
Installation Guide
Copyright (c) 2015-2019 The OpenNMS Group, Inc.

OpenNMS Meridian 2019.1.28, Last updated 2021-12-16 01:58:02 UTC

Table of Contents
1. Compatibility . 1

2. Setting up a basic OpenNMS Meridian . 2

2.1. Objectives . 2

2.2. Before you begin . 2

2.3. Installing on RHEL . 3

Monitor isolated location with Minion . 8

Objectives. 8

Before you begin . 8

Installing on RHEL . 8

Sentinel . 13

Before you begin . 13

Installing on RHEL. 13

3. Minion with custom messaging system . 17

3.1. Setup using Apache Kafka . 17

4. Install other versions than stable. 22

5. Setup Minion with a config file. 23

6. Running in non-root environments. 24

6.1. Send ICMP as non-root . 24

6.2. Trap reception as non-root. 24

6.3. Syslog reception as non-root . 25

7. Use R for statistical computing . 26

7.1. Install R on RHEL . 26

7.2. Install R on Debian . 26

8. Using a different Time Series Storage . 27

8.1. RRDtool . 27

8.2. Newts for Time Series data . 29

Chapter 1. Compatibility
OpenNMS Meridian 2019.1.28 requires the following component versions:

Component Version Compatibility

OpenNMS Helm 3+

OpenNMS Integration API 0.2.x

Cassandra 3.11.+

Elasticsearch 7.x

Java Development Kit OpenJDK 8, OpenJDK 11

Kafka 1.x - 2.x

PostgreSQL 10.x - 12.x

RRDTool 1.7.x

1

Chapter 2. Setting up a basic OpenNMS
Meridian
The OpenNMS Meridian platform can be installed on multiple OS families. This guide provides
instructions for installing the platform on Red Hat Enterprise Linux (RHEL)-based operating
systems.

2.1. Objectives
• Installing OpenNMS Meridian components on a single node using the built-in JRobin as time

series storage

• Setup OpenNMS Meridian on recommended operating systems

• Login the Web User Interface and change the default admin password

2.2. Before you begin
The following abbreviations will be used to refer to their respective entry through this
documentation.

Table 1. Operating Systems

RHEL Red Hat Enterprise Linux 7 or higher, CentOS 7 or higher

OpenJDK 11
Development Kit

Installed OpenJDK 11 Development Kit

It is recommended to meet the following requirements:

Table 2. Installation Requirements

Minimal Hardware 2 CPU, 2 GB RAM, 20 GB disk

Operating System The latest version of RHEL is recommended. Please be aware OpenNMS
Meridian is developed and mostly operated on Linux systems.

DNS Setup Please make sure your DNS settings for the OpenNMS server are correct and
the localhost name can be resolved. If there is an incorrect or missing A
Resource Record for the server hostname, OpenNMS might not start correctly.
The Java security manager might not initialize and an RMI class loader
disabled exception will be shown.

Depending on the installed operating system, the path for OpenNMS Meridian is different. If the
instruction refers to ${OPENNMS_HOME}, the path is resolved to the following directories:

Table 3. Directory Structure

RHEL /opt/opennms

2

2.3. Installing on RHEL
The following steps will be described:

1. Installation of the opennms meta package which handles all dependencies

2. Initialize PostgreSQL database and configure access

3. Initialize OpenNMS Meridian database and start

4. Log in to the Web User Interface and change default admin password

All commands on the command line interface need to be executed with root permissions.

Step 1: Install OpenNMS Meridian

Add yum repository and import GPG key

dnf -y install https://yum.opennms.org/repofiles/opennms-repo-stable-rhel8.noarch.rpm
rpm --import https://yum.opennms.org/OPENNMS-GPG-KEY

Installation of with all built-in dependencies

dnf -y install opennms

The following packages will be automatically installed:

• jicmp6 and jicmp: Java bridge to allow sending ICMP messages from OpenNMS Meridian
repository.

• opennms-core: OpenNMS Meridian core services, e.g. Provisiond, Pollerd and Collectd from
OpenNMS Meridian repository.

• opennms-webapp-jetty: OpenNMS Meridian web application from OpenNMS Meridian repository

• postgresql: PostgreSQL database server from distribution repository

• postgresql-libs: PostgreSQL database from distribution repository

With the successful installed packages the OpenNMS Meridian is installed in the following directory
structure:

3

[root@localhost /opt/opennms]# tree -L 1
.
└── opennms
 ├── bin
 ├── contrib
 ├── data
 ├── deploy
 ├── etc
 ├── jetty-webapps
 ├── lib
 ├── logs -> /var/log/opennms
 ├── share -> /var/opennms
 └── system



We recommend disabling the OpenNMS Meridian repository after installation to
prevent unwanted upgrades while it is running. OpenNMS Meridian requires some
manual steps upon upgrade configuration files or migrate database schemas to a
new version. For this reason, it is recommended to exclude the OpenNMS Meridian
packages from update except when you are planning on performing an upgrade.

dnf config-manager --disable opennms-repo-stable-*

Step 2: Initialize and setup PostgreSQL

Initialization of the PostgreSQL database

postgresql-setup --initdb --unit postgresql

System startup configuration for PostgreSQL

systemctl enable postgresql

Startup PostgreSQL database

systemctl start postgresql

Create an opennms database user with a password and create an opennms database which is owned
by the user opennms

su - postgres
createuser -P opennms
createdb -O opennms opennms

4

Set a password for Postgres super user

psql -c "ALTER USER postgres WITH PASSWORD 'YOUR-POSTGRES-PASSWORD';"
exit


The super user is required to be able to initialize and change the database schema
for installation and updates.

Change the access policy for PostgreSQL

vi /var/lib/pgsql/data/pg_hba.conf

Allow OpenNMS Meridian accessing the database over the local network with a MD5 hashed
password

host all all 127.0.0.1/32 md5①
host all all ::1/128 md5①

① Change method from ident to md5 for IPv4 and IPv6 on localhost.

Apply configuration changes for PostgreSQL

systemctl reload postgresql

Configure database access in OpenNMS Meridian

vi ${OPENNMS_HOME}/etc/opennms-datasources.xml

Set credentials to access the PostgreSQL database

<jdbc-data-source name="opennms"
 database-name="opennms"①
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/opennms"
 user-name="** YOUR-OPENNMS-USERNAME **"②
 password="** YOUR-OPENNMS-PASSWORD **" />③

<jdbc-data-source name="opennms-admin"
 database-name="template1"
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/template1"
 user-name="postgres"④
 password="** YOUR-POSTGRES-PASSWORD **" />⑤

① Set the database name OpenNMS Meridian should use

② Set the user name to access the opennms database table

5

③ Set the password to access the opennms database table

④ Set the postgres user for administrative access to PostgreSQL

⑤ Set the password for administrative access to PostgreSQL

Step 3: Initialize and start OpenNMS Meridian

Detect of Java environment and persist in /opt/opennms/etc/java.conf

${OPENNMS_HOME}/bin/runjava -s

Initialize the database and detect system libraries persisted in /opt/opennms/etc/libraries.properties

${OPENNMS_HOME}/bin/install -dis

Configure systemd to start OpenNMS Meridian on system boot

systemctl enable opennms

Start OpenNMS Meridian

systemctl start opennms

Allow connection to the Web UI from your network

firewall-cmd --permanent --add-port=8980/tcp
systemctl reload firewalld



If you want to receive SNMP Traps or Syslog messages you have to allow incoming
traffic on your host firewall as well. By default OpenNMS SNMP trap daemon is
listening on 162/udp and Syslog daemon is listening on 10514/udp. The SNMP Trap
daemon is enabled by default, the OpenNMS Syslog daemon is disabled.

Step 4: First Login and change default password

After starting OpenNMS the web application can be accessed on http://<ip-or-fqdn-of-your-
server>:8980/opennms. The default login user is admin and the password is initialized to admin.

1. Open in your browser http://<ip-or-fqdn-of-your-server>:8980/opennms

2. Login with with admin/admin

3. Click in main navigation menu on "admin → Change Password → Change Password"

4. Set as current password admin and set a new password and confirm your newly set password

5. Click "Submit"

6. Logout and login with your new password

6

http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms

Next Steps

Additional information can be found in these follow up documents:

• Getting Started Guide

Learn the first steps to setup, configure, and maintain an OpenNMS Meridian.

• Reference Guide

Find in-depth information on the detecters, monitors, collectors, and configuration files used by
the OpenNMS Meridian platform.

7

Monitor isolated location with Minion
This section describes how to install the Minion to monitor devices and services in a location which
can’t be reached from an OpenNMS Meridian instance.

Objectives
• Install a Minion to monitor devices and services unreachable from an OpenNMS Meridian

instance

• Configure an authenticated unencrypted communication between Minion and OpenNMS
Meridian using ActiveMQ and REST

Before you begin
Setting up a OpenNMS Meridian with Minions requires:

• Instance of OpenNMS Meridian needs to be exact same version as Minion packages

• Packages are available as RPMs for RHEL-based systems alongside OpenNMS in the yum
repository

• OpenNMS Meridian needs to be installed and communication to the REST (8980/tcp) and
ActiveMQ (616161/tcp) endpoints is possible

Depending on the installed operating system, the path for Minion is different. If the instruction
refers to ${MINION_HOME}, the path is resolved to the following directories:

Table 4. Directory Structure

RHEL /opt/minion

Installing on RHEL
1. Setup OpenNMS Meridian to allow Minion communication

2. Installation of the opennms-minion meta package which handles all dependencies

3. Starting Minion and access the Karaf console over SSH

4. Configure Minion to communicate with OpenNMS Meridian

5. Verify the connectivity between Minion and OpenNMS Meridian

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Meridian to allow Minion communication

Communication between a Minion and OpenNMS Meridian uses REST API and a messaging system,
by default ActiveMQ. An authenticated user in OpenNMS Meridian is required for these
communication channels. The security role ROLE_MINION includes the minimal amount of
permissions required for a Minion to operate.

8


As an example we use in this guide the user name minion with password minion.
Change the credentials accordingly.

Create a user minion in the OpenNMS Meridian web user interface

1. Login the web user interface with a user which has administrative permissions

2. Go in the main navigation to "Login Name → Configure OpenNMS → Configure Users, Groups and
On-Call Roles → Configure Users"

3. Add a new user with login name minion and password minion and click Ok

4. Assign the security role ROLE_MINION, optional fill in a comment for what location and
purpose the user is used for and click Finish

5. The minion user should now be listed in the User List

Configure ActiveMQ to allow communication on public network interface

vi ${OPENNMS_HOME}/etc/opennms-activemq.xml

Remove comments for the transport connector listening on 0.0.0.0 and save

<transportConnector name="openwire" uri="tcp://0.0.0.0:61616?useJmx=false
&maximumConnections=1000&wireformat.maxFrameSize=104857600"/>

Restart OpenNMS Meridian

systemctl restart opennms

Verify if port 61616/tcp is listening on all interfaces

ss -lnpt sport = :61616
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 *:61616 *:* users:(("java",pid=1,fd=706))

Step 2: Install the repository and Minion package

Connect with SSH to your remote RHEL system where you need a Minion to be installed.

Install the Yum repository

dnf -y install https://yum.opennms.org/repofiles/opennms-repo-stable-rhel8.noarch.rpm
rpm --import https://yum.opennms.org/OPENNMS-GPG-KEY

Install the Minion package

dnf -y install opennms-minion

9

With the successful installed packages the Minion is installed in the following directory structure:

[root@localhost /opt/minion]# $ tree -L 1
.
├── bin
├── deploy
├── etc
├── lib
├── repositories
└── system

The Minion’s startup configuration can be changed by editing the /etc/sysconfig/minion file. It
allows to override the defaults used at startup including:

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Minion and test access to Karaf Shell

Configure systemd to start Minion on system boot

systemctl enable minion

Startup Minion

systemctl start minion

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8201 admin@localhost

Step 4: Configure Minion to communicate with OpenNMS Meridian

Login to the Karaf Shell on the system where your Minion is installed with SSH

ssh -p 8201 admin@localhost

10

Configure the Minion’s location and endpoint URLs for communication with OpenNMS Meridian

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit org.opennms.minion.controller
admin@minion()> config:property-set location Office-Pittsboro
admin@minion()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@minion()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@minion()> config:update


Include the failover: portion of the broker URL to allow the Minion to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.

Configure the credentials to use when communicating with OpenNMS Meridian

admin@minion()> scv:set opennms.http minion minion
admin@minion()> scv:set opennms.broker minion minion


Another way to configure credentials is to use the scvcli utility in your Minion bin
directory.

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.http minion minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.broker minion minion

Restart the Minion after updating the credentials

[root@localhost /root]# $ systemctl restart minion

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Minion

ssh -p 8201 admin@localhost

11

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html

Verify connectivity with the OpenNMS Meridian

admin@minion()> minion:ping
Connecting to ReST...
OK
Connecting to Broker...
OK
admin@minion()>

12

Sentinel
This section describes how to install the Sentinel to scale individual components of OpenNMS
Meridian.


At the moment only flows can be distributed using Sentinel. In the future more
components will follow.

Before you begin
Setting up a OpenNMS Meridian with Sentinel requires:

• Instance of OpenNMS Meridian needs to be exact same version as Sentinel packages

• Packages are available as RPMs for RHEL-based systems alongside OpenNMS in the yum
repository

• OpenNMS Meridian needs to be installed and communication to the REST (8980/tcp) and
ActiveMQ (616161/tcp) endpoints is possible

• At least one Minion needs to be installed and successful communicate with the OpenNMS
Meridian

Depending on the installed operating system, the path for Sentinel is different. If the instruction
refers to ${SENTINEL_HOME}, the path is resolved to the following directories:

Table 5. Directory Structure

RHEL /opt/sentinel

Debian /usr/share/sentinel

Installing on RHEL
1. Setup OpenNMS Meridian to allow Sentinel communication

2. Installation of the meridian-sentinel meta package which handles all dependencies

3. Starting Sentinel and access the Karaf console over SSH

4. Configure Sentinel to communicate with OpenNMS Meridian

5. Verify the connectivity between Sentinel and OpenNMS Meridian

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Meridian to allow Sentinel communication

This step is exactly the same as for Minion. Even the role name ROLE_MINION can be used, as there
does not exist a dedicated role ROLE_SENTINEL yet.

Therefore, please refer to section Setup OpenNMS Meridian to allow Minion communication.

13


Even if we have to configure the communication to the OpenNMS Meridian exactly
the same as for Minion no ReST requests are made and may be removed at a later
state.

Step 2: Install the repository and Sentinel package

Connect with SSH to your remote RHEL system where the Sentinel should be installed.

Install the Yum repository

dnf install -y https://yum.opennms.org/repofiles/opennms-repo-stable-rhel8.noarch.rpm
rpm --import https://yum.opennms.org/OPENNMS-GPG-KEY

Install the Sentinel package

dnf -y install meridian-sentinel

With the successful installed packages the Sentinel is installed in the following directory structure:

[root@localhost /opt/sentinel]# $ tree -L 1
.
|-- bin
|-- COPYING
|-- data
|-- deploy
|-- etc
|-- lib
`-- system

The Sentinel’s startup configuration can be changed by editing the /etc/sysconfig/sentinel file. It
allows to override the defaults used at startup including:

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Sentinel and test access to Karaf Shell

Configure systemd to start Sentinel on system boot

systemctl enable sentinel

Startup Sentinel

systemctl start sentinel

14

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8301 admin@localhost

Step 4: Configure Sentinel to communicate with OpenNMS Meridian

Login to the Karaf Shell on the system where your Sentinel is installed with SSH

ssh -p 8301 admin@localhost

Configure the Sentinel’s location and endpoint URLs for communication with OpenNMS Meridian

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@sentinel()> config:edit org.opennms.sentinel.controller
admin@sentinel()> config:property-set location Office-Pittsboro
admin@sentinel()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@sentinel()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@sentinel()> config:update


Include the failover: portion of the broker URL to allow the Sentinel to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.


Even if the id, location and http-url must be set the same ways as for Minion, this
may change in future versions of Sentinel.

Configure the credentials to use when communicating with OpenNMS Meridian

admin@sentinel()> scv:set opennms.http minion minion
admin@sentinel()> scv:set opennms.broker minion minion

Username and password is explicitly set to minion as it is assumed that they share the same
credentials and roles.


Another way to configure credentials is to use the scvcli utility in your Sentinel bin
directory.

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/sentinel
[root@localhost /opt/sentinel]# $./bin/scvcli set opennms.http minion minion
[root@localhost /opt/sentinel]# $./bin/scvcli set opennms.broker minion minion

15

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html

Restart the Sentinel after updating the credentials

[root@localhost /root]# $ systemctl restart sentinel

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Sentinel

ssh -p 8301 admin@localhost

Verify connectivity with the OpenNMS Meridian

admin@sentinel()> feature:install sentinel-core
admin@sentinel> health:check
Verifying the health of the container

Verifying installed bundles [Success]
Connecting to OpenNMS ReST API [Success]

=> Everything is awesome
admin@sentinel()>


The health:check command is a newer and more flexibel version of the original
minion:ping command. Therefore on Sentinel there is no equivalent such as
sentinel:ping.

16

Chapter 3. Minion with custom messaging
system
Minions and OpenNMS Meridian communicate via a messaging system. By default, an embedded
ActiveMQ broker is used. OpenNMS Meridian is designed to work with different messaging systems
and based on the system requirements or workload, an alternative to ActiveMQ can be used. In
general, the communication between OpenNMS Meridian and Minion is provided by two patterns:

• Remote Producer Calls (RPCs) are used to issue specific tasks (such as a request to poll or
perform data collection) from an OpenNMS Meridian instance to a Minion in a remote location.

◦ These calls are normally self-contained and include all of the meta-data and information
required for them to be performed.

• The Sink pattern is used to send unsolicited messages (i.e. Syslog, SNMP Traps or Flows) received
from a Minion to an OpenNMS Meridian instance

High level components used for communication between OpenNMS Meridian and Minions

This section describes how you can setup OpenNMS Meridian to use other supported messaging
systems for the communication with Minions.

3.1. Setup using Apache Kafka
This section describes how to use Apache Kafka as a messaging system between OpenNMS Meridian
and Minions in a remote location.

3.1.1. Objectives

• Configure OpenNMS Meridian to forward RPC to a Minion

• Configure Minion to forward messages over the Sink component to an OpenNMS Meridian
instance

• Disable the embedded Active MQ message broker on the Minion.

• Verify the functionality on the Minion using the health:check command and ensure the Minion
is registered and monitored in the OpenNMS Meridian web interface

17

3.1.2. Before you begin

The following requirements should be satisfied before you can start with this tutorial:

• At least a minimal Kafka system up and running If you want to start in a lab, the Apache Kafka
Quickstart guide is a good starting point

• An instance running with OpenNMS Meridian and at least one deployed Minion

• Communication between OpenNMS Meridian, Minion and Apache Kafka is possible on TCP port
9092

Network topology used for the following configuration example


The example is used to describe how the components need to be configured. IP
addresses and hostnames need to be adjusted accordingly.



You can add more than one Kafka server to the configuration. The driver will
attempt to connect to the first entry. If that is successful the whole broker topology
will be discovered and will be known by the client. The other entries are only used
if the connection to the first entry fails.

3.1.3. Configure OpenNMS Meridian

Step 1: Set Kafka as RPC strategy and add Kafka server

cat <<EOF >${OPENNMS_HOME}/etc/opennms.properties.d/kafka.properties
org.opennms.core.ipc.rpc.strategy=kafka
org.opennms.core.ipc.rpc.kafka.bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-
3:9092
EOF

18

https://kafka.apache.org/20/documentation.html#quickstart
https://kafka.apache.org/20/documentation.html#quickstart

Step 2: Set Kafka as Sink strategy and add Kafka server

cat <<EOF >>${OPENNMS_HOME}/etc/opennms.properties.d/kafka.properties
Ensure that messages are not consumed from Kafka until the system has fully
initialized
org.opennms.core.ipc.sink.initialSleepTime=60000
org.opennms.core.ipc.sink.strategy=kafka
org.opennms.core.ipc.sink.kafka.bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-
3:9092
EOF

Step 3: Restart OpenNMS Meridian

systemctl restart opennms

3.1.4. Configure Minion

Step 1: Disable ActiveMQ for RPC and Sink

Disable ActiveMQ on Minion startup

cat <<EOF >${MINION_HOME}/etc/featuresBoot.d/disable-activemq.boot
!minion-jms
!opennms-core-ipc-rpc-jms
!opennms-core-ipc-sink-camel
EOF

Step 2: Enable Kafka for RPC and Sink

cat <<EOF >${MINION_HOME}/etc/featuresBoot.d/kafka.boot
opennms-core-ipc-rpc-kafka
opennms-core-ipc-sink-kafka
EOF

Step 3: Configure Kafka server

Add Kafka server for RPC communication

cat <<EOF >${MINION_HOME}/etc/org.opennms.core.ipc.rpc.kafka.cfg
bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-3:9092
acks=1
EOF

19

Add Kafka server for Sink communication

cat <<EOF >${MINION_HOME}/etc/org.opennms.core.ipc.sink.kafka.cfg
bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-3:9092
acks=1
EOF

Step 4: Restart Minion to apply changes

systemctl restart minion

Step 5: Verify Kafka configuration and connectivity

Login to Karaf Shell

ssh admin@localhost -p 8201

Test if Kafka RPC and Sink feature is started

feature:list | grep opennms-core-ipc-rpc-kafka
opennms-core-ipc-rpc-kafka | 25.0.0 | x | Started

feature:list | grep opennms-core-ipc-sink-kafka
opennms-core-ipc-sink-kafka | 25.0.0 | x | Started

Test connectivity to Kafka

health:check
Verifying the health of the container

Connecting to OpenNMS ReST API [Success]
Verifying installed bundles [Success]
Connecting to Kafka from RPC [Success]
Connecting to Kafka from Sink [Success]

=> Everything is awesome

Step 6. Verify Minion functionality

Ensure the Minion is registered in the OpenNMS Meridian web interface

1. Login as Administrator

2. Configure OpenNMS

3. Manage Minions

4. Minion should be registered and should be shown as "Up"

5. Click on the name of the Minion and go to the node detail page

20

6. Verify if the services on the loopback interface JMX-Minion, Minion-Heartbeat, Minion-RPC are
monitored and "Up"

3.1.5. Tuning Apache Kafka

The configuration is shipped with sane defaults, but depending on the size and network topology it
can be required to tune the Apache Kafka environment to meet certain needs. Apache Kafka options
can be set directly in the org.opennms.core.ipc.rpc.kafka.cfg and
org.opennms.core.ipc.sink.kafka.cfg file.

Alternatively: Kafka producer/consumer options can be set by defining additional system
properties prefixed with org.opennms.core.ipc.rpc.kafka and org.opennms.core.ipc.sink.kafka.

You can find available configuration parameters for Kafka here:

• Producer Configs for RPC communication

• New Consumer Configs for Sink communication

Multiple OpenNMS Meridian instances

Topics will be automatically created and are prefixed by default with OpenNMS. If you want to use an
Apache Kafka cluster with multiple OpenNMS Meridian instances, the topic prefix can be
customized by setting org.opennms.core.ipc.rpc.kafka.group.id and
org.opennms.core.ipc.sink.kafka.group.id to a string value which identifies your instance.

Tips for Kafka


For Kafka RPC, the number of partitions should always be greater than the
number of minions at a location. When there are multiple locations, partitions >=
max number of minions at a location.


By default, Kafka RPC supports buffers greater than >1MB by splitting large buffer
into chunks of 900KB(912600). Max buffer size (900KB, by default) can be
configured by setting org.opennms.core.ipc.rpc.kafka.max.buffer.size (in bytes).


Default time to live (time at which request will expire) is 20000 msec (20sec). It can
be changed by configuring system property org.opennms.core.ipc.rpc.kafka.ttl in
msec.

21

https://kafka.apache.org/10/documentation.html#producerconfigs
https://kafka.apache.org/10/documentation.html#newconsumerconfigs

Chapter 4. Install other versions than stable
Installation packages are available for different releases of OpenNMS Meridian or Minion. You will
need to choose which release you would like to run and then configure your package repository to
point to that release. Configuring a package repository will enable you to install and update the
software by using standard Linux software update tools like yum and apt.

The following package repositories are available:

Table 6. OpenNMS package repositories

Release Description

stable Latest stable release. This version is recommended for all users.

testing Release candidate for the next stable release.

snapshot Latest successful development build, the "nightly" build.

To install a different release the repository files have to be installed and manually modified.

On RHEL systems you can install a snapshot repository with:

yum -y install https://yum.opennms.org/repofiles/opennms-repo-snapshot-
rhel7.noarch.rpm


For branches use repofiles/opennms-repo-branches-${branch-name}-

rhel7.noarch.rpm.

The installation procedure is the same as with the stable version.

22

Chapter 5. Setup Minion with a config file
Beside manually configuring a Minion instance via the Karaf CLI it is possibleto modify and deploy
its configuration file through configuration management tools. The configuration file is located in
${MINION_HOME}/etc/org.opennms.minion.controller.cfg. All configurations set in Karaf CLI will be
persisted in this configuration file which can also be populated through configuration management
tools.

Configuration file for Minion

id = 00000000-0000-0000-0000-deadbeef0001
location = MINION
broker-url = tcp://myopennms.example.org:61616
http-url = http://myopennms.example.org:8980/opennms

The Minion needs to be restarted when this configuration file is changed.


In case the credentials needs to be set through the CLI with configuration
management tools or scripts, the ${MINION_HOME}/bin/client command can be used
which allows to execute Karaf commands through the Linux shell.

23

Chapter 6. Running in non-root
environments
This section provides information running OpenNMS Meridian and Minions processes in non-root
environments. Running with a system user have restricted possibilites. This section describes how
to configure your Linux system related to:

• sending ICMP packages as an unprivileged user

• receiving Syslog on ports < 1023, e.g. 514/udp

• receiving SNMP Trap on ports < 1023,e.g. 162/udp

6.1. Send ICMP as non-root
By default, Linux does not allow regular users to perform ping operations from arbitrary programs
(including Java). To enable the Minion or OpenNMS Meridian to ping properly, you must set a sysctl
option.

Enable User Ping (Running System)d

run this command as root to allow ping by any user (does not survive reboots)
sysctl net.ipv4.ping_group_range='0 429496729'

If you wish to restrict the range further, use the GID for the user the Minion or OpenNMS Meridian
will run as, rather than 429496729.

To enable this permanently, create a file in /etc/sysctl.d/ to set the range:

/etc/sysctl.d/99-zzz-non-root-icmp.conf

we start this filename with "99-zzz-" to make sure it's last, after anything else
that might have set it
net.ipv4.ping_group_range=0 429496729

6.2. Trap reception as non-root
If you wish your Minion or OpenNMS Meridian to listen to SNMP Traps, you will need to configure
your firewall to port forward from the privileged trap port (162) to the Minion’s default trap
listener on port 1162.

24

Forward 162 to 1162 with Firewalld

enable masquerade to allow port-forwards
firewall-cmd --add-masquerade
forward port 162 TCP and UDP to port 1162 on localhost
firewall-cmd --add-forward-port=port=162:proto=udp:toport=1162:toaddr=127.0.0.1
firewall-cmd --add-forward-port=port=162:proto=tcp:toport=1162:toaddr=127.0.0.1

6.3. Syslog reception as non-root
If you wish your Minion or OpenNMS Meridian to listen to syslog messages, you will need to
configure your firewall to port forward from the privileged Syslog port (514) to the Minion’s default
syslog listener on port 1514.

Forward 514 to 1514 with Firewalld

enable masquerade to allow port-forwards
firewall-cmd --add-masquerade
forward port 514 TCP and UDP to port 1514 on localhost
firewall-cmd --add-forward-port=port=514:proto=udp:toport=1514:toaddr=127.0.0.1
firewall-cmd --add-forward-port=port=514:proto=tcp:toport=1514:toaddr=127.0.0.1

25

Chapter 7. Use R for statistical computing
R is a free software environment for statistical computing and graphics. OpenNMS Meridian can
leverage the power of R for forecasting and advanced calculations on collected time series data.

OpenNMS Meridian interfaces with R via stdin and stdout, and for this reason, R must be installed
on the same host as OpenNMS Meridian. Note that installing R is optional, and not required by any
of the core components.

 The R integration is not supported on Microsoft Windows systems.

7.1. Install R on RHEL
Ensure the dnf plugin config-manager is installed

dnf -y install dnf-plugins-core

Enable the PowerTools repository for R dependencies

dnf config-manager --set-enabled PowerTools

Install the epel-release repository with R packages

dnf -y install epel-release

Install R-core package

dnf -y install R-core

7.2. Install R on Debian
Install R

apt -y install r-recommended

26

https://www.r-project.org/

Chapter 8. Using a different Time Series
Storage
OpenNMS Meridian stores performance data in a time series storage which is by default JRobin. For
different scenarios it is useful to switch to a different time series storage. The following
implementations are supported:

Table 7. Supported Time Series Databasees

JRobin JRobin is a clone of RRDTool written in Java, it does not fully cover the latest
feature set of RRDTool and is the default when you install OpenNMS Meridian.
Data is stored on the local file system of the OpenNMS Meridian node.
Depending on I/O capabilities it works good for small to medium sized
installations.

RRDTool RRDTool is active maintained and the de-facto standard dealing with time
series data. Data is stored on the local file system of the OpenNMS Meridian
node. Depending on I/O capabilities it works good for small to medium sized
installations.

Newts Newts is a database schema for Cassandra. The time series is stored on a
dedicated Cassandra cluster which gives growth flexibility and allows to
persist time series data in a large scale.

This section describes how to configure OpenNMS Meridian to use RRDTool and Newts.


The way how data is stored in the different time series databases makes it
extremely hard to migrate from one technology to another. Data loss can’t be
prevented when you switch from one to another.

8.1. RRDtool
In most Open Source applications, RRDtool is often used and is the de-facto open standard for Time
Series Data. The basic installation of OpenNMS Meridian comes with JRobin but it is simple to switch
the system to use RRDtool to persist Time Series Data. This section describes how to install RRDtool,
the jrrd2 OpenNMS Java Interface and how to configure OpenNMS Meridian to use it.

8.1.1. Install RRDTool on RHEL

 Following this guide does not cover data migration from JRobin to RRDTool.


To install jrrd2 enable the OpenNMS YUM repository ensure the repositories are
enabled. You can enable them with dnf config-manager --enable opennms-repo-
stable-*.

27

https://wiki.opennms.org/wiki/JRobin
http://opennms.github.io/newts/
http://cassandra.apache.org
http://oss.oetiker.ch/rrdtool

Step 1: Install RRDTool and the jrrd2 interface

Installation on RHEL

dnf -y install rrdtool jrrd2

Step 2: Configure OpenNMS Meridian to use RRDTool

cat << EOF | sudo tee /opt/opennms/etc/opennms.properties.d/timeseries.properties
org.opennms.rrd.strategyClass=org.opennms.netmgt.rrd.rrdtool.MultithreadedJniRrdStrate
gy
org.opennms.rrd.interfaceJar=/usr/share/java/jrrd2.jar
opennms.library.jrrd2=/usr/lib64/libjrrd2.so
org.opennms.web.graphs.engine=rrdtool # optional, unset if you want to keep Backshift
as default
EOF


The visualization with the graph engine is optional. You can still use the default
graphing engine backshift by not setting the org.opennms.web.graphs.engine

property and use the system default.

Step 3: Restart OpenNMS Meridian and verify setup

find /opt/opennms/share/rrd -iname "*.rrd"

With the first data collection, RRDTool files with extension .rrd will be created. The JRobin files with
extension .jrb are not used anymore and are not deleted automatically.

8.1.2. Reference

The following configuration files have references to the RRDTool binary and may be changed if you
have a customized RRDTool setup.

Table 8. References to the RRDtool binary

Configuration file Property

opennms.properties rrd.binary=/usr/bin/rrdtool

response-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

response-graph.properties command.prefix=/usr/bin/rrdtool

info.command=/usr/bin/rrdtool

snmp-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

snmp-graph.properties command.prefix=/usr/bin/rrdtool

command=/usr/bin/rrdtool info

28

8.2. Newts for Time Series data
Newts is a time-series data schema for Apache Cassandra. It enables horizontally scale capabilities
for your time series storage and is an alternative to JRobin and RRDtool.

The Cassandra cluster design, setup, sizing, tuning and operation is out of scope for this section. To
install and set up a Cassandra cluster please follow the Cassandra installation instructions. For
further information see Cassandra Getting Started Guide.


To avoid unwanted updates disable the Cassandra repository on DNF/YUM based
distributions or use apt-mark hold cassandra on APT based distributions.



For simplicity we use the ${OPENNMS_HOME}/bin/newts init command which
initializes a Newts keyspace for you and the defaults are not optimal tuned for a
production-ready environment. If you want to build a production environment
please consult Sizing Cassandra for Newts and planning Anti-patterns in Cassandra
articles.

8.2.1. Objectives

• Configure OpenNMS Meridian to use an existing Cassandra cluster

• Initializing the Newts keyspace using newts init with STCS without production-ready tuning

• Verify time series data is stored and can be accessed

8.2.2. Before you begin

• A running instance of OpenNMS Meridian running on Linux

• Working data collection and response time metrics from Collectd and Pollerd

• Cassandra cluster with access to the Cassandra client port TCP/9042



It is currently not supported to initialize the Newts keyspace from Microsoft
Windows Server operating system. Microsoft Windows based Cassandra server can
be part of the cluster, but keyspace initialization is only possible using a Linux
operating system.

8.2.3. Configure OpenNMS Meridian to use Newts

Step 1: Configure Cassandra endpoints, keyspace and time series strategy

29

http://newts.io/
http://cassandra.apache.org/
https://en.wikipedia.org/wiki/Scalability#Horizontal
http://www.opennms.org/wiki/JRobin
http://oss.oetiker.ch/rrdtool/
http://cassandra.apache.org/download
https://cassandra.apache.org/doc/latest/getting_started/index.html
https://opennms.discourse.group/t/sizing-cassandra-for-newts/771
https://docs.datastax.com/en/dse-planning/doc/planning/planningAntiPatterns.html

cat << EOF | sudo tee /opt/opennms/etc/opennms.properties.d/timeseries.properties
Configure storage strategy
org.opennms.rrd.storeByForeignSource=true①
org.opennms.timeseries.strategy=newts②

Configure Newts time series storage connection
org.opennms.newts.config.hostname={cassandra-ip1,cassandra-ip2}③
org.opennms.newts.config.keyspace=newts④
org.opennms.newts.config.port=9042⑤

One year in seconds
org.opennms.newts.config.ttl=31540000

Seven days in seconds
org.opennms.newts.config.resource_shard=604800
EOF

① Associate time series data by the foreign ID instead of the database generated Node-ID

② Set time-series strategy to use newts

③ Host or IP addresses of the Cassandra cluster nodes can be a comma-separated list

④ Name of the keyspace which is initialized and used

⑤ Port to connect to Cassandra

Step 2: Initialize the Newts schema in Cassandra

${OPENNMS_HOME}/bin/newts init

Step 3: Verify if the keyspace was properly initialized

Connect to a Cassandra node with a CQL shell

cd $CASSANDRA_HOME/bin
./cqlsh

use newts;
describe table terms;
describe table samples;

Step 4: Apply changes and verify your configuration

systemctl restart opennms

Go to the Node detail page from a SNMP managed device and verify if you response time graphs for
ICMP and Node-level Performance data.

30

	Installation Guide
	Table of Contents
	Chapter 1. Compatibility
	Chapter 2. Setting up a basic OpenNMS Meridian
	2.1. Objectives
	2.2. Before you begin
	2.3. Installing on RHEL

	Monitor isolated location with Minion
	Objectives
	Before you begin
	Installing on RHEL

	Sentinel
	Before you begin
	Installing on RHEL

	Chapter 3. Minion with custom messaging system
	3.1. Setup using Apache Kafka

	Chapter 4. Install other versions than stable
	Chapter 5. Setup Minion with a config file
	Chapter 6. Running in non-root environments
	6.1. Send ICMP as non-root
	6.2. Trap reception as non-root
	6.3. Syslog reception as non-root

	Chapter 7. Use R for statistical computing
	7.1. Install R on RHEL
	7.2. Install R on Debian

	Chapter 8. Using a different Time Series Storage
	8.1. RRDtool
	8.2. Newts for Time Series data

