: getUei().contains('alarm')
Event has UEI: uei.opennms.org/alarms/trigger
Result: true

In this case, a new event will be created with the given UEI, and the filter will be evaluated against
this new event object. At this time, existing events cannot be referenced by this tool, so this
functionality only serves to help make sure the expressions are syntactically valid.

509

Chapter 32. Alarm Correlation

32.1. Situation Feedback

32.1.1. Introduction

Situation Feedback allows operators to provide real time feedback on Alarm Correlation.

32.1.2. Installation

Situation Feedback needs to be enabled by installing the feature from the Karaf shell:

feature:install opennms-situation-feedback

In order to ensure that the feature continues to be installed as subsequent restarts, add opennms-
situation-feedback to the featuresBoot property in the
${OPENNMS_HOME}/etc/org.apache.karaf.features.cfg.

32.1.3. Requirements

The feature requires Elasticsearch to persist the feeback records.

Configuration Elasticsearch persistence

From a Karaf shell on your OpenNMS Meridian instance, start by configuring the Situation Feedback
persistence to use your Elasticsearch cluster:

$ ssh -p 8101 admin@localhost
...
admin@opennms()> config:edit org.opennms.features.situation-
feedback.persistence.elastic
admin@opennms()> config:property-set elasticUrl http://elastic:9200
admin@opennms()> config:update

This configuration is stored in
${OPENNMS_HOME/etc/org.opennms.features.situation-

feedback.persistence.elastic.cfg. See Elasticsearch Integration for more
information.

Installing the feature exposes a ReST endpoint that OpenNMS Helm uses to display and submit
feedback.

Further information on the ReST API can be found in the Developer Guide

510

Chapter 33. Meta-Data
OpenNMS Meridian supports the assignment of arbitrary metadata to nodes, interfaces and
services. You can then use this metadata to dynamically configure service monitoring, performance
data collection, service detection, and expression-based thresholds.

The metadata is a simple triad of strings containing a context, a key and the associated value. Each
node, each interface and each service can have an arbitrary number of metadata elements assigned
to it. The only restriction is that the tuple of context and key must be unique in the element with
which it is associated.

The association of metadata with nodes, interfaces and services happens during provisioning. Users
can add, query, modify, or delete metadata through the requisition editor in the web UI, or through
the ReST endpoints.

A simple domain-specific language (DSL) allows users to access the metadata associated with the
elements they are working on, and use it as a variable in parameters and expressions. There is no
limitation in defining metadata: users can decide how to define it and use it in expressions.

View metadata currently assigned to nodes, interfaces and services, on the details page associated
with that entity in the web UI:

[metadata view]

33.1. Contexts
A context distinguishes different kinds of metadata use. OpenNMS Meridian uses several default
contexts: pattern (used with polling), requisition, node, interface, and service.

Three special contexts provide details about nodes, interfaces and services objects. Each context
has keys associated with it that you can use in a metadata expression.

You can create user-defined contexts in the ReST API by prefixing the context name with X-. Using
an X- prefix can help to avoid future OpenNMS Meridian contexts interfering with a user-defined
context, since OpenNMS Meridian contexts are not prefixed in this way.

33.1.1. Node context

The node context provides details about the node currently processed. The following keys are
available under this context:

Context:Key Description

node:label The node’s label

node:foreign-source The node’s foreign source name

node:foreign-id The node’s foreign ID

node:netbios-domain The NetBIOS domain as provided by SNMP

511

#ga-provisioning-meta-data
ga-metadata-webui
https://vault.opennms.com/docs/opennms/releases/latest/guide-development/guide-development.html#_meta_data
#ga-meta-data-dsl

Context:Key Description

node:netbios-name The NetBIOS name as provided by SNMP

node:os The node’s operating system

node:sys-name The system name of the node

node:sys-location The system location of the node

node:sys-contact The system contact specified for the node

node:sys-description The system description of the node

node:location The node’s monitoring location name

node:area The node’s monitoring location area

33.1.2. Interface context

The interface context provides details about the interface currently processed. The following keys
are available under this context:

Context:Key Description

interface:hostname The hostname associated with the IP address of the interface

interface:address The IP address of the interface

interface:netmask The netmask of the interface

interface:if-index The SNMP interface index

interface:if-alias The SNMP interface alias

interface:if-description The SNMP interface description

interface:phy-addr The physical address of the interface

33.1.3. Service context

The service context provides details about the service currently processed. The following key is
available under this context:

Context:Ke
y

Description

service:name The full name of the service

33.2. Adding Metadata through the Web UI
You can edit the requisition context in the web UI:

512

1. Under the admin menu, select Configure OpenNMS.

2. Select Manage Provisioning Requisitions.

3. Click the edit icon beside the requisition you want to work with.

4. Click edit beside the node you want to work with.

5. In the Meta-Data area, click Add Meta-Data.

[metadata add]

6. Specify node or interface as the scope of where the metadata will apply.

7. Specify the key and a value and click Save.

33.3. The Metadata DSL
The metadata DSL allows interpolation of metadata into a parameter. The syntax allows the use of
patterns like ${context:key|context_fallback:key_fallback|…|default} in an expression.

Each expression can contain multiple references to metadata that will be replaced with the
corresponding value during evaluation. Placeholders start with ${ and end with } containing a
reference to a context-key pair. You may choose to define multiple fallback context-key pairs and
and an optional trailing default value. Separate context and key by a :. Use a | to separate optional
fallback context-key pairs and default value. If the first context:key item is not available (not on a
service, interface, node or any other of the special contexts) the next one after the | is used. The last
one, the default value, is not interpreted as a context:key but is used as a literal and will always
succeed.

Examples

${requisition:username}

Will resolve to the username as defined in the requisitioning UI or an empty value, if there is no
such username defined.

A placeholder can contain an optional default value which is separated by a |.

${requisition:username|admin}

Will resolve to the username as defined in the requisitioning UI or to the value admin, if there is no
such username defined.

Use fallback context-key pairs in a placeholder after the primary context-key pair to specify other
values if the primary context-key pair is not defined. Separate each fallback context-key-pair by a |.

${requisition:username|requisition:account|admin}

Will resolve to the username as defined in the requisitioning UI. If there is no such username
defined, the fallback account will be used. If neither exist, the fallback value admin will be used.

To resolve the value associated with context-key pair, the DSL uses scopes that determine the
resolution order. The last scope will be queried first and if a scope does not contain the queried
context-key tuple, the next one will be queried. For example, the resolution of a query on a service

513

entity would be service metadata→interface metatdata→node metadata. On an interface, it is
metadata→interface metatdata→node metadata. On the node level, only the node is queried.

Which scopes are available depends on the environment for which an expression is evaluated and
is documented in the corresponding places elsewhere in this guide. Some environments also
provide additional scopes that are not backed by the persisted metadata but provide additional
metadata related to the current evaluation.

33.3.1. Testing an expression

To test an expression, there is a karaf shell command which interpolates a string containing a
pattern to the final result:

admin@opennms> opennms:metadata-test -n 1 -i 192.168.0.100 -s ICMP
'${fruits:apple|fruits:banana|vegetables:tomato|blue}'

Meta-Data for node (id=1)
fruits:
 apple='green'
 banana='yellow'
vegetables:
 tomato='red'

Meta-Data for interface (ipAddress=192.168.0.100):
fruits:
 apple='brown'

Meta-Data for service (name=ICMP):
fruits:
 apple='red'

Input: '${fruits:apple|fruits:banana|vegetables:tomato|blue}'
Output: 'red'
admin@opennms>

33.3.2. Uses

The following places allow the use the Metadata DSL:

• Provisioning Detectors

• Service Assurance

• Performance Management

• TTLs with Minion

• Expression-Based Thresholds

514

#ga-provisioning-detectors-meta-data
#ga-pollerd-configuration-meta-data
#ga-collectd-packages-services-meta-data
#ga-metadata-ttl
#ga-threshhold-metadata

Chapter 34. OpenNMS Meridian
Administration
This section describes administrative tasks, such as shutdown and restart, you may need to perform
with your OpenNMS Meridian instance.

This chapter provides an example of the order to follow when shutting down and restarting a
sample OpenNMS Meridian system: OpenNMS Meridian core layer, persistence and messaging
layer, and database layer.

Note that restarting the whole stack is rare. Usually, restarting the OpenNMS Meridian core
happens for reconfiguration or to run upgrades. A core restart takes between 2–5 minutes
depending on memory configuration. Minion and Sentinel restart faster.

Keep in mind that when shutting down the OpenNMS Meridian core, there will be no notifications,
alarms, outage detection, performance data collection, thresholding, or flows. After restarting there
will be gaps in your performance graphs for the shutdown time.

Restarting components in the persistence and messaging layer normally happens only for upgrades
or catastrophic failures. Exercise caution with restarting components in this layer, since there is the
risk of data loss.

The steps below are illustrative for a sample Linux setup. Your OpenNMS Meridian
may be different. Documenting procedures for each setup is beyond the scope of
this document. You must be root to run the commands listed below.

34.1. Shutdown
Shutdown components in the following order:

1. Dashboard applications such as Grafana and Kibana.

515

systemctl stop grafana-server
systemctl stop kibana

2. OpenNMS Meridian Core application (Core, Sentinel, Minion), in any order.

a. Turn off notifications first.

i. Login to the OpenNMS Meridian UI.

ii. In the top right corner choose User name→Configure OpenNMS:

iii. Under Event Management, turn off Notification Status and click Update.

b. Access the OpenNMS Meridian system via CLI (putty, SecureCRT, etc.).

c. Become a root user via the following command: sudo su -

d. Type the following commands:

systemctl stop opennms
systemctl stop minion
systemctl stop sentinel

3. Persistence and messaging components such as PostgreSQL, Cassandra, Kafka, etc., in any order:

systemctl stop postgresql-12
systemctl stop cassandra
systemctl stop elasticsearch

Neither Kafka nor Zookeeper have systemd definitions. The way to control the
processes depends on how they were installed, and is beyond the scope of this
documentation.

516

34.2. Restart
Restart components in the following order:

1. Persistence and messaging components such as PostgreSQL, Cassandra, Kafka, etc., in any order:

systemctl start postgresql-12
systemctl start cassandra
systemctl start elasticsearch

2. OpenNMS Meridian Core application second, in any order.

systemctl start opennms
systemctl start minion
systemctl start sentinel

a. In the UI, turn the Notification Status to On and click Update.

3. Dashboard applications like Grafana and Kibana last so they function properly.

systemctl start grafana-server
systemctl start kibana

You can restart dashboard applications at any time, but they will not show any
useful information until all components in the persistence and OpenNMS Meridian
layers have started.

517

	Administrators Guide
	Table of Contents
	Chapter 1. About This Guide
	1.1. Audience
	1.2. Related Documentation
	1.3. Typographical Conventions
	1.4. Need Help?

	Chapter 2. Data Choices
	Chapter 3. User Management
	3.1. Users
	3.2. Security Roles
	3.3. Web UI Pre-Authentication
	3.3.1. Enabling Pre-Authentication
	3.3.2. Configuring Pre-Authentication

	Chapter 4. Enabling pre-authorization
	Chapter 5. Administrative Webinterface
	5.1. Surveillance View
	5.1.1. Default Surveillance View Configuration
	5.1.2. Configuring Surveillance Views
	5.1.3. Categorizing Nodes
	5.1.4. Creating Views for Users and Groups

	5.2. Dashboard
	5.2.1. Components
	5.2.2. Advanced configuration

	5.3. Grafana Dashboard Box
	5.4. Operator Board
	5.4.1. Configuration
	5.4.2. Dashlets
	5.4.3. Boosting Dashlet
	5.4.4. Criteria Builder

	5.5. JMX Configuration Generator
	5.5.1. Web based utility
	5.5.2. CLI based utility

	5.6. Heatmap
	5.7. Trend

	Chapter 6. Service Assurance
	6.1. Pollerd Configuration
	6.1.1. Meta-Data-DSL

	6.2. Critical Service
	6.3. Downtime Model
	6.4. Path Outages
	6.5. Poller Packages
	6.5.1. Response Time Configuration
	6.5.2. Overlapping Services
	6.5.3. Service Patterns
	6.5.4. Test Services on manually
	6.5.5. Test filters on Karaf Shell

	6.6. Service monitors
	6.6.1. Common Configuration Parameters
	6.6.2. Using Placeholders in Parameters
	6.6.3. ActiveMQMonitor
	6.6.4. AvailabilityMonitor
	6.6.5. BgpSessionMonitor
	6.6.6. BSFMonitor
	6.6.7. CiscoIpSlaMonitor
	6.6.8. CiscoPingMibMonitor
	6.6.9. CitrixMonitor
	6.6.10. DhcpMonitor
	6.6.11. DiskUsageMonitor
	6.6.12. DnsMonitor
	6.6.13. DNSResolutionMonitor
	6.6.14. FtpMonitor
	6.6.15. HostResourceSwRunMonitor
	6.6.16. HttpMonitor
	6.6.17. HttpPostMonitor
	6.6.18. HttpsMonitor
	6.6.19. IcmpMonitor
	6.6.20. ImapMonitor
	6.6.21. ImapsMonitor
	6.6.22. JCifsMonitor
	6.6.23. JDBCMonitor
	6.6.24. JDBCStoredProcedureMonitor
	6.6.25. JDBCQueryMonitor
	6.6.26. JmxMonitor
	6.6.27. JolokiaBeanMonitor
	6.6.28. LdapMonitor
	6.6.29. LdapsMonitor
	6.6.30. MemcachedMonitor
	6.6.31. NetScalerGroupHealthMonitor
	6.6.32. NrpeMonitor
	6.6.33. NtpMonitor
	6.6.34. OmsaStorageMonitor
	6.6.35. OpenManageChassisMonitor
	6.6.36. PageSequenceMonitor
	6.6.37. PercMonitor
	6.6.38. Pop3Monitor
	6.6.39. PrTableMonitor
	6.6.40. RadiusAuthMonitor
	6.6.41. SmbMonitor
	6.6.42. SmtpMonitor
	6.6.43. SnmpMonitor
	6.6.44. SshMonitor
	6.6.45. SSLCertMonitor
	6.6.46. StrafePingMonitor
	6.6.47. TcpMonitor
	6.6.48. SystemExecuteMonitor
	6.6.49. VmwareCimMonitor
	6.6.50. VmwareMonitor
	6.6.51. WebMonitor
	6.6.52. Win32ServiceMonitor
	6.6.53. WsManMonitor
	6.6.54. XmpMonitor

	Chapter 7. Performance Management
	7.1. Configuring Collectd
	7.1.1. Setting the Thread Pool
	7.1.2. Configuring Collector Packages
	7.1.3. Guidelines for Collector Packages

	7.2. Configuring Collectors
	7.2.1. SnmpCollector
	7.2.2. JmxCollector
	7.2.3. HttpCollector
	7.2.4. JdbcCollector
	7.2.5. NSClientCollector
	7.2.6. PrometheusCollector
	7.2.7. TcaCollector
	7.2.8. VmwareCimCollector
	7.2.9. VmwareCollector
	7.2.10. WmiCollector
	7.2.11. WsManCollector
	7.2.12. XmlCollector
	7.2.13. XmpCollector

	7.3. Resource Types
	7.4. SNMP Property Extenders
	7.4.1. Cisco CBQoS Property Extender
	7.4.2. Enum Lookup Property Extender
	7.4.3. Index Split Property Extender
	7.4.4. Regex Property Extender
	7.4.5. Pointer-Like Index Property Extender
	7.4.6. SNMP Interface Property Extender

	7.5. Administration and Troubleshooting
	7.5.1. Collectd Administration
	7.5.2. Shell Commands

	Chapter 8. Thresholding
	8.1. How Thresholding Works in OpenNMS Meridian
	8.2. What Triggers a Thresholding Event?
	8.3. Basic Walk-through – Thresholding
	8.3.1. Determine You are Collecting Metric
	8.3.2. Create a Threshold
	8.3.3. Testing the Threshold
	8.3.4. Creating a Threshold for CPU Usage
	8.3.5. Determining the Datasource
	8.3.6. Create a Threshold Group
	8.3.7. Create a Notification on a Threshold Event

	8.4. Thresholding Service
	8.4.1. Distributed Thresholding with Sentinel

	8.5. Shell Commands

	Chapter 9. Events
	9.1. Anatomy of an Event
	9.2. Sources of Events
	9.2.1. SNMP Traps
	9.2.2. Syslog Messages
	9.2.3. ReST
	9.2.4. XML-TCP
	9.2.5. Receiving IBM Tivoli Event Integration Facility Events
	9.2.6. TL1 Autonomous Messages
	9.2.7. Sink

	9.3. The Event Bus
	9.3.1. Associate an Event to a given node

	9.4. Event Configuration
	9.4.1. The eventd-configuration.xml file
	9.4.2. The eventconf.xml file and its tributaries
	9.4.3. Reloading the event configuration

	9.5. Debugging
	9.5.1. Karaf Shell

	Chapter 10. Alarms
	10.1. Single Alarm Tracking Problem States
	10.2. Alarm Service Daemon
	10.3. Configuring Alarms
	10.4. Alarm Notes
	10.5. Alarm Sounds
	10.6. Flashing Unacknowledged Alarms
	10.7. Configuring Alarm Sounds and Flashing
	10.8. Alarm History
	10.8.1. Requirements
	10.8.2. Setup
	10.8.3. Alarm indexing
	10.8.4. Options

	Chapter 11. Notifications
	11.1. Introduction
	11.2. Getting Started
	11.2.1. Enabling Notifications
	11.2.2. Configuring Destination Paths
	11.2.3. Configuring Event Notifications

	11.3. Concepts
	11.3.1. Events and UEIs
	11.3.2. Users, Groups, and On-Call Roles
	11.3.3. Duty Schedules
	11.3.4. Destination Paths
	11.3.5. Notification Commands

	11.4. Bonus Notification Methods
	11.4.1. Mattermost
	11.4.2. Slack Notifications

	Chapter 12. Provisioning
	12.1. Introduction
	12.2. Concepts
	12.2.1. Terminology
	12.2.2. Addressing Scalability

	12.3. Getting Started
	12.3.1. Provisioning the SNMP Configuration
	12.3.2. Automatic Discovery
	12.3.3. Enhanced Directed Discovery

	12.4. Import Handlers
	12.4.1. Generic Handler
	12.4.2. File Handler
	12.4.3. HTTP Handler
	12.4.4. DNS Handler

	12.5. Provisioning Examples
	12.5.1. Basic Provisioning
	12.5.2. Advanced Provisioning Example

	12.6. Adapters
	12.6.1. DDNS Adapter
	12.6.2. RANCID Adapter

	12.7. Meta-Data assigned to Nodes
	12.7.1. User defined contexts

	12.8. Integrating with Provisiond
	12.8.1. Provisioning Groups of Nodes
	12.8.2. Example

	12.9. Provisioning Single Nodes (Quick Add Node)
	12.10. Fine Grained Provisioning Using provision.pl
	12.10.1. Create a new requisition

	12.11. Yet Other API Examples
	12.12. SNMP Profiles
	12.13. Auto Discovery with Detectors
	12.14. Service Detectors
	12.14.1. Meta-Data-DSL
	12.14.2. HTTP Detector
	12.14.3. HTTPS Detector
	12.14.4. SNMP Detector
	12.14.5. WS-Man Detector
	12.14.6. WS-Man WQL Detector
	12.14.7. Reverse-DNS-Lookup Detector

	Chapter 13. Business Service Monitoring
	13.1. Business Service Hierarchy
	13.2. Operational status
	13.3. Root Cause and Impact Analysis
	13.4. Simulation Mode
	13.5. Share View
	13.6. Change Icons
	13.7. Business Service Definition
	13.8. Edges
	13.8.1. Child Services
	13.8.2. IP Services
	13.8.3. Custom Reduction Key
	13.8.4. Application

	13.9. Map Functions
	13.10. Reduce Functions
	13.11. Business Service Daemon

	Chapter 14. Topology Map
	14.1. Properties
	14.2. Edge Status
	14.2.1. Linkd Topology Provider

	14.3. Icons
	14.3.1. Icon resolution
	14.3.2. Change existing icon mappings
	14.3.3. Add new icons

	Chapter 15. Asset Topology Provider
	15.1. Overview
	15.2. Asset layers
	15.3. Node filtering
	15.4. Configuration
	15.5. Creating Asset Based Topologies From Karaf Consol
	15.6. Creating Asset Based Topologies Using OpenNMS Meridian events
	15.7. Viewing the topology
	15.8. Additional notes

	Chapter 16. Database Reports
	16.1. Overview
	16.2. Modify existing reports
	16.3. Add a custom report
	16.4. Usage of Jaspersoft Studio
	16.4.1. Connect to the OpenNMS Meridian Database
	16.4.2. Use Measurements Datasource and Helpers

	16.5. Accessing Performance Data
	16.5.1. Fields
	16.5.2. Parameters

	16.6. Disable Scheduler
	16.7. Helper methods
	16.7.1. Usage of the node source descriptor
	16.7.2. Usage of the interface descriptor
	16.7.3. Use HTTPS

	16.8. Limitations
	16.9. Creating PDF Reports from Grafana Dashboards Using OpenNMS Meridian
	16.9.1. Before You Begin
	16.9.2. Configure the Grafana Endpoint
	16.9.3. Creating a PDF of a Grafana Dashboard

	Chapter 17. Enhanced Linkd
	17.1. Enlinkd Daemon
	17.2. Layer 2 Link Discovery
	17.2.1. LLDP Discovery
	17.2.2. CDP Discovery
	17.2.3. Transparent Bridge Discovery

	17.3. Layer 3 Link Discovery
	17.3.1. OSPF Discovery
	17.3.2. IS-IS Discovery

	Chapter 18. OpenTracing
	18.1. Introduction
	18.1.1. Enabling Tracing on OpenNMS Meridian
	18.1.2. Enabling Tracing on Minion
	18.1.3. Enabling Tracing on Sentinel

	Chapter 19. Operation
	19.1. HTTPS / SSL
	19.1.1. Standalone HTTPS with Jetty
	19.1.2. OpenNMS Meridian as HTTPS client
	19.1.3. Differences between Java Trust Store and Java Key Store
	19.1.4. Debugging / Properties

	19.2. Request Logging
	19.3. Geocoder Service
	19.3.1. Google
	19.3.2. Mapquest
	19.3.3. Nominatim

	19.4. newts-repository-converter: Rrd/Jrb to Newts migration utility
	19.4.1. Migration
	19.4.2. Usage
	19.4.3. Example 1: convert Rrd-based data with storeByGroup enabled
	19.4.4. Example 2: convert JRobin-based data with storeByGroup disabled

	19.5. Configuration Tester
	19.6. Newts
	19.6.1. Configuration
	19.6.2. Cassandra Monitoring
	19.6.3. Newts Monitoring

	19.7. Timeseries Integration Layer
	19.7.1. Configuration

	19.8. Daemon Configuration Files
	19.8.1. Eventd
	19.8.2. Notifd
	19.8.3. Pollerd
	19.8.4. Syslogd
	19.8.5. Trapd

	Chapter 20. System Properties
	20.1. Configuring system proxies

	Chapter 21. Ticketing
	21.1. JIRA Ticketing Plugin
	21.1.1. Setup
	21.1.2. Jira Commands
	21.1.3. Custom fields
	21.1.4. Troubleshooting

	21.2. Remedy Ticketing Plugin
	21.2.1. Remedy Product Overview
	21.2.2. Supported Remedy Product Versions
	21.2.3. Setup

	21.3. TSRM Ticketing Plugin
	21.3.1. Setup
	21.3.2. Mapping OpenNMS Ticket with TSRM Incident

	Chapter 22. Enabling RMI
	22.1. Enabling RMI
	22.2. Enabling SSL
	22.3. Connecting to RMI over SSL

	Chapter 23. Minion
	23.1. Using JMS
	23.1.1. Tuning the ActiveMQ broker
	23.1.2. Monitoring the ActiveMQ broker using the Karaf shell
	23.1.3. Authentication and authorization with ActiveMQ
	23.1.4. Multi-tenancy with OpenNMS Meridian and ActiveMQ
	23.1.5. Tuning the RPC client in OpenNMS
	23.1.6. Diagnosing RPC failures

	23.2. Using AWS SQS
	23.2.1. OpenNMS Meridian Configuration
	23.2.2. Minion Configuration
	23.2.3. SQS Configuration Settings
	23.2.4. Managing Multiple Environments
	23.2.5. AWS Credentials
	23.2.6. Limitations

	23.3. Using Off-heap Storage for Sink Messages
	23.3.1. Configuring Off-heap Storage

	23.4. Installing JDBC drivers in Minion
	23.5. Time to Live (TTL) for RPCs
	23.5.1. TTLs in Pollerd & Collectd
	23.5.2. TTLs for the SNMP Collector
	23.5.3. TTLs for the other SNMP communication
	23.5.4. TTLs for Provisiond Detectors
	23.5.5. Global TTL
	23.5.6. Using meta-data for TTLs

	Chapter 24. Sentinel
	24.1. Limitations
	24.2. Installation
	24.3. Clean Start
	24.4. Configuration
	24.4.1. Configure the datasource
	24.4.2. Configure the controller
	24.4.3. Configure Connectivity
	24.4.4. Available features
	24.4.5. Auto install
	24.4.6. Auto Start
	24.4.7. Health Check / Troubleshooting

	24.5. Flow Processing
	24.5.1. Configure Sentinel
	24.5.2. Configure Minion
	24.5.3. Configure OpenNMS
	24.5.4. Auto configure flow processing for Sentinel

	24.6. Persisting Collection Sets to Newts
	24.6.1. Adapters
	24.6.2. Configure Newts

	Chapter 25. Special Cases and Workarounds
	25.1. Overriding SNMP Client Behavior

	Chapter 26. IFTTT Integration
	26.1. IFTTT Configuration
	26.2. OpenNMS Configuration
	26.3. Example

	Chapter 27. DNS Resolver
	27.1. Modules that use DNS Resolution
	27.2. Configuring DNS Resolution
	27.3. Configuring Circuit Breaker
	27.4. Configuring Bulkhead

	Chapter 28. Telemetry Daemon
	28.1. Listeners and Parsers
	28.2. Adapters
	28.2.1. Working with Minions

	28.3. Queues
	28.3.1. Configuring Queues

	28.4. Push Sensor Data through Minion
	28.5. Reverse hostname resolution
	28.6. Listener Reference
	28.6.1. TCP Listener
	28.6.2. UDP Listener

	28.7. Protocol Reference
	28.7.1. BGP Monitoring Protocol
	28.7.2. IPFIX
	28.7.3. Junos Telemetry Interface
	28.7.4. NetFlow v5
	28.7.5. NetFlow v9
	28.7.6. Cisco NX-OS Telemetry
	28.7.7. sFlow
	28.7.8. Graphite Telemetry

	Chapter 29. Elasticsearch Integration
	29.1. Configuration
	29.2. Credentials
	29.3. Features
	29.3.1. Feature Matrix
	29.3.2. Event Forwarder
	29.3.3. Flow Support
	29.3.4. Situation Feedback
	29.3.5. Alarm History

	Chapter 30. Flow Support
	30.1. Introduction
	30.1.1. How it works

	30.2. Setup
	30.2.1. Configuration Elasticsearch persistence
	30.2.2. Enabling a protocol
	30.2.3. Linking to OpenNMS Helm in the Web UI
	30.2.4. Node cache configuration (Optional)
	30.2.5. Classification Exporter Filter cache configuration (Optional)
	30.2.6. Configure Kafka forwarder

	30.3. Classification Engine
	30.3.1. Rule definition
	30.3.2. Omnidirectional Rules
	30.3.3. Rule Groups
	30.3.4. Order of evaluation
	30.3.5. Verification
	30.3.6. Example

	30.4. Aggregation

	Chapter 31. Kafka Producer
	31.1. Overview
	31.1.1. Events
	31.1.2. Alarms
	31.1.3. Nodes
	31.1.4. Topologies
	31.1.5. Metrics

	31.2. Enabling the Kafka Producer
	31.3. Configuring the Kafka Producer
	31.3.1. Configuring Filtering
	31.3.2. Enabling Metric Forwarding
	31.3.3. Configuring Topic Names

	31.4. Shell Commands
	31.4.1. opennms:kafka-list-alarms
	31.4.2. kafka-producer:sync-alarms
	31.4.3. opennms:kafka-evaluate-filter

	Chapter 32. Alarm Correlation
	32.1. Situation Feedback
	32.1.1. Introduction
	32.1.2. Installation
	32.1.3. Requirements

	Chapter 33. Meta-Data
	33.1. Contexts
	33.1.1. Node context
	33.1.2. Interface context
	33.1.3. Service context

	33.2. Adding Metadata through the Web UI
	33.3. The Metadata DSL
	33.3.1. Testing an expression
	33.3.2. Uses

	Chapter 34. OpenNMS Meridian Administration
	34.1. Shutdown
	34.2. Restart

