
Administrators Guide
Copyright (c) 2015-2019 The OpenNMS Group, Inc.

OpenNMS Meridian 2017.1.24, Last updated 2020-07-09 01:03:12 UTC

Table of Contents
1. Data Choices . 1

2. User Management . 2

2.1. Users . 2

2.2. Security Roles . 3

2.3. Web UI Pre-Authentication . 6

2.3.1. Enabling Pre-Authentication . 6

2.3.2. Configuring Pre-Authentication . 7

3. Administrative Webinterface . 8

3.1. Grafana Dashboard Box . 8

3.2. Operator Board . 10

3.2.1. Configuration . 11

3.2.2. Dashlets . 13

3.2.3. Boosting Dashlet . 17

3.2.4. Criteria Builder . 17

3.3. JMX Configuration Generator . 18

3.3.1. Web based utility . 18

3.3.2. CLI based utility . 22

3.4. Heatmap . 27

3.5. Trend . 31

4. Service Assurance . 35

4.1. Pollerd Configuration . 35

4.2. Critical Service . 37

4.3. Downtime Model . 37

4.4. Path Outages . 38

4.5. Poller Packages . 39

4.5.1. Response Time Configuration . 40

4.5.2. Overlapping Services . 41

4.5.3. Test Services on manually . 43

4.6. Service monitors . 45

4.6.1. AvailabilityMonitor . 45

4.6.2. BgpSessionMonitor . 46

4.6.3. BSFMonitor . 49

4.6.4. CiscoIpSlaMonitor . 56

4.6.5. CiscoPingMibMonitor . 58

4.6.6. CitrixMonitor . 64

4.6.7. DhcpMonitor . 65

4.6.8. DiskUsageMonitor . 69

4.6.9. DnsMonitor . 71

4.6.10. DNSResolutionMonitor . 73

4.6.11. FtpMonitor . 76

4.6.12. HostResourceSwRunMonitor . 77

4.6.13. HttpMonitor . 79

4.6.14. HttpPostMonitor . 83

4.6.15. HttpsMonitor . 85

4.6.16. IcmpMonitor . 85

4.6.17. ImapMonitor . 87

4.6.18. ImapsMonitor . 88

4.6.19. JCifsMonitor . 89

4.6.20. JDBCMonitor . 91

4.6.21. JDBCStoredProcedureMonitor . 92

4.6.22. JDBCQueryMonitor . 94

4.6.23. JmxMonitor . 97

4.6.24. JolokiaBeanMonitor . 98

4.6.25. LdapMonitor . 100

4.6.26. LdapsMonitor . 101

4.6.27. MemcachedMonitor . 102

4.6.28. NetScalerGroupHealthMonitor. 103

4.6.29. NrpeMonitor . 105

4.6.30. NtpMonitor . 106

4.6.31. OmsaStorageMonitor . 107

4.6.32. OpenManageChassisMonitor . 109

4.6.33. PageSequenceMonitor . 110

4.6.34. PercMonitor. 119

4.6.35. Pop3Monitor . 120

4.6.36. PrTableMonitor . 121

4.6.37. RadiusAuthMonitor . 122

4.6.38. SmbMonitor. 124

4.6.39. SmtpMonitor . 125

4.6.40. SnmpMonitor . 126

4.6.41. SshMonitor . 135

4.6.42. SSLCertMonitor . 136

4.6.43. StrafePingMonitor . 138

4.6.44. TcpMonitor . 141

4.6.45. SystemExecuteMonitor . 142

4.6.46. VmwareCimMonitor . 143

4.6.47. VmwareMonitor . 145

4.6.48. Win32ServiceMonitor . 146

4.6.49. WsManMonitor. 148

4.6.50. XmpMonitor . 149

5. Performance Management . 151

5.1. Collectd Configuration . 151

5.2. Collection Packages . 152

5.2.1. Service Configurations . 153

5.3. Collectors . 154

5.3.1. JmxCollector . 154

5.3.2. SnmpCollector . 156

5.3.3. WS-Management . 158

5.4. Stress Testing . 165

5.5. Stress Testing . 165

5.5.1. Interpreting the output . 165

6. Events . 167

6.1. Anatomy of an Event. 167

6.2. Sources of Events . 167

6.2.1. SNMP Traps . 168

6.2.2. Syslog Messages . 168

6.2.3. TL1 Autonomous Messages . 170

6.2.4. XML-TCP . 170

6.2.5. ReST . 170

6.3. The Event Bus . 170

6.3.1. Associate an Event to a given node . 170

6.4. Event Configuration . 170

6.4.1. The eventd-configuration.xml file . 171

6.4.2. The eventconf.xml file and its tributaries . 171

6.4.3. Reloading the event configuration. 175

6.5. Debugging . 175

7. Alarms . 176

7.1. Alarm Sounds . 176

7.2. Flashing Unacknowledged Alarms . 177

7.3. Configuring Alarm Sounds and Flashing . 177

8. Notifications . 179

8.1. Introduction . 179

8.2. Getting Started . 179

8.2.1. Enabling Notifications. 179

8.2.2. Configuring Destination Paths . 179

8.2.3. Configuring Event Notifications . 180

8.3. Concepts . 180

8.3.1. Events and UEIs . 180

8.3.2. Users, Groups, and On-Call Roles . 181

8.3.3. Duty Schedules . 182

8.3.4. Destination Paths . 182

8.3.5. Notification Commands . 183

8.4. Bonus Notification Methods . 184

8.4.1. Mattermost. 184

8.4.2. Slack Notifications . 185

9. Provisioning . 187

9.1. Introduction . 187

9.2. Concepts . 187

9.2.1. Terminology . 188

9.2.2. Addressing Scalability . 189

9.3. Getting Started . 192

9.3.1. Provisioning the SNMP Configuration . 192

9.3.2. Automatic Discovery . 198

9.3.3. Enhanced Directed Discovery . 198

9.4. Import Handlers. 200

9.4.1. File Handler . 200

9.4.2. HTTP Handler . 200

9.4.3. DNS Handler . 200

9.5. Provisioning Examples . 203

9.5.1. Basic Provisioning . 203

9.5.2. Advanced Provisioning Example . 210

9.6. Adapters . 225

9.6.1. DDNS Adapter . 225

9.6.2. RANCID Adapter . 225

9.7. Integrating with Provisiond . 225

9.7.1. Provisioning Groups of Nodes. 225

9.7.2. Example . 225

9.8. Provisioning Single Nodes (Quick Add Node) . 228

9.9. Fine Grained Provisioning Using provision.pl . 228

9.9.1. Create a new requisition . 228

9.10. Yet Other API Examples . 230

9.11. Service Detectors . 230

9.11.1. SNMP Detector . 230

10. Business Service Monitoring . 233

10.1. Business Service Definition . 233

10.2. Edges . 234

10.2.1. Child Services . 235

10.2.2. IP Services . 235

10.2.3. Custom Reduction Key . 235

10.3. Map Functions . 236

10.4. Reduce Functions. 236

10.5. Business Service Daemon . 237

11. Topology Map . 239

11.1. Properties . 239

11.2. Icons . 239

11.2.1. Icon resolution . 240

11.2.2. Change existing icon mappings . 241

11.2.3. Add new icons . 241

12. Asset Topology Provider . 244

12.1. Overview . 244

12.2. Asset layers . 248

12.3. Node filtering . 248

12.4. Configuration . 249

12.5. Creating Asset Based Topologies From Karaf Consol . 251

12.6. Creating Asset Based Topologies Using OpenNMS Meridian events . 252

12.7. Viewing the topology . 253

12.8. additional notes . 253

13. Database Reports . 254

13.1. Overview . 254

13.2. Modify existing reports . 254

13.3. Add a custom report . 255

13.4. Usage of Jaspersoft Studio . 255

13.4.1. Connect to the OpenNMS Meridian Database . 256

13.4.2. Use Measurements Datasource and Helpers . 256

13.5. Accessing Performance Data . 257

13.5.1. Fields . 258

13.5.2. Parameters. 258

13.6. Helper methods . 259

13.6.1. Usage of the interface descriptor . 260

13.6.2. Usage of the node source descriptor . 261

13.6.3. Usage of the interface descriptor . 262

13.6.4. Use HTTPS . 263

13.7. Limitations . 263

14. Enhanced Linkd . 264

14.1. Enlinkd Daemon . 264

14.2. Layer 2 Link Discovery. 265

14.2.1. LLDP Discovery . 266

14.2.2. CDP Discovery . 269

14.2.3. Transparent Bridge Discovery . 272

14.3. Layer 3 Link Discovery. 277

14.3.1. OSPF Discovery . 278

14.3.2. IS-IS Discovery . 279

15. Operation . 282

15.1. HTTPS / SSL . 282

15.1.1. Standalone HTTPS with Jetty. 282

15.1.2. OpenNMS Meridian as HTTPS client . 282

15.1.3. Differences between Java Trust Store and Java Key Store . 284

15.1.4. Debugging / Properties . 284

15.2. Geocoder Service . 285

15.3. resourcecli: simple resource management tool . 285

15.3.1. Usage . 285

15.3.2. Sub-command: list . 286

15.3.3. Sub-command: show . 287

15.3.4. Sub-command: delete . 287

15.4. newts-repository-converter: Rrd/Jrb to Newts migration utility . 288

15.4.1. Migration . 288

15.4.2. Usage . 289

15.4.3. Example 1: convert Rrd-based data with storeByGroup enabled 289

15.4.4. Example 2: convert JRobin-based data with storeByGroup disabled 290

15.5. Newts . 290

15.5.1. Configuration . 290

15.5.2. Cassandra Monitoring. 293

15.5.3. Newts Monitoring . 297

15.6. Daemon Configuration Files . 299

15.6.1. Eventd . 299

15.6.2. Notifd . 300

15.6.3. Pollerd. 300

16. System Properties . 302

17. Ticketing . 303

17.1. JIRA Ticketing Plugin . 303

17.1.1. Setup . 303

17.1.2. Jira Commands . 304

17.1.3. Custom fields . 305

17.1.4. Troubleshooting . 309

17.2. Remedy Ticketing Plugin . 309

17.2.1. Remedy Product Overview . 309

17.2.2. Supported Remedy Product Versions . 309

17.2.3. Setup . 309

17.3. TSRM Ticketing Plugin . 312

17.3.1. Setup . 312

17.3.2. Mapping OpenNMS Ticket with TSRM Incident . 312

18. Enabling RMI . 314

18.1. Enabling RMI . 314

18.2. Enabling SSL . 315

18.3. Connecting to RMI over SSL . 315

19. Plugin Manager . 317

19.1. Plugin Manager UI panel . 317

19.2. Setting Karaf Instance Data . 319

19.3. Manually adding a managed Karaf instance . 321

19.4. Installed Plugins. 322

19.5. Available Plugins Server . 324

19.6. Installing Available Plugins . 325

19.7. Plugins Manifest. 326

19.8. Installed Licences Panel . 327

19.9. Adding a New Licence . 328

19.10. Installing Internal Plugins . 329

20. Internal Plugins . 331

20.1. Internal Plugins supplied with OpenNMS Meridian . 331

20.2. Installing Plugins with the Karaf Consol . 331

20.3. Alarm Change Notifier Plugin. 331

20.4. Elasticsearch ReST plugin . 333

20.4.1. Configuration . 333

20.4.2. Loading Historical Events . 335

20.4.3. Index Definitions . 336

20.4.4. Viewing events using Kibana Sense . 337

20.4.5. Mapping of Alarms and Events to Elasticsearch . 338

21. Special Cases and Workarounds . 351

21.1. Overriding SNMP Client Behavior . 351

Chapter 1. Data Choices
The Data Choices module collects and publishes anonymous usage statistics to
https://stats.opennms.org.

When a user with the Admin role logs into the system for the first time, they will be prompted as to
whether or not they want to opt-in to publish these statistics. Statistics will only be published once
an Administrator has opted-in.

Usage statistics can later be disabled by accessing the 'Data Choices' link in the 'Admin' menu.

When enabled, the following anonymous statistics will be collected and publish on system startup
and every 24 hours after:

• System ID (a randomly generated UUID)

• OpenNMS Meridian Release

• OpenNMS Meridian Version

• OS Architecture

• OS Name

• OS Version

1. Number of Alarms in the alarms table

2. Number of Events in the events table

3. Number of IP Interfaces in the ipinterface table

4. Number of Nodes in the node table

5. Number of Nodes, grouped by System OID

1

https://stats.opennms.org

Chapter 2. User Management
Users are entities with login accounts in the OpenNMS Meridian system. Ideally each user
corresponds to a person. An OpenNMS Meridian User represents an actor which may be granted
permissions in the system by associating Security Roles. OpenNMS Meridian stores by default User
information and credentials in a local embedded file based storage. Credentials and user details,
e.g. contact information, descriptions or Security Roles can be managed through the Admin Section
in the Web User Interface.

Beside local Users, external authentication services including LDAP / LDAPS, RADIUS, and SSO can
be configured. Configuration specifics for these services are outside the scope of this section.

The following paragraphs describe how to manage the embedded User and Security Roles in
OpenNMS Meridian.

2.1. Users
Managing Users is done through the Web User Interface and requires to login as a User with
administrative permissions. By default the admin user is used to initially create and modify Users.
The User, Password and other detail descriptions are persisted in users.xml file. It is not required to
restart OpenNMS Meridian when User attributes are changed.

In case administrative tasks should be delegated to an User the Security Role named ROLE_ADMIN
can be assigned.


Don’t delete the admin and rtc user. The RTC user is used for the
communication of the Real-Time Console on the start page to calculate the node
and service availability.

 Change the default admin password to a secure password.

How to set a new password for any user

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Users

4. Click the Modify icon next to an existing User and select Reset Password

5. Set a new Password, Confirm Password and click OK

6. Click Finish to persist and apply the changes

How users can change their own password

1. Login with user name and old password

2. Choose Change Password from the user specific main navigation which is named as your login
user name

2

https://wiki.opennms.org/wiki/Spring_Security_and_LDAP
https://wiki.opennms.org/wiki/Spring_Security_and_Radius
https://wiki.opennms.org/wiki/Single_Sign_On

3. Select Change Password

4. Identify yourself with the old password and set the new password and confirm

5. Click Submit

6. Logout and login with your new password

How to create or modify user

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Users

4. Use Add new user and type in a login name as User ID and a Password with confirmation or
click Modify next to an existing User

5. Optional: Fill in detailed User Information to provide more context information around the new
user in the system

6. Optional: Assign Security Roles to give or remove permissions in the system

7. Optional: Provide Notification Information which are used in Notification targets to send
messages to the User

8. Optional: Set a schedule when a User should receive Notifications

9. Click Finish to persist and apply the changes


By default a new User has the Security Role similar to ROLE_USER assigned.
Acknowledgment and working with Alarms and Notifications is possible. The
Configure OpenNMS administration menu is not available.

How to delete existing user

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Users

4. Use the trash bin icon next to the User to delete

5. Confirm delete request with OK

2.2. Security Roles
A Security Roles is a set of permissions and can be assigned to an User. They regulate access to the
Web User Interface and the ReST API to exchange monitoring and inventory information. In case of
a distributed installation, the Remote Poller instances interact with OpenNMS Meridian and require
specific permissions which are defined in the Security Role ROLE_REMOTING. The following
Security Roles are available:

Table 1. Functions and existing system roles in OpenNMS Meridian

3

Security Role
Name

Description

anyone In case the opennms-webapp-remoting package is installed, any user can download
the Java Webstart installation package for the remote poller from
http://opennms.server:8980/opennms-remoting/webstart/app.jnlp.

ROLE_ANONYMO
US

Allows HTTP OPTIONS request to show allowed HTTP methods on a ReST
resources and the login and logout page of the Web User Interface.

ROLE_ADMIN Permissions to create, read, update and delete in the Web User Interface and
the ReST API.

ROLE_ASSET_EDI
TOR

Permissions to just update the asset records from nodes.

ROLE_DASHBOA
RD

Allow users to just have access to the Dashboard.

ROLE_DELEGATE Allows actions (such as acknowledging an alarm) to be performed on behalf of
another user.

ROLE_JMX Allows retrieving JMX metrics but does not allow executing MBeans of the
OpenNMS Meridian JVM, even if they just return simple values.

ROLE_MOBILE Allow user to use OpenNMS COMPASS mobile application to acknowledge
Alarms and Notifications via the ReST API.

ROLE_PROVISIO
N

Allow user to use the Provisioning System and configure SNMP in OpenNMS
Meridian to access management information from devices.

ROLE_READONL
Y

Limited to just read information in the Web User Interface and are no
possibility to change Alarm states or Notifications.

ROLE_REMOTING Permissions to allow access from a Remote Poller instance to exchange
monitoring information.

ROLE_REST Allow users interact with the whole ReST API of OpenNMS Meridian

ROLE_RTC Exchange information with the OpenNMS Meridian Real-Time Console for
availability calculations.

ROLE_USER Default permissions of a new created user to interact with the Web User
Interface which allow to escalate and acknowledge Alarms and Notifications.

How to manage Security Roles for Users:

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Users

4. Modify an existing User by clicking the modify icon next to the User

5. Select the Role from Available Roles in the Security Roles section

6. Use Add and Remove to assign or remove the Security Role from the User

7. Click Finish to persist and apply the Changes

4

http://opennms.server:8980/opennms-remoting/webstart/app.jnlp

8. Logout and Login to apply the new Security Role settings

How to add custom roles

• Create a file called $OPENNMS_HOME/etc/security-roles.properties.

• Add a property called roles, and for its value, a comma separated list of the custom roles, for
example:

roles=operator,stage

• After following the procedure to associate the security roles with users, the new custom roles
will be available as shown on the following image:

5

 :imagesdir: ../../images

2.3. Web UI Pre-Authentication
It is possible to configure OpenNMS Meridian to run behind a proxy that provides authentication,
and then pass the pre-authenticated user to the OpenNMS Meridian webapp using a header.

The pre-authentication configuration is defined in $OPENNMS_HOME/jetty-webapps/opennms/WEB-

INF/spring-security.d/header-preauth.xml. This file is automatically included in the Spring Security
context, but is not enabled by default.


DO NOT configure OpenNMS Meridian in this manner unless you are certain the
web UI is only accessible to the proxy and not to end-users. 	Otherwise,
malicious attackers can craft queries that include the pre-authentication header
and get full control of the web UI and ReST APIs.

2.3.1. Enabling Pre-Authentication

Edit the header-preauth.xml file, and set the enabled property:

<beans:property name="enabled" value="true" />

6

2.3.2. Configuring Pre-Authentication

There are a number of other properties that can be set to change the behavior of the pre-
authentication plugin.

Property Description Default

enabled Whether the pre-authentication
plugin is active.

false

failOnError If true, disallow login if the
header is not set or the user
does not exist. If false, fall
through to other mechanisms
(basic auth, form login, etc.)

false

userHeader The HTTP header that will
specify the user to authenticate
as.

X-Remote-User

credentialsHeader A comma-separated list of
additional credentials (roles)
the user should have.

7

Chapter 3. Administrative Webinterface

3.1. Grafana Dashboard Box
Grafana provides an API key which gives access for 3rd party application like OpenNMS Meridian.
The Grafana Dashboard Box on the start page shows dashboards related to OpenNMS Meridian. To
filter relevant dashboards, you can use a tag for dashboards and make them accessible. If no tag is
provided all dashboards from Grafana will be shown.

The feature is by default deactivated and is configured through opennms.properties. Please note that
this feature works with the Grafana API v2.5.0.

Quick access to Grafana dashboards from the OpenNMS Meridian start page

8

http://grafana.org/

Table 2. Grafana Dashboard configuration properties

Name Type Description Defau
lt

org.opennms.grafanaBox.s
how

Boole
an

This setting controls whether a grafana box showing the
available dashboards is placed on the landing page. The
two valid options for this
are true or false.

false

org.opennms.grafanaBox.h
ostname

Strin
g

If the box is enabled you also need to specify hostname of
the Grafana server

localh
ost

org.opennms.grafanaBox.p
ort

Integ
er

The port of the Grafana server ReST API 3000

org.opennms.grafanaBox.a
piKey

Strin
g

The API key is needed for the ReST calls to work

9

Name Type Description Defau
lt

org.opennms.grafanaBox.t
ag

Strin
g

When a tag is specified only dashboards with this given
tag will be displayed.
When no tag is given all dashboards will
be displayed

org.opennms.grafanaBox.p
rotocol

Strin
g

The protocol for the ReST call can also be specified http

org.opennms.grafanaBox.c
onnectionTimeout

Integ
er

Timeout in milliseconds for getting information from the
Grafana server

500

org.opennms.grafanaBox.s
oTimeout

Integ
er

500


If you have Grafana behind a proxy it is important the
org.opennms.grafanaBox.hostname is reachable. This host name is used to
generate links to the Grafana dashboards.

The process to generate an Grafana API Key can be found in the HTTP API documentation. Copy the
API Key to opennms.properties as org.opennms.grafanaBox.apiKey.

3.2. Operator Board
In a network operation center (NOC) the Ops Board can be used to visualize monitoring
information. The monitoring information for various use-cases are arranged in configurable
Dashlets. To address different user groups it is possible to create multiple Ops Boards.

There are two visualisation components to display Dashlets:

• Ops Panel: Shows multiple Dashlets on one screen, e.g. on a NOC operators workstation

• Ops Board: Shows one Dashlet at a time in rotation, e.g. for a screen wall in a NOC

10

http://docs.grafana.org/reference/http_api/#create-api-token

Figure 1. Concept of Dashlets displayed in Ops Panel

Figure 2. Concept to show Dashlets in rotation on the Ops Board

3.2.1. Configuration

To create and configure Ops Boards administration permissions are required. The configuration
section is in admin area of OpenNMS Meridian and named Ops Board Config Web Ui.

11

Figure 3. Navigation to the Ops Board configuration

Create or modify Ops Boards is described in the following screenshot.

Figure 4. Adding a Dashlet to an existing Ops Board

1. Create a new Ops Board to organize and arrange different Dashlets

2. The name to identify the Ops Board

3. Add a Dashlet to show OpenNMS Meridian monitoring information

12

4. Show a preview of the whole Ops Board

5. List of available Dashlets

6. Priority for this Dashlet in Ops Board rotation, lower priority means it will be displayed more
often

7. Duration in seconds for this Dashlet in the Ops Board rotation

8. Change Priority if the Dashlet is in alert state, this is optional and maybe not available in all
Dashlets

9. Change Duration if the Dashlet is in alert state, it is optional and maybe not available in all
Dashlets

10. Configuration properties for this Dashlet

11. Remove this Dashlet from the Ops Board

12. Order Dashlets for the rotation on the Ops Board and the tile view in the Ops Panel

13. Show a preview for the whole Ops Board

The configured Ops Board can be used by navigating in the main menu to Dashboard → Ops Board.

Figure 5. Navigation to use the Ops Board

3.2.2. Dashlets

Visualization of information is implemented in Dashlets. The different Dashlets are described in
this section with all available configuration parameter.

To allow filter information the Dashlet can be configured with a generic Criteria Builder.

Alarm Details

This Alarm-Details Dashlet shows a table with alarms and some detailed information.

13

Table 3. Information of the alarms

Field Description

Alarm ID OpenNMS Meridian ID for the alarm

Severity Alarm severity (Cleared, Indeterminate, Normal, Warning, Minor, Major, Critical)

Node label Node label of the node where the alarm occurred

Alarm count Alarm count based on reduction key for deduplication

Last Event Time Last time the alarm occurred

Log Message Reason and detailed log message of the alarm

The Alarm Details Dashlet can be configured with the following parameters.

Boost support Boosted Severity

Configuration Criteria Builder

Alarms

This Alarms Dashlet shows a table with a short alarm description.

Table 4. Information of the alarm

Field Description

Time Absolute time since the alarm appeared

Node label Node label of the node where the alarm occurred

UEI OpenNMS Meridian Unique Event Identifier for this alarm

The Alarms Dashlet can be configured with the following parameters.

Boost support Boosted Severity

Configuration Criteria Builder

Charts

This Dashlet displays an existing Chart.

Boost support false

Chart Name of the existing chart to display

Maximize Width Rescale the image to fill display width

Maximize Height Rescale the image to fill display height

14

http://www.opennms.org/wiki/Chart-configuration.xml

Grafana

This Dashlet shows a Grafana Dashboard for a given time range. The Grafana Dashboard Box
configuration defined in the opennms.properties file is used to access the Grafana instance.

Boost support false

title Title of the Grafana dashboard to be displayed

uri URI to the Grafana Dashboard to be displayed

from Start of time range

to End of time range

Image

This Dashlet displays an image by a given URL.

Boost support false

imageUrl URL with the location of the image to show in this Dashlet

maximizeHeight Rescale the image to fill display width

maximizeWidth Rescale the image to fill display height

KSC

This Dashlet shows an existing KSC report. The view is exact the same as the KSC report is build
regarding order, columns and time spans.

Boost support false

KSC-Report Name of the KSC report to show in this Dashlet

Map

This Dashlet displays the geographical map.

Boost
support

false

search Predefined search for a subset of nodes shown in the geographical map in this
Dashlet

RRD

This Dashlet shows one or multiple RRD graphs. It is possible to arrange and order the RRD graphs
in multiple columns and rows. All RRD graphs are normalized with a given width and height.

Boost support false

Columns Number of columns within the Dashlet

15

http://www.opennms.org/wiki/KSC_Reports
http://www.opennms.org/wiki/Geographical_Maps
http://www.opennms.org/wiki/Geographical_Maps#Searching

Rows Number of rows with the Dashlet

KSC Report Import RRD graphs from an existing KSC report and re-arrange them.

Graph Width Generic width for all RRD graphs in this Dashlet

Graph Height Generic height for all RRD graphs in this Dashlet

Timeframe value Number of the given Timeframe type

Timeframe type Minute, Hour, Day, Week, Month and Year for all RRD graphs

RTC

This Dashlet shows the configured SLA categories from the OpenNMS Meridian start page.

Boost support false

- -

Summary

This Dashlet shows a trend of incoming alarms in given time frame.

Boost support Boosted Severity

timeslot Time slot in seconds to evaluate the trend for alarms by severity and UEI.

Surveillance

This Dashlet shows a given Surveillance View.

Boost support false

viewName Name of the configured Surveillance View

Topology

This Dashlet shows a Topology Map. The Topology Map can be configured with the following
parameter.

Boost support false

focusNodes Which node(s) is in focus for the topology

provider Which topology should be displayed, e.g. Linkd, VMware

szl Set the zoom level for the topology

URL

This Dashlet shows the content of a web page or other web application, e.g. other monitoring
systems by a given URL.

16

http://www.opennms.org/wiki/Surveillance_View_%28af%29
http://www.opennms.org/wiki/Topology_Maps

Boost support false

password Optional password if a basic authentication is required

url URL to the web application or web page

username Optional username if a basic authentication is required

3.2.3. Boosting Dashlet

The behavior to boost a Dashlet describes the behavior of a Dashlet showing critical monitoring
information. It can raise the priority in the Ops Board rotation to indicate a problem. This behavior
can be configured with the configuration parameter Boost Priority and Boost Duration. These to
configuration parameter effect the behavior on the Ops Board in rotation.

• Boost Priority: Absolute priority of the Dashlet with critical monitoring information.

• Boost Duration: Absolute duration in seconds of the Dashlet with critical monitoring
information.

3.2.4. Criteria Builder

The Criteria Builder is a generic component to filter information of a Dashlet. Some Dashlets use this
component to filter the shown information on a Dashlet for certain use case. It is possible to
combine multiple Criteria to display just a subset of information in a given Dashlet.

Table 5. Generic Criteria Builder configuration possibilities

Restrict
ion

Property Value
1

Value
2

Description

Asc - - - ascending order

Desc - - - descending order

Between database
attribute

String String Subset of data between value 1 and value 2

Contains database
attribute

String - Select all data which contains a given text string in a given
database attribute

Distinct database
attribute

- - Select a single instance

Eq database
attribute

String - Select data where attribute equals (==) a given text string

Ge database
attribute

String - Select data where attribute is greater equals than (>=) a
given text value

Gt database
attribute

String - Select data where attribute is greater than (>) a given text
value

Ilike database
attribute

String - unknown

17

Restrict
ion

Property Value
1

Value
2

Description

In database
attribute

String - unknown

Iplike database
attribute

String - Select data where attribute matches an given IPLIKE
expression

IsNull database
attribute

- - Select data where attribute is null

IsNotNul
l

database
attribute

- - Select data where attribute is not null

IsNotNul
l

database
attribute

- - Select data where attribute is not null

Le database
attribute

String - Select data where attribute is less equals than (⇐) a given
text value

Lt database
attribute

String - Select data where attribute is less than (<) a given text
value

Le database
attribute

String - Select data where attribute is less equals than (⇐) a given
text value

Like database
attribute

String - Select data where attribute is like a given text value
similar to SQL like

Limit - Intege
r

- Limit the result set by a given number

Ne database
attribute

String - Select data where attribute is not equals (!=) a given text
value

Not database
attribute

String - unknown difference between Ne

OrderBy database
attribute

- - Order the result set by a given attribute

3.3. JMX Configuration Generator
OpenNMS Meridian implements the JMX protocol to collect long term performance data for Java
applications. There are a huge variety of metrics available and administrators have to select which
information should be collected. The JMX Configuration Generator Tools is build to help generating
valid complex JMX data collection configuration and RRD graph definitions for OpenNMS Meridian.

This tool is available as CLI and a web based version.

3.3.1. Web based utility

Complex JMX data collection configurations can be generated from a web based tool. It collects all
available MBean Attributes or Composite Data Attributes from a JMX enabled Java application.

18

The workflow of the tool is:

1. Connect with JMX or JMXMP against a MBean Server provided of a Java application

2. Retrieve all MBean and Composite Data from the application

3. Select specific MBeans and Composite Data objects which should be collected by OpenNMS
Meridian

4. Generate JMX Collectd configuration file and RRD graph definitions for OpenNMS Meridian as
downloadable archive

The following connection settings are supported:

• Ability to connect to MBean Server with RMI based JMX

• Authentication credentials for JMX connection

• Optional: JMXMP connection

The web based configuration tool can be used in the OpenNMS Meridian Web Application in
administration section Admin → JMX Configuration Generator.

Configure JMX Connection

At the beginning the connection to an MBean Server of a Java application has to be configured.

Figure 6. JMX connection configuration window

• Service name: The name of the service to bind the JMX data collection for Collectd

• Host: IP address or FQDN connecting to the MBean Server to load MBeans and Composite Data
into the generation tool

• Port: Port to connect to the MBean Server

• Authentication: Enable / Disable authentication for JMX connection with username and

19

password

• Skip non-number values: Skip attributes with non-number values

• JMXMP: Enable / Disable JMX Messaging Protocol instead of using JMX over RMI

By clicking the arrow (>) the MBeans and Composite Data will be retrieved with the given
connection settings. The data is loaded into the MBeans Configuration screen which allows to select
metrics for the data collection configuration.

Select MBeans and Composite

The MBeans Configuration section is used to assign the MBean and Composite Data attributes to RRD
domain specific data types and data source names.

Figure 7. Select MBeans or Composite Data for OpenNMS Meridian data collection

The left sidebar shows the tree with the JMX Domain, MBeans and Composite Data hierarchy
retrieved from the MBean Server. To select or deselect all attributes use Mouse right click →
select/deselect.

The right panel shows the MBean Attributes with the RRD specific mapping and allows to select or
deselect specific MBean Attriubtes or Composite Data Attributes for the data collection
configuration.

20

Figure 8. Configure MBean attributes for data collection configuration

Figure 9. Configure Composite attributes for data collection configuration

• MBean Name or Composite Alias: Identifies the MBean or the Composite Data object

• Selected: Enable/Disable the MBean attribute or Composite Member to be included in the data
collection configuration

• Name: Name of the MBean attribute or Composite Member

• Alias: the data source name for persisting measurements in RRD or JRobin file

• Type: Gauge or Counter data type for persisting measurements in RRD or JRobin file

The MBean Name, Composite Alias and Name are validated against special characters. For the Alias
inputs are validated to be not longer then 19 characters and have to be unique in the data collection
configuration.

Download and include configuration

The last step is generating the following configuration files for OpenNMS Meridian:

• collectd-configuration.xml: Generated sample configuration assigned to a service with a
matching data collection group

• jmx-datacollection-config.xml: Generated JMX data collection configuration with the selected
MBeans and Composite Data

• snmp-graph.properties: Generated default RRD graph definition files for all selected metrics

The content of the configuration files can be copy & pasted or can be downloaded as ZIP archive.

21


If the content of the configuration file exceeds 2,500 lines, the files can only be
downloaded as ZIP archive.

3.3.2. CLI based utility

The command line (CLI) based tool is not installed by default. It is available as Debian and RPM
package in the official repositories.

Installation

RHEL based installation with Yum

yum install opennms-jmx-config-generator

Debian based installation with apt

apt-get install opennms-jmx-config-generator

Installation from source

It is required to have the Java 8 Development Kit with Apache Maven installed. The mvn binary has to
be in the path environment. After cloning the repository you have to enter the source folder and
compile an executable JAR.

cd opennms/features/jmx-config-generator
mvn package

Inside the newly created target folder a file named jmxconfiggenerator-<VERSION>-onejar.jar is
present. This file can be invoked by:

java -jar target/jmxconfiggenerator-2017.1.24-onejar.jar

Usage

After installing the the JMX Config Generator the tool’s wrapper script is located in the
${OPENNMS_HOME}/bin directory.

$ cd /path/to/opennms/bin
$./jmx-config-generator

 When invoked without parameters the usage and help information is printed.

The JMX Config Generator uses sub-commands for the different configuration generation tasks.
Each of these sub-commands provide different options and parameters. The command line tool
accepts the following sub-commands.

22

Sub-
command

Description

query Queries a MBean Server for certain MBeans and attributes.

generate-
conf

Generates a valid jmx-datacollection-config.xml file.

generate-
graph

Generates a RRD graph definition file with matching graph definitions for a given
jmx-datacollection-config.xml.

The following global options are available in each of the sub-commands of the tool:

Option/Argume
nt

Description Defaul
t

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging purposes. false

Sub-command: query

This sub-command is used to query a MBean Server for its available MBean objects. The following
example queries the server myserver with the credentials myusername/mypassword on port 7199 for
MBean objects in the java.lang domain.

./jmx-config-generator query --host myserver --username myusername --password
mypassword --port 7199 "java.lang:*"
java.lang:type=ClassLoading
 description: Information on the management interface of the MBean
 class name: sun.management.ClassLoadingImpl
 attributes: (5/5)
 TotalLoadedClassCount
 id: java.lang:type=ClassLoading:TotalLoadedClassCount
 description: TotalLoadedClassCount
 type: long
 isReadable: true
 isWritable: false
 isIs: false
 LoadedClassCount
 id: java.lang:type=ClassLoading:LoadedClassCount
 description: LoadedClassCount
 type: int
 isReadable: true
 isWritable: false
 isIs: false

<output omitted>

The following command line options are available for the query sub-command.

23

Option/Argument Description Defa
ult

<filter criteria> A filter criteria to query the MBean Server for. The
format is <objectname>[:attribute name]. The
<objectname> accepts the default JMX object name pattern to identify
the MBeans to be retrieved. If null all domains are
shown. If no key properties are specified, the
domain’s MBeans are retrieved. To execute for
certain attributes, you have to add :<attribute name>.
The <attribute name> accepts regular expressions.
When multiple <filter criteria> are provided they are OR
concatenated.

-

--host <host> Hostname or IP address of the remote JMX host. -

--ids-only Only show the ids of the attributes. false

--ignore <filter
criteria>

Set <filter criteria> to ignore while running. -

--include-values Include attribute values. false

--jmxmp Use JMXMP and not JMX over RMI. false

--password
<password>

Password for JMX authentication. -

--port <port> Port of JMX service. -

--show-domains Only lists the available domains. true

--show-empty Includes MBeans, even if they do not have attributes.
Either due to the <filter criteria> or while there are none.

false

--url <url> Custom connection URL
<hostname>:<port>
service:jmx:<protocol>:<sap>
service:jmx:remoting-jmx://<hostname>:<port>

-

--username
<username>

Username for JMX authentication. -

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging purposes. false

Sub-command: generate-conf

This sub-command can be used to generate a valid jmx-datacollection-config.xml for a given set of
MBean objects queried from a MBean Server.

The following example generate a configuration file myconfig.xml for MBean objects in the java.lang
domain of the server myserver on port 7199 with the credentials myusername/mypassword. You have to
define either an URL or a hostname and port to connect to a JMX server.

24

jmx-config-generator generate-conf --host myserver --username myusername --password
mypassword --port 7199 "java.lang:*" --output myconfig.xml
Dictionary entries loaded: '18'

The following options are available for the generate-conf sub-command.

Option/Argume
nt

Description Default

<attribute id> A list of attribute Ids to be included for the generation of the
configuration file.

 -

--dictionary
<file>

Path to a dictionary file for replacing attribute names and part of
MBean attributes. The file should have for each line a
replacement, e.g. Auxillary:Auxil.

-

--host <host> Hostname or IP address of JMX host. -

--jmxmp Use JMXMP and not JMX over RMI. false

--output <file> Output filename to write generated jmx-datacollection-config.xml. -

--password
<password>

Password for JMX authentication. -

--port <port> Port of JMX service -

--print
-dictionary

Prints the used dictionary to STDOUT. May be used with
--dictionary

false

--service
<value>

The Service Name used as JMX data collection name. anyserv
ice

--skipDefaultVM Skip default JavaVM Beans. false

--skipNonNumber Skip attributes with non-number values false

--url <url> Custom connection URL
<hostname>:<port>
service:jmx:<protocol>:<sap>
service:jmx:remoting-jmx://<hostname>:<port>

-

--username
<username>

Username for JMX authentication -

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging purposes. false



The option --skipDefaultVM offers the ability to ignore the MBeans provided as
standard by the JVM and just create configurations for the MBeans provided by
the Java Application itself. This is particularly useful if an optimized configuration
for the JVM already exists. If the --skipDefaultVM option is not set the generated
configuration will include the MBeans of the JVM and the MBeans of the Java
Application.

25


Check the file and see if there are alias names with more than 19 characters.
This errors are marked with NAME_CRASH_AS_19_CHAR_VALUE

Sub-command: generate-graph

This sub-command generates a RRD graph definition file for a given configuration file. The
following example generates a graph definition file mygraph.properties using the configuration in
file myconfig.xml.

./jmx-config-generator generate-graph --input myconfig.xml --output mygraph.properties
reports=java.lang.ClassLoading.MBeanReport, \
java.lang.ClassLoading.0TotalLoadeClassCnt.AttributeReport, \
java.lang.ClassLoading.0LoadedClassCnt.AttributeReport, \
java.lang.ClassLoading.0UnloadedClassCnt.AttributeReport, \
java.lang.Compilation.MBeanReport, \
<output omitted>

The following options are available for this sub-command.

Option/Argument Description Defa
ult

--input <jmx-
datacollection.xml>

Configuration file to use as input to generate the graph properties
file

 -

--output <file> Output filename for the generated graph properties file. -

--print-template Prints the default template. false

--template <file> Template file using Apache Velocity template engine to be used to
generate the graph properties.

 -

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging purposes. false

Graph Templates

The JMX Config Generator uses a template file to generate the graphs. It is possible to use a user-
defined template. The option --template followed by a file lets the JMX Config Generator use the
external template file as base for the graph generation. The following example illustrates how a
custom template mytemplate.vm is used to generate the graph definition file mygraph.properties using
the configuration in file myconfig.xml.

./jmx-config-generator generate-graph --input myconfig.xml --output mygraph.properties
--template mytemplate.vm

The template file has to be an Apache Velocity template. The following sample represents the
template that is used by default:

26

http://velocity.apache.org
http://velocity.apache.org

reports=#foreach($report in $reportsList)
${report.id}#if($foreach.hasNext), \
#end
#end

#foreach($report in $reportsBody)

#[[###]]#
#[[##]]# $report.id
#[[###]]#
report.${report.id}.name=${report.name}
report.${report.id}.columns=${report.graphResources}
report.${report.id}.type=interfaceSnmp
report.${report.id}.command=--title="${report.title}" \
 --vertical-label="${report.verticalLabel}" \
#foreach($graph in $report.graphs)
 DEF:${graph.id}={rrd${foreach.count}}:${graph.resourceName}:AVERAGE \
 AREA:${graph.id}#${graph.coloreB} \
 LINE2:${graph.id}#${graph.coloreA}:"${graph.description}" \
 GPRINT:${graph.id}:AVERAGE:" Avg \\: %8.2lf %s" \
 GPRINT:${graph.id}:MIN:" Min \\: %8.2lf %s" \
 GPRINT:${graph.id}:MAX:" Max \\: %8.2lf %s\\n" \
#end

#end

The JMX Config Generator generates different types of graphs from the jmx-datacollection-
config.xml. The different types are listed below:

Type Description

AttributeReport For each attribute of any MBean a graph will be generated.
Composite attributes will be ignored.

MbeanReport For each MBean a combined graph with all attributes of the MBeans is
generated. Composite attributes will be ignored.

CompositeReport For each composite attribute of every MBean a graph is generated.

CompositeAttribute
Report

For each composite member of every MBean a combined graph with all
composite attributes is generated.

3.4. Heatmap
The Heatmap can be either be used to display unacknowledged alarms or to display ongoing
outages of nodes. Each of this visualizations can be applied on categories, foreign sources or
services of nodes. The sizing of an entity is calculated by counting the services inside the entity.
Thus, a node with fewer services will appear in a smaller box than a node with more services.

The feature is by default deactivated and is configured through opennms.properties.

27

Heatmap visualizations of alarms

28

29

Table 6. Grafana Dashboard configuration properties

Name Type Description Default

org.opennms.heatmap.d
efaultMode

Strin
g

There exist two options for using the heatmap: alarms
and outages. This
option configures which are displayed per
default.

alarms

org.opennms.heatmap.d
efaultHeatmap

Strin
g

This option defines which Heatmap is displayed by
default. Valid options
are categories, foreignSources and
monitoredServices.

categories

org.opennms.heatmap.c
ategoryFilter

Strin
g

The following option is used to filter for categories to
be displayed in the
Heatmap. This option uses the Java regular
expression syntax. The default is .* so all categories
will be displayed.

.*

30

Name Type Description Default

org.opennms.heatmap.f
oreignSourceFilter

Strin
g

The following option is used to filter for foreign
sources to be
displayed in the Heatmap. This option uses the Java
regular expression syntax. The default is .* so all
foreign sources will
be displayed.

.*

org.opennms.heatmap.s
erviceFilter

Strin
g

The following option is used to filter for services to be
displayed in the Heatmap. This option uses the Java
regular expression
syntax. The default is .* so all services will
be displayed.

.*

org.opennms.heatmap.o
nlyUnacknowledged

Bool
ean

This option configures whether only unacknowledged
alarms will be taken
into account when generating the alarm-based
version of the Heatmap.

false

org.opennms.web.conso
le.centerUrl

Strin
g

You can also place the Heatmap on the landing page
by setting this option
to /heatmap/heatmap-box.jsp.

/surveillanc
e-box.jsp


You can use negative lookahead expressions for excluding categories you wish
not to be displayed in the heatmap, e.g. by using an expression like ^(?!XY).* you
can filter out entities with names starting with XY.

3.5. Trend
The Trend feature allows to display small inline charts of database-based statistics. These chart are
accessible in the Status menu of the OpenNMS' web application. Furthermore it is also possible to
configure these charts to be displayed on the OpenNMS' landing page. To achieve this alter the
org.opennms.web.console.centerUrl property to also include the entry /trend/trend-box.htm.

Trend chart structure

31

These charts can be configured and defined in the trend-configuration.xml file in your OpenNMS'
etc directory. The following sample defines a Trend chart for displaying nodes with ongoing
outages.

32

Sample Trend chart XML definition for displaying nodes with outages

 <trend-definition name="nodes">
 <title>Nodes</title> ①
 <subtitle>w/ Outages</subtitle> ②
 <visible>true</visible> ③
 <icon>glyphicon-fire</icon> ④
 <trend-attributes> ⑤
 <trend-attribute key="sparkWidth" value="100%"/>
 <trend-attribute key="sparkHeight" value="35"/>
 <trend-attribute key="sparkChartRangeMin" value="0"/>
 <trend-attribute key="sparkLineColor" value="white"/>
 <trend-attribute key="sparkLineWidth" value="1.5"/>
 <trend-attribute key="sparkFillColor" value="#88BB55"/>
 <trend-attribute key="sparkSpotColor" value="white"/>
 <trend-attribute key="sparkMinSpotColor" value="white"/>
 <trend-attribute key="sparkMaxSpotColor" value="white"/>
 <trend-attribute key="sparkSpotRadius" value="3"/>
 <trend-attribute key="sparkHighlightSpotColor" value="white"/>
 <trend-attribute key="sparkHighlightLineColor" value="white"/>
 </trend-attributes>
 <descriptionLink>outage/list.htm?outtype=current</descriptionLink> ⑥
 <description>${intValue[23]} NODES WITH OUTAGE(S)</description> ⑦
 <query> ⑧
 <![CDATA[
 select (
 select
 count(distinct nodeid)
 from
 outages o, events e
 where
 e.eventid = o.svclosteventid
 and iflostservice < E
 and (ifregainedservice is null
 or ifregainedservice > E)
) from (
 select
 now() - interval '1 hour' * (O + 1) AS S,
 now() - interval '1 hour' * O as E
 from
 generate_series(0, 23) as O
) I order by S;
]]>
 </query>
 </trend-definition>

① title of the Trend chart, see below for supported variable substitutions

② subtitle of the Trend chart, see below for supported variable substitutions

③ defines whether the chart is visible by default

33

④ icon for the chart, see Glyphicons for viable options

⑤ options for inline chart, see jQuery Sparklines for viable options

⑥ the description link

⑦ the description text, see below for supported variable substitutions

⑧ the SQL statement for querying the chart’s values

 Don’t forget to limit the SQL query’s return values!

It is possible to use values or aggregated values in the title, subtitle and description fields. The
following table describes the available variable substitutions.

Table 7. Variables usable in definition’s title, subtitle and description fields

Name Type Description

${intMax} Integer integer maximum value

${doubleMax} Double maximum value

${intMin} Integer integer minimum value

${doubleMin} Double minimum value

${intAvg} Integer integer average value

${doubleAvg} Double average value

${intSum} Integer integer sum of values

${doubleSum} Double sum of value

${intValue[]} Integer array of integer result values for the given SQL query

${doubleValue[]} Double array of result values for the given SQL query

${intValueChange[]} Integer array of integer value changes for the given SQL query

${doubleValueChange[]} Double array of value changes for the given SQL query

${intLastValue} Integer last integer value

${doubleLastValue} Double last value

${intLastValueChange} Integer last integer value change

${doubleLastValueChange} Double last value change

You can also display a single graph in your JSP files by including the file /trend/single-trend-
box.jsp and specifying the name parameter.

Sample JSP snippet to include a single Trend chart with name 'example'

<jsp:include page="/trend/single-trend-box.jsp" flush="false">
 <jsp:param name="name" value="example"/>
</jsp:include>

34

http://getbootstrap.com/components/#glyphicons
http://omnipotent.net/jquery.sparkline/#common

Chapter 4. Service Assurance
In OpenNMS the daemon to measures service availability and latency is done by Pollerd. To run
these tests Service Monitors are scheduled and run in parallel in a Thread Pool. The behavior of
Pollerd uses the following files for configuration and logging. Functionalities and general concepts
are described in the User Documentation of OpenNMS. This section describes how to configure
Pollerd for service assurance with all available Service Monitors coming with OpenNMS.

4.1. Pollerd Configuration
Table 8. Configuration and log files related to Pollerd.

File Description

$OPENNMS_HOME/etc/poller-
configuration.xml

Configuration file for monitors and global daemon
configuration

$OPENNMS_HOME/logs/poller.log Log file for all monitors and the global Pollerd

$OPENNMS_HOME/etc/response-
graph.properties

RRD graph definitions for service response time
measurements

$OPENNMS_HOME/etc/events/opennms.e
vents.xml

Event definitions for Pollerd, i.e. nodeLostService,
interfaceDown or nodeDown

To change the behavior for service monitoring, the poller-configuration.xml can be modified. The
configuration file is structured in the following parts:

• Global daemon config: Define the size of the used Thread Pool to run Service Monitors in parallel.
Define and configure the Critical Service for Node Event Correlation.

• Polling packages: Package to allow grouping of configuration parameters for Service Monitors.

• Downtime Model: Configure the behavior of Pollerd to run tests in case of an Outage is detected.

• Monitor service association: Based on the name of the service, the implementation for
application or network management protocols are assigned.

Global configuration parameters for Pollerd

<poller-configuration threads="30" ①
 pathOutageEnabled="false" ②
 serviceUnresponsiveEnabled="false"> ③

① Size of the Thread Pool to run Service Monitors in parallel

② Enable or Disable Path Outage functionality based on a Critical Node in a network path

③ In case of unresponsive service services a serviceUnresponsive event is generated and not an
outage. It prevents to apply the Downtime Model to retest the service after 30 seconds and
prevents false alarms.

Configuration changes are applied by restarting OpenNMS and Pollerd. It is also possible to send an
Event to Pollerd reloading the configuration. An Event can be sent on the CLI or the Web User

35

Interface.

Send configuration reload event on CLI

cd $OPENNMS_HOME/bin
./send-event.pl uei.opennms.org/internal/reloadDaemonConfig --parm 'daemonName
Pollerd'

Figure 10. Send configuration reload event with the Web User Interface

36


If you define new services in poller-configuration.xml a service restart of
OpenNMS is necessary.

4.2. Critical Service
The Critical Service is used to correlate outages from Services to a nodeDown or interfaceDown
event. It is a global configuration of Pollerd defined in poller-configuration.xml. The OpenNMS
default configuration enables this behavior.

Critical Service Configuration in Pollerd

<poller-configuration threads="30"
 pathOutageEnabled="false"
 serviceUnresponsiveEnabled="false">

 <node-outage status="on" ①
 pollAllIfNoCriticalServiceDefined="true"> ②
 <critical-service name="ICMP" /> ③
 </node-outage>

① Enable Node Outage correlation based on a Critical Service

② Optional: In case of nodes without a Critical Service this option controls the behavior. If set to
true then all services will be polled. If set to false then the first service in the package that exists
on the node will be polled until service is restored, and then polling will resume for all services.

③ Define Critical Service for Node Outage correlation

4.3. Downtime Model
By default the monitoring interval for a service is 5 minutes. To detect also short services outages,
caused for example by automatic network rerouting, the downtime model can be used. On a
detected service outage, the interval is reduced to 30 seconds for 5 minutes. If the service comes
back within 5 minutes, a shorter outage is documented and the impact on service availability can
be less than 5 minutes. This behavior is called Downtime Model and is configurable.

Figure 11. Downtime model with resolved and ongoing outage

37

In figure Outages and Downtime Model there are two outages. The first outage shows a short
outage which was detected as up after 90 seconds. The second outage is not resolved now and the
monitor has not detected an available service and was not available in the first 5 minutes (10 times
30 second polling). The scheduler changed the polling interval back to 5 minutes.

Example default configuration of the Downtime Model

<downtime interval="30000" begin="0" end="300000" /> ①
<downtime interval="300000" begin="300000" end="43200000" /> ②
<downtime interval="600000" begin="43200000" end="432000000" /> ③
<downtime begin="432000000" delete="true" /> ④

① from 0 seconds after an outage is detected until 5 minutes the polling interval will be set to 30
seconds

② after 5 minutes of an ongoing outage until 12 hours the polling interval will be set to 5 minutes

③ after 12 hours of an ongoing outage until 5 days the polling interval will be set to 10 minutes

④ after 5 days of an ongoing outage the service will be deleted from the monitoring system

4.4. Path Outages
To reduce the amount of alarms and notifications a Path Outage can be configured. This
functionality is used to suppress Notifications based on the node depending on each other in the
network path. The dependency is modeled in the Node Provisioning in Path Outage.


By default the Path Outage feature is disabled and has to be enabled in the
pollerd-configuration.xml.

It requires the following information:

• Parent Foreign Source: The Foreign Source where the parent node is defined.

• Parent Foreign ID: The Foreign ID of the parent Node where this node depends on.

• The IP Interface selected as Primary is used as Critical IP

Additionally it is possible to define generic rules for Path Outages. For example there is a whole IP
Subnet behind a Router and this Router is the Critical Path to this IP Subnet.

The configuration can be made in Admin → Configure Notifications → Configure Path Outages. It
requires to specify a Critical IP of the Router and allows to specify the IP Subnet by defining a
Rule/Filter. They are specified in Rules/Filters in the OpenNMS Wiki. In this case, the Router with all
Nodes on the IP Subnet are down, but only one Notification is sent. All other Node Down
notifications are suppressed matching the Rule/Filter defined in the Path Outage.

38

http://www.opennms.org/wiki/Filters

Figure 12. Topology for Path Outage

To configure a Path Outage based on the example in figure Topology for Path Outage, the
configuration has to be defined as the following.


This example expects all Nodes are defined in the same Foreign Source named
Network-ACME and the Foreign ID is the same as the Node Label.

Table 9. Provisioning for Topology Example

Parent Foreign
Source

Parent Foreign
ID

Provisioned
Node

not defined not defined default-gw-01

Network-ACME default-gw-01 node-01

Network-ACME default-gw-01 node-02

Network-ACME default-gw-01 default-gw02

Network-ACME default-gw-02 node-03

Network-ACME default-gw-02 node-04


The IP Interface which is set to Primary is selected as the Critical IP. In this
example it is important the IP interface on default-gw-01 in the network
192.168.1.0/24 is set as Primary interface. The IP interface in the network
172.23.42.0/24 on default-gw-02 is set as Primary interface.

4.5. Poller Packages
To define more complex monitoring configuration it is possible to group Service configurations into

39

Polling Packages. They allow to define assign to Nodes different Service Configurations. To assign a
Polling Package to nodes the Rules/Filters syntax can be used. Each Polling Package can have its
own Downtime Model configuration.

Multiple packages can be configured, and an interface can exist in more than one package. This
gives great flexibility to how the service levels will be determined for a given device.

Polling package assigned to Nodes with Rules and Filters

<package name="example1"> ①
 <filter>IPADDR != '0.0.0.0'</filter> ②
 <include-range begin="1.1.1.1" end="254.254.254.254" /> ③
 <include-range begin="::1" end="ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" /> ③

① Unique name of the polling package.

② Filter can be based on IP address, categories or asset attributes of Nodes based on Rules/Filters.
The filter is evaluated first and is required. This package is used for all IP Interfaces which don’t
have 0.0.0.0 as an assigned IP address and is required.

③ Allow to specify if the configuration of Services is applied on a range of IP Interfaces (IPv4 or
IPv6).

Instead of the include-range it is possible to add one or more specific IP-Interfaces with:

Defining a specific IP Interfaces

<specific>192.168.1.59</specific>

It is also possible to exclude IP Interfaces with:

Exclude IP Interfaces

<exclude-range begin="192.168.0.100" end="192.168.0.104"/>

4.5.1. Response Time Configuration

The definition of Polling Packages allows to configure similar services with different polling
intervals. All the response time measurements are persisted in RRD Files and require a definition.
Each Polling Package contains a RRD definition

40

http://www.opennms.org/wiki/Filters
http://www.opennms.org/wiki/Filters

RRD configuration for Polling Package example1

<package name="example1">
 <filter>IPADDR != '0.0.0.0'</filter>
 <include-range begin="1.1.1.1" end="254.254.254.254" />
 <include-range begin="::1" end="ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" />
 <rrd step="300"> ①
 <rra>RRA:AVERAGE:0.5:1:2016</rra> ②
 <rra>RRA:AVERAGE:0.5:12:1488</rra> ③
 <rra>RRA:AVERAGE:0.5:288:366</rra> ④
 <rra>RRA:MAX:0.5:288:366</rra> ⑤
 <rra>RRA:MIN:0.5:288:366</rra> ⑥
</rrd>

① Polling interval for all services in this Polling Package is reflected in the step of size 300 seconds.
All services in this package have to polled in 5 min interval, otherwise response time
measurements are not correct persisted.

② 1 step size is persisted 2016 times: 1 * 5 min * 2016 = 7 d, 5 min accuracy for 7 d.

③ 12 steps average persisted 1488 times: 12 * 5 min * 1488 = 62 d, aggregated to 60 min for 62 d.

④ 288 steps average persisted 366 times: 288 * 5 min * 366 = 366 d, aggregated to 24 h for 366 d.

⑤ 288 steps maximum from 24 h persisted for 366 d.

⑥ 288 steps minimum from 24 h persisted for 366 d.


The RRD configuration and the service polling interval has to be aligned. In
other cases the persisted response time data is not correct displayed in the
response time graph.


If the polling interval is changed afterwards, existing RRD files needs to be
recreated with the new definitions.

4.5.2. Overlapping Services

With the possibility of specifying multiple Polling Packages it is possible to use the same Service like
ICMP multiple times. The order how Polling Packages in the poller-configuration.xml are defined is
important when IP Interfaces match multiple Polling Packages with the same Service configuration.

The following example shows which configuration is applied for a specific service:

41

Overwriting

<package name="less-specific">
 <filter>IPADDR != '0.0.0.0'</filter>
 <include-range begin="1.1.1.1" end="254.254.254.254" />
 <include-range begin="::1" end="ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" />
 <rrd step="300"> ①
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <service name="ICMP" interval="300000" user-defined="false" status="on"> ②
 <parameter key="retry" value="5" /> ③
 <parameter key="timeout" value="10000" /> ④
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response" />
 <parameter key="rrd-base-name" value="icmp" />
 <parameter key="ds-name" value="icmp" />
 </service>
 <downtime interval="30000" begin="0" end="300000" />
 <downtime interval="300000" begin="300000" end="43200000" />
 <downtime interval="600000" begin="43200000" end="432000000" />
</package>

<package name="more-specific">
 <filter>IPADDR != '0.0.0.0'</filter>
 <include-range begin="192.168.1.1" end="192.168.1.254" />
 <include-range begin="2600::1" end="2600:::ffff" />
 <rrd step="30"> ①
 <rra>RRA:AVERAGE:0.5:1:20160</rra>
 <rra>RRA:AVERAGE:0.5:12:14880</rra>
 <rra>RRA:AVERAGE:0.5:288:3660</rra>
 <rra>RRA:MAX:0.5:288:3660</rra>
 <rra>RRA:MIN:0.5:288:3660</rra>
 </rrd>
 <service name="ICMP" interval="30000" user-defined="false" status="on"> ②
 <parameter key="retry" value="2" /> ③
 <parameter key="timeout" value="3000" /> ④
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response" />
 <parameter key="rrd-base-name" value="icmp" />
 <parameter key="ds-name" value="icmp" />
 </service>
 <downtime interval="10000" begin="0" end="300000" />
 <downtime interval="300000" begin="300000" end="43200000" />
 <downtime interval="600000" begin="43200000" end="432000000" />
</package>

① Polling interval in the packages are 300 seconds and 30 seconds

② Different polling interval for the service ICMP

42

③ Different retry settings for the service ICMP

④ Different timeout settings for the service ICMP

The last Polling Package on the service will be applied. This can be used to define a less specific
catch all filter for a default configuration. A more specific Polling Package can be used to overwrite
the default setting. In the example above all IP Interfaces in 192.168.1/24 or 2600:/64 will be
monitored with ICMP with different polling, retry and timeout settings.

Which Polling Packages are applied to the IP Interface and Service can be found in the Web User
Interface. The IP Interface and Service page show which Polling Package and Service configuration is
applied for this specific service.

Figure 13. Polling Package applied to IP interface and Service

4.5.3. Test Services on manually

For troubleshooting it is possible to run a test via the Karaf Shell:

ssh -p 8101 admin@localhost

Once in the shell, you can print show the commands help as follows:

43

opennms> poller:test --help
DESCRIPTION
 poller:test

 Execute a poller test from the command line using current settings from
poller-configuration.xml

SYNTAX
 poller:test [options]

OPTIONS
 -s, --service
 Service name
 -p, --param
 Service parameter ~ key=value
 -i, --ipaddress
 IP Address to test
 -P, --package
 Poller Package
 -c, --class
 Monitor Class
 --help
 Display this help message

The following example runs the ICMP monitor on a specific IP Interface.

Run ICMP monitor configuration defined in specific Polling Package

opennms> poller:test -i 10.23.42.1 -s ICMP -P example1

The output is verbose which allows debugging of Monitor configurations. Important output lines
are shown as the following:

Important output testing a service on the CLI

Checking service ICMP on IP 10.23.42.1 ①
Package: example1 ②
Monitor: org.opennms.netmgt.poller.monitors.IcmpMonitor ③
Parameter ds-name : icmp ④
Parameter rrd-base-name : icmp ④
Parameter rrd-repository : /var/lib/opennms/rrd/response ④
Parameter retry : 2 ⑤
Parameter timeout : 3000 ⑤

Available ? true (status Up[1])

① Service and IP Interface to run the test

② Applied Service configuration from Polling Package for this test

44

③ Service Monitor used for this test

④ RRD configuration for response time measurement

⑤ Retry and timeout settings for this test

4.6. Service monitors
To support several specific applications and management agents, Pollerd executes Service Monitors.
This section describes all available built-in Service Monitors which are available and can be
configured to allow complex monitoring. For information how these can be extended, see
Development Guide of the OpenNMS documentation.

4.6.1. AvailabilityMonitor

This monitor tests reachability of a node by using the isReachable method of the InetAddress java
class. The service is considered available if isReachable returns true. See Oracle’s documentation
for more details.


This monitor is deprecated in favour of the IcmpMonitor monitor. You should
only use this monitor on remote pollers running on unusual configurations (See
below for more details).

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.AvailabilityMonitor

Remote Enabled true

Configuration and Usage

Table 10. Monitor specific parameters for the AvailabilityMonitor

Paramete
r

Description Require
d

Default
value

retry Number of attempts to have the isReachable method return
true.

optional 3

timeout Timeout for the isReachable method, in milliseconds. optional 3000

Examples

<service name="AVAIL" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="5000"/>
</service>

<monitor service="AVAIL" class-name=
"org.opennms.netmgt.poller.monitors.AvailabilityMonitor"/>

45

http://docs.oracle.com/javase/7/docs/api/java/net/InetAddress.html#isReachable%28int%29

IcmpMonitor vs AvailabilityMonitor

This monitor has been developped in a time when the IcmpMonitor monitor wasn’t remote
enabled, to circumvent this limitation. Now, with the JNA ICMP implementation, the IcmpMonitor
monitor is remote enabled under most configurations and this monitor shouldn’t be needed -unless
you’re running your remote poller on such an unusual configuration (See also issue NMS-6735 for
more information)-.

4.6.2. BgpSessionMonitor

This monitor checks if a BGP-Session to a peering partner (peer-ip) is functional. To monitor the
BGP-Session the RFC1269 SNMP MIB is used and test the status of the session using the following
OIDs is used:

BGP_PEER_STATE_OID = .1.3.6.1.2.1.15.3.1.2.<peer-ip>
BGP_PEER_ADMIN_STATE_OID = .1.3.6.1.2.1.15.3.1.3.<peer-ip>
BGP_PEER_REMOTEAS_OID = .1.3.6.1.2.1.15.3.1.9.<peer-ip>
BGP_PEER_LAST_ERROR_OID = .1.3.6.1.2.1.15.3.1.14.<peer-ip>
BGP_PEER_FSM_EST_TIME_OID = .1.3.6.1.2.1.15.3.1.16.<peer-ip>

The <peer-ip> is the far end IP address of the BGP session end point.

A SNMP get request for BGP_PEER_STATE_OID returns a result between 1 to 6. The servicestates for
OpenNMS Meridian are mapped as follows:

Resul
t

State
description

Monitor state in OpenNMS
Meridian

1 Idle DOWN

2 Connect DOWN

3 Active DOWN

4 OpenSent DOWN

5 OpenConfirm DOWN

6 Established UP

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.BgpSessionMonitor

Remote Enabled false

To define the mapping I used the description from RFC1771 BGP Finite State Machine.

Configuration and Usage

46

http://issues.opennms.org/browse/NMS-6735
http://www.freesoft.org/CIE/RFC/1771/31.htm

Paramet
er

Description Require
d

Default
value

bgpPeerIp IP address of the far end BGP peer session require
d

-

retry Amount of attempts to get the BGP peer state with SNMP require
d

-

timeout Time to wait for the SNMP agents response before trying a next
attempt.

require
d

-

Examples

To monitor the session state Established it is necessary to add a service to your poller configuration
in '$OPENNMS_HOME/etc/poller-configuration.xml', for example:

<!-- Example configuration poller-configuration.xml -->
<service name="BGP-Peer-99.99.99.99-AS65423" interval="300000"
 user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="port" value="161" />
 <parameter key="bgpPeerIp" value="99.99.99.99" />
</service>

<monitor service="BGP-Peer-99.99.99.99-AS65423" class-name=
"org.opennms.netmgt.poller.monitors.BgpSessionMonitor" />

Error code mapping

The BGP_PEER_LAST_ERROR_OID gives an error in HEX-code. To make it human readable a
codemapping table is implemented:

Error
code

Error Message

0100 Message Header Error

0101 Message Header Error - Connection Not Synchronized

0102 Message Header Error - Bad Message Length

0103 Message Header Error - Bad Message Type

0200 OPEN Message Error

0201 OPEN Message Error - Unsupported Version Number

0202 OPEN Message Error - Bad Peer AS

0203 OPEN Message Error - Bad BGP Identifier

0204 OPEN Message Error - Unsupported Optional Parameter

47

Error
code

Error Message

0205 OPEN Message Error (deprecated)

0206 OPEN Message Error - Unacceptable Hold Time

0300 UPDATE Message Error

0301 UPDATE Message Error - Malformed Attribute List

0302 UPDATE Message Error - Unrecognized Well-known Attribute

0303 UPDATE Message Error - Missing Well-known Attribute

0304 UPDATE Message Error - Attribute Flags Error

0305 UPDATE Message Error - Attribute Length Error

0306 UPDATE Message Error - Invalid ORIGIN Attribute

0307 UPDATE Message Error (deprecated)

0308 UPDATE Message Error - Invalid NEXT_HOP Attribute

0309 UPDATE Message Error - Optional Attribute Error

030A UPDATE Message Error - Invalid Network Field

030B UPDATE Message Error - Malformed AS_PATH

0400 Hold Timer Expired

0500 Finite State Machine Error

0600 Cease

0601 Cease - Maximum Number of Prefixes Reached

0602 Cease - Administrative Shutdown

0603 Cease - Peer De-configured

0604 Cease - Administrative Reset

0605 Cease - Connection Rejected

0606 Cease - Other Configuration Change

0607 Cease - Connection Collision Resolution

0608 Cease - Out of Resources

Instead of HEX-Code the error message will be displayed in the service down logmessage. To give
some additional informations the logmessage contains also

BGP-Peer Adminstate
BGP-Peer Remote AS
BGP-Peer established time in seconds

48

Debugging

If you have problems to detect or monitor the BGP Session you can use the following command to
figure out where the problem come from.

snmpwalk -v 2c -c <myCommunity> <myRouter2Monitor> .1.3.6.1.2.1.15.3.1.2.99.99.99.99

Replace 99.99.99.99 with your BGP-Peer IP. The result should be an Integer between 1 and 6.

4.6.3. BSFMonitor

This monitor runs a Bean Scripting Framework BSF compatible script to determine the status of a
service. Users can write scripts to perform highly custom service checks. This monitor is not
optimised for scale. It’s intended for a small number of custom checks or prototyping of monitors.

BSFMonitor vs SystemExecuteMonitor

The BSFMonitor avoids the overhead of fork(2) that is used by the SystemExecuteMonitor.
BSFMonitor also grants access to a selection of OpenNMS Meridian internal methods and classes
that can be used in the script.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.BSFMonitor

Remote Enabled false

Configuration and Usage

Table 11. Monitor specific parameters for the BSFMonitor

Paramet
er

Description Requ
ired

Default value

file-name Path to the script file. requi
red

-

bsf-
engine

The BSF Engine to run the script in different languages
like
Bean Shell: bsh.util.BeanShellBSFEngine
Groovy: org.codehaus.groovy.bsf.GroovyEngine
Jython: org.apache.bsf.engines.jython.JythonEngine

requi
red

-

run-type one of eval or exec optio
nal

eval

lang-
class

The BSF language class, like groovy or beanshell. optio
nal

file-name extension is
interpreted by default

file-
extension
s

comma-separated list optio
nal

-

49

http://commons.apache.org/proper/commons-bsf/

Table 12. Beans which can be used in the script

Variabl
e

Type Description

map Map<String, Object> The map contains all various parameters passed to the monitor
from the service definition it the poller-configuration.xml file.

ip_addr String The IP address that is currently being polled.

node_id int The Node ID of the node the ip_addr belongs to.

node_la
bel

String The Node Label of the node the ip_addr and service belongs to.

svc_nam
e

String The name of the service that is being polled.

bsf_mon
itor

BSFMonitor The instance of the BSFMonitor object calling the script.
Useful for logging via its log(String sev, String fmt, Object... args)
method.

results HashMap<String,
String>

The script is expected to put its results into this object.
The status indication should be set into the entry with key status.
If the status is not OK, a key reason should contain a description of
the problem.

times LinkedHashMap<Strin
g, Number>

The script is expected to put one or more response times into this
object.

Additionally every parameter added to the service definition in poller-configuration.xml is
available as a String object in the script. The key attribute of the parameter represents the name of
the String object and the value attribute represents the value of the String object.

 Please keep in mind, that these parameters are also accessible via the map bean.


Avoid non-character names for parameters to avoid problems in the script
languages.

Response Codes

The script has to provide a status code that represents the status of the associated service. The
following status codes are defined:

Table 13. Status codes

Cod
e

Description

OK Service is available

UNK Service status unknown

UNR Service is unresponsive

NOK Service is unavailable

50

Response time tracking

By default the BSFMonitor tracks the whole time the script file consumes as the response time. If
the response time should be persisted the response time add the following parameters:

RRD response time tracking for this service in poller-configuration.xml

<!-- where in the filesystem response times are stored -->
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />

<!-- name of the rrd file -->
<parameter key="rrd-base-name" value="minimalbshbase" />

<!-- name of the data source in the rrd file -->
<!-- by default "response-time" is used as ds-name -->
<parameter key="ds-name" value="myResponseTime" />

It is also possible to return one or many response times directly from the script. To add custom
response times or override the default one, add entries to the times object. The entries are keyed
with a String that names the datasource and have as values a number that represents the response
time. To override the default response time datasource add an entry into times named response-
time.

Timeout and Retry

The BSFMonitor does not perform any timeout or retry processing on its own. If retry and or
timeout behaviour is required, it has to be implemented in the script itself.

Requirements for the script (run-types)

Depending on the run-type the script has to provide its results in different ways. For minimal
scripts with very simple logic run-type eval is the simple option. Scripts running in eval mode have
to return a String matching one of the status codes.

If your script is more than a one-liner, run-type exec is essentially required. Scripts running in exec
mode need not return anything, but they have to add a status entry with a status code to the
results object. Additionally, the results object can also carry a "reason":"message" entry that is used
in non OK states.

Commonly used language settings

The BSF supports many languages, the following table provides the required setup for commonly
used languages.

Table 14. BSF language setups

Languag
e

lang-
class

bsf-engine required library

BeanShell beanshell bsh.util.BeanShellBSFEngine supported by default

51

http://www.beanshell.org

Languag
e

lang-
class

bsf-engine required library

Groovy groovy org.codehaus.groovy.bsf.GroovyEngine groovy-all-[version].jar

Jython jython org.apache.bsf.engines.jython.JythonEngine jython-[version].jar

Example Bean Shell

BeanShell example poller-configuration.xml

<service name="MinimalBeanShell" interval="300000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalBeanShell.bsh"/>
 <parameter key="bsf-engine" value="bsh.util.BeanShellBSFEngine"/>
</service>

<monitor service="MinimalBeanShell" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

BeanShell example MinimalBeanShell.bsh script file

bsf_monitor.log("ERROR", "Starting MinimalBeanShell.bsf", null);
File testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
 return "OK";
} else {
 results.put("reason", "file does not exist");
 return "NOK";
}

Example Groovy

To use the Groovy language an additional library is required. Copy a compatible groovy-all.jar into
to opennms/lib folder and restart OpenNMS Meridian. That makes Groovy available for the
BSFMonitor.

Groovy example poller-configuration.xml with default run-type set to eval

<service name="MinimalGroovy" interval="300000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
 <parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>
</service>

<monitor service="MinimalGroovy" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

52

http://groovy.codehaus.org
http://www.jython.org

Groovy example MinimalGroovy.groovy script file for run-type eval

bsf_monitor.log("ERROR", "Starting MinimalGroovy.groovy", null);
File testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
 return "OK";
} else {
 results.put("reason", "file does not exist");
 return "NOK";
}

Groovy example poller-configuration.xml with run-type set to exec

<service name="MinimalGroovy" interval="300000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
 <parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>
 <parameter key="run-type" value="exec"/>
</service>

<monitor service="MinimalGroovy" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

Groovy example MinimalGroovy.groovy script file for run-type set to exec

bsf_monitor.log("ERROR", "Starting MinimalGroovy", null);
def testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
 results.put("status", "OK")
} else {
 results.put("reason", "file does not exist");
 results.put("status", "NOK");
}

Example Jython

To use the Jython (Java implementation of Python) language an additional library is required. Copy
a compatible jython-x.y.z.jar into the opennms/lib folder and restart OpenNMS Meridian. That
makes Jython available for the BSFMonitor.

53

Jython example poller-configuration.xml with run-type exec

<service name="MinimalJython" interval="300000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalJython.py"/>
 <parameter key="bsf-engine" value="org.apache.bsf.engines.jython.JythonEngine"/>
 <parameter key="run-type" value="exec"/>
</service>

<monitor service="MinimalJython" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

Jython example MinimalJython.py script file for run-type set to exec

from java.io import File

bsf_monitor.log("ERROR", "Starting MinimalJython.py", None);
if (File("/tmp/TestFile").exists()):
 results.put("status", "OK")
else:
 results.put("reason", "file does not exist")
 results.put("status", "NOK")


We have to use run-type exec here because Jython chokes on the import keyword
in eval mode.


As proof that this is really Python, notice the substitution of Python’s None value
for Java’s null in the log call.

Advanced examples

The following example references all beans that are exposed to the script, including a custom
parameter.

54

Groovy example poller-configuration.xml

<service name="MinimalGroovy" interval="30000" user-defined="true" status="on">
 <parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
 <parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>

 <!-- custom parameters (passed to the script) -->
 <parameter key="myParameter" value="Hello Groovy" />

 <!-- optional for response time tracking -->
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="rrd-base-name" value="minimalgroovybase" />
 <parameter key="ds-name" value="minimalgroovyds" />
</service>

<monitor service="MinimalGroovy" class-name=
"org.opennms.netmgt.poller.monitors.BSFMonitor" />

Groovy example Bean referencing script file

bsf_monitor.log("ERROR", "Starting MinimalGroovy", null);

//list of all available objects from the BSFMonitor
Map<String, Object> map = map;
bsf_monitor.log("ERROR", "---- map ----", null);
bsf_monitor.log("ERROR", map.toString(), null);

String ip_addr = ip_addr;
bsf_monitor.log("ERROR", "---- ip_addr ----", null);
bsf_monitor.log("ERROR", ip_addr, null);

int node_id = node_id;
bsf_monitor.log("ERROR", "---- node_id ----", null);
bsf_monitor.log("ERROR", node_id.toString(), null);

String node_label = node_label;
bsf_monitor.log("ERROR", "---- node_label ----", null);
bsf_monitor.log("ERROR", node_label, null);

String svc_name = svc_name;
bsf_monitor.log("ERROR", "---- svc_name ----", null);
bsf_monitor.log("ERROR", svc_name, null);

org.opennms.netmgt.poller.monitors.BSFMonitor bsf_monitor = bsf_monitor;
bsf_monitor.log("ERROR", "---- bsf_monitor ----", null);
bsf_monitor.log("ERROR", bsf_monitor.toString(), null);

HashMap<String, String> results = results;
bsf_monitor.log("ERROR", "---- results ----", null);
bsf_monitor.log("ERROR", results.toString(), null);

55

LinkedHashMap<String, Number> times = times;
bsf_monitor.log("ERROR", "---- times ----", null);
bsf_monitor.log("ERROR", times.toString(), null);

// reading a parameter from the service definition
String myParameter = myParameter;
bsf_monitor.log("ERROR", "---- myParameter ----", null);
bsf_monitor.log("ERROR", myParameter, null);

// minimal example
def testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
 bsf_monitor.log("ERROR", "Done MinimalGroovy ---- OK ----", null);
 return "OK";
} else {

 results.put("reason", "file does not exist");
 bsf_monitor.log("ERROR", "Done MinimalGroovy ---- NOK ----", null);
 return "NOK";
}

4.6.4. CiscoIpSlaMonitor

This monitor can be used to monitor IP SLA configurations on your Cisco devices. This monitor
supports the following SNMP OIDS from CISCO-RTT-MON-MIB:

RTT_ADMIN_TAG_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.3
RTT_OPER_STATE_OID = .1.3.6.1.4.1.9.9.42.1.2.9.1.10
RTT_LATEST_OPERSENSE_OID = .1.3.6.1.4.1.9.9.42.1.2.10.1.2
RTT_ADMIN_THRESH_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.5
RTT_ADMIN_TYPE_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.4
RTT_LATEST_OID = .1.3.6.1.4.1.9.9.42.1.2.10.1.1

The monitor can be run in two scenarios. The first one tests the RTT_LATEST_OPERSENSE which is
a sense code for the completion status of the latest RTT operation. If the RTT_LATEST_OPERSENSE
returns ok(1) the service is marked as up.

The second scenario is to monitor the configured threshold in the IP SLA config. If the
RTT_LATEST_OPERSENSE returns with overThreshold(3) the service is marked down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor

Remote Enabled false

56

http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en&translate=Translate&objectInput=1.3.6.1.4.1.9.9.42

Configuration and Usage

Table 15. Monitor-specific parameters for the CiscoIpSlaMonitor

Paramet
er

Description Requi
red

Default value

retry Number of retries to get the information from the SNMP agent
before the service is marked as down.

option
al

from snmp-
config.xml

timeout Time in milliseconds to wait for the result from the SNMP agent
before making the next attempt.

option
al

from snmp-
config.xml

admin-tag The tag attribute from your IP SLA configuration you want to
monitor.

requir
ed

-

ignore-
thresh

Boolean indicates if just the status or configured threshold
should be monitored.

requir
ed

``

Example for HTTP and ICMP echo reply

In this example we configure an IP SLA entry to monitor Google’s website with HTTP GET from the
Cisco device. We use 8.8.8.8 as our DNS resolver. In our example our SLA says we should reach
Google’s website within 200ms. To advise co-workers that this monitor entry is used for monitoring,
I set the owner to OpenNMS. The tag is used to identify the entry later in the SNMP table for
monitoring.

Cisco device configuration for IP SLA instance for HTTP GET

ip sla monitor 1
 type http operation get url http://www.google.de name-server 8.8.8.8
 timeout 3000
 threshold 200
 owner OpenNMS
 tag Google Website
ip sla monitor schedule 3 life forever start-time now

In the second example we configure a IP SLA to test if the IP address from www.opennms.org is
reachable with ICMP from the perspective of the Cisco device. Like the example above we have a
threshold and a timeout.

Cisco device configuration for IP SLA instance for ICMP monitoring.

ip sla 1
 icmp-echo 64.146.64.212
 timeout 3000
 threshold 150
 owner OpenNMS
 tag OpenNMS Host
ip sla schedule 1 life forever start-time now

57


It´s not possible to reconfigure an IP SLA entry. If you want to change
parameters, you have to delete the whole configuration and reconfigure it with
your new parameters. Backup your Cisco configuration manually or take a
look at RANCID.

To monitor both of the entries the configuration in poller-configuration.xml requires two service
definition entries:

<service name="IP-SLA-WEB-Google" interval="300000"
 user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="admin-tag" value="Google Website" />
 <parameter key="ignore-thresh" value="false" /> ①
</service>
<service name="IP-SLA-PING-OpenNMS" interval="300000"
 user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="admin-tag" value="OpenNMS Host" />
 <parameter key="ignore-thresh" value="true" /> ②
</service>

<monitor service="IP-SLA-WEB-Google" class-name=
"org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor" />
<monitor service="IP-SLA-PING-OpenNMS" class-name=
"org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor" />

① Service is up if the IP SLA state is ok(1)

② Service is down if the IP SLA state is overThreshold(3)

4.6.5. CiscoPingMibMonitor

This poller monitor’s purpose is to create conceptual rows (entries) in the ciscoPingTable on Cisco
IOS devices that support the CISCO-PING-MIB. These entries direct the remote IOS device to ping an
IPv4 or IPv6 address with a configurable set of parameters. After the IOS device has completed the
requested ping operations, the poller monitor queries the IOS device to determine the results. If the
results indicate success according to the configured parameters in the service configuration, then
the monitored service is reported as available and the results are available for optional time-series
(RRD) storage. If the results indicate failure, the monitored service is reported unavailable with a
descriptive reason code. If something goes wrong during the setup of the entry or the subsequent
querying of its status, the monitored service is reported to be in an unknown state.

58

http://www.shrubbery.net/rancid/
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&mibName=CISCO-PING-MIB



Unlike most poller monitors, the CiscoPingMibMonitor does not interpret the
timeout and retries parameters to determine when a poll attempt has timed out
or whether it should be attempted again. The packet-count and packet-timeout
parameters instead service this purpose from the perspective of the remote IOS
device.

Supported MIB OIDs from CISCO_PING_MIB

 ciscoPingEntry 1.3.6.1.4.1.9.9.16.1.1.1
 ciscoPingSerialNumber 1.3.6.1.4.1.9.9.16.1.1.1.1
 ciscoPingProtocol 1.3.6.1.4.1.9.9.16.1.1.1.2
 ciscoPingAddress 1.3.6.1.4.1.9.9.16.1.1.1.3
 ciscoPingPacketCount 1.3.6.1.4.1.9.9.16.1.1.1.4
 ciscoPingPacketSize 1.3.6.1.4.1.9.9.16.1.1.1.5
 ciscoPingPacketTimeout 1.3.6.1.4.1.9.9.16.1.1.1.6
 ciscoPingDelay 1.3.6.1.4.1.9.9.16.1.1.1.7
 ciscoPingTrapOnCompletion 1.3.6.1.4.1.9.9.16.1.1.1.8
 ciscoPingSentPackets 1.3.6.1.4.1.9.9.16.1.1.1.9
 ciscoPingReceivedPackets 1.3.6.1.4.1.9.9.16.1.1.1.10
 ciscoPingMinRtt 1.3.6.1.4.1.9.9.16.1.1.1.11
 ciscoPingAvgRtt 1.3.6.1.4.1.9.9.16.1.1.1.12
 ciscoPingMaxRtt 1.3.6.1.4.1.9.9.16.1.1.1.13
 ciscoPingCompleted 1.3.6.1.4.1.9.9.16.1.1.1.14
 ciscoPingEntryOwner 1.3.6.1.4.1.9.9.16.1.1.1.15
 ciscoPingEntryStatus 1.3.6.1.4.1.9.9.16.1.1.1.16
 ciscoPingVrfName 1.3.6.1.4.1.9.9.16.1.1.1.17

Prerequisites

• One or more Cisco devices running an IOS image of recent vintage; any 12.2 or later image is
probably fine. Even very low-end devices appear to support the CISCO-PING-MIB.

• The IOS devices that will perform the remote pings must be configured with an SNMP write
community string whose source address access-list includes the address of the OpenNMS
Meridian server and whose MIB view (if any) includes the OID of the ciscoPingTable.

• The corresponding SNMP write community string must be specified in the write-community
attribute of either the top-level <snmp-config> element of snmp-config.xml or a <definition> child
element that applies to the SNMP-primary interface of the IOS device(s) that will perform the
remote pings.

Scalability concerns

This monitor spends a fair amount of time sleeping while it waits for the remote IOS device to
complete the requested ping operations. The monitor is pessimistic in calculating the delay between
creation of the ciscoPingTable entry and its first attempt to retrieve the results of that entry’s ping
operations — it will always wait at least (packet-count * (packet-timeout + packet-delay))
milliseconds before even checking whether the remote pings have completed. It’s therefore prone
to hogging poller threads if used with large values for the packet-count, packet-timeout, and/or
packet-delay parameters. Keep these values as small as practical to avoid tying up poller threads

59

unnecessarily.

This monitor always uses the current time in whole seconds since the UNIX epoch as the instance
identifier of the ciscoPingTable entries that it creates. The object that holds this identifier is a signed
32-bit integer type, precluding a finer resolution. It’s probably a good idea to mix in the least-
significant byte of the millisecond-accurate time as a substitute for that of the whole-second-
accurate value to avoid collisions. IOS seems to clean up entries in this table within a manner of
minutes after their ping operations have completed.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor

Remote Enabled false

Configuration and Usage

Table 16. Monitor specific parameters for the CiscoPingMibMonitor

Parameter Description Requ
ired

Default value

timeout A timeout, in milliseconds, that should override
the SNMP timeout specified in
snmp-config.xml. Do not use without a very good
reason to do so.

optio
nal

from snmp-
config.xml

retry Number of retries to attempt if the initial attempt
times out. Overrides the
equivalent value from snmp-config.xml. Do not
use unless really needed.

optio
nal

from snmp-
config.xml

version SNMP protocol version (1, 2c, or 3) to use for
operations performed by this service
monitor. Do not use with out a very good reason
to do so.

optio
nal

from snmp-
config.xml

packet-count Number of ping packets that the remote IOS
device should send.

optio
nal

5

packet-size Size, in bytes, of each ping packet that the remote
IOS device should send.

optio
nal

100

packet-timeout Timeout, in milliseconds, of each ping packet sent
by the remote IOS device.

optio
nal

2000

packet-delay Delay, in milliseconds, between ping packets sent
by the remote IOS device.

optio
nal

0

entry-owner String value to set as the value of
ciscoPingEntryOwner of entries created for this
service.

optio
nal

OpenNMS
CiscoPingMibMo
nitor

60

Parameter Description Requ
ired

Default value

vrf-name String value to set as the VRF (VLAN) name in
whose context the remote IOS device
should perform the pings for this service.

optio
nal

empty String

proxy-node-id Numeric database identifier of the node whose
primary SNMP interface should be used
as the proxy for this service. If specified along
with the related proxy-node-
foreign-source, proxy-node-foreign-id, and/or
proxy-ip-addr, this parameter
will be the effective one.

optio
nal

-

proxy-node-foreign-
source
proxy-node-foreign-id

foreign-source name and foreign-ID of the node
whose primary SNMP interface
should be used as the "proxy" for this service.
These two parameters are corequisites.
If they appear along with the related proxy-ip-
addr, these parameters will be the
effective ones.

optio
nal

-

proxy-ip-addr IP address of the interface that should be used as
the proxy for this service.
Effective only if none of proxy-node-id, proxy-
node-foreign-source, nor
proxy-node-foreign-id appears alongside this
parameter. A value of ${ipaddr} will
be substituted with the IP address of the interface
on which the monitored service
appears.

optio
nal

-

target-ip-addr IP address that the remote IOS device should
ping. A value of ${ipaddr} will be
substituted with the IP address of the interface
on which the monitored service
appears.

optio
nal

-

success-percent A whole-number percentage of pings that must
succeed (from the perspective of the
remote IOS device) in order for this service to be
considered available. As an
example, if packet-count is left at its default value
of 5 but you wish the service to
be considered available even if only one of those
five pings is successful, then
set this parameter’s value to 20.

optio
nal

100

rrd-repository Base directory of an RRD repository in which to
store this service monitor’s
response-time samples

optio
nal

-

61

Parameter Description Requ
ired

Default value

ds-name Name of the RRD datasource (DS) name in which
to store this service monitor’s
response-time samples; rrd-base-name Base
name of the RRD file (minus the .rrd or
.jrb file extension) within the specified rrd-
repository path in which this service
monitor’s response-time samples will be
persisted

optio
nal

-

This is optional just if you can use variables in the configuration

Table 17. Variables which can be used in the configuration

Variabl
e

Description

${ipaddr
}

This value will be substituted with the IP address of the interface on which the
monitored service appears.

Example: Ping the same non-routable address from all routers of customer Foo

A service provider’s client, Foo Corporation, has network service at multiple locations. At each Foo
location, a point-of-sale system is statically configured at IPv4 address 192.168.255.1. Foo wants to
be notified any time a point-of-sale system becomes unreachable. Using an OpenNMS Meridian
remote location monitor is not feasible. All of Foo Corporation’s CPE routers must be Cisco IOS
devices in order to achieve full coverage in this scenario.

One approach to this requirement is to configure all of Foo Corporation’s premise routers to be in
the surveillance categories Customer_Foo, CPE, and Routers, and to use a filter to create a poller
package that applies only to those routers. We will use the special value ${ipaddr} for the proxy-ip-
addr parameter so that the remote pings will be provisioned on each Foo CPE router. Since we want
each Foo CPE router to ping the same IP address 192.168.255.1, we statically list that value for the
target-ip-addr address.

62

<package name="ciscoping-foo-pos">
 <filter>catincCustomer_Foo & catincCPE & catincRouters & nodeSysOID LIKE
'.1.3.6.1.4.1.9.%'</filter>
 <include-range begin="0.0.0.0" end="254.254.254.254" />
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <service name="FooPOS" interval="300000" user-defined="false" status="on">
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="rrd-base-name" value="ciscoping" />
 <parameter key="ds-name" value="ciscoping" />
 <parameter key="proxy-ip-addr" value="${ipaddr}" />
 <parameter key="target-ip-addr" value="192.168.255.1" />
 </service>
 <downtime interval="30000" begin="0" end="300000" /><!-- 30s, 0, 5m -->
 <downtime interval="300000" begin="300000" end="43200000" /><!-- 5m, 5m, 12h -->
 <downtime interval="600000" begin="43200000" end="432000000" /><!-- 10m, 12h, 5d -->
 <downtime begin="432000000" delete="true" /><!-- anything after 5 days delete -->
</package>

<monitor service="FooPOS" class-name=
"org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor" />

Example: Ping from a single IOS device routable address of each router of customer Bar

A service provider’s client, Bar Limited, has network service at multiple locations. While OpenNMS
Meridian' world-class service assurance is generally sufficient, Bar also wants to be notified any
time a premise router at one of their locations unreachable from the perspective of an IOS device in
Bar’s main data center. Some or all of the Bar Limited CPE routers may be non-Cisco devices in this
scenario.

To meet this requirement, our approach is to configure Bar Limited’s premise routers to be in the
surveillance categories Customer_Bar, CPE, and Routers, and to use a filter to create a poller
package that applies only to those routers. This time, though, we will use the special value ${ipaddr}
not in the proxy-ip-addr parameter but in the target-ip-addr parameter so that the remote pings
will be performed for each Bar CPE router. Since we want the same IOS device 20.11.5.11 to ping
the CPE routers, we statically list that value for the proxy-ip-addr address. Example poller-
configuration.xml additions

63

<package name="ciscoping-bar-cpe">
 <filter>catincCustomer_Bar & catincCPE & catincRouters</filter>
 <include-range begin="0.0.0.0" end="254.254.254.254" />
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <service name="BarCentral" interval="300000" user-defined="false" status="on">
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="rrd-base-name" value="ciscoping" />
 <parameter key="ds-name" value="ciscoping" />
 <parameter key="proxy-ip-addr" value="20.11.5.11" />
 <parameter key="target-ip-addr" value="${ipaddr}" />
 </service>
 <downtime interval="30000" begin="0" end="300000" /><!-- 30s, 0, 5m -->
 <downtime interval="300000" begin="300000" end="43200000" /><!-- 5m, 5m, 12h -->
 <downtime interval="600000" begin="43200000" end="432000000" /><!-- 10m, 12h, 5d -->
 <downtime begin="432000000" delete="true" /><!-- anything after 5 days delete -->
</package>

<monitor service="BarCentral" class-name=
"org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor" />

4.6.6. CitrixMonitor

This monitor is used to test if a Citrix® Server or XenApp Server® is providing the Independent
Computing Architecture (ICA) protocol on TCP 1494. The monitor opens a TCP socket and tests the
greeting banner returns with ICA, otherwise the service is unavailable.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CitrixMonitor

Remote Enabled true

Configuration and Usage

Table 18. Monitor specific parameters for the CitrixMonitor

Param
eter

Description Requi
red

Default
value

retry Amount of attempts opening a connection and try to get the greeting
banner before the service goes down

option
al

0

timeout Time to wait retrieving the greeting banner ICA from TCP connection
before trying a next attempt.

option
al

3000 ms

64

Param
eter

Description Requi
red

Default
value

port TCP port where the ICA protocol is listening. option
al

1494


If you have configure the Metaframe Presentation Server Client using Session
Reliability, the TCP port is 2598 instead of 1494. You can find additional
information on CTX104147. It is not verified if the monitor works in this case.

Examples

The following example configures OpenNMS Meridian to monitor the ICA protocol on TCP 1494
with 2 retries and waiting 5 seconds for each retry.

<service name="Citrix-TCP-ICA" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="5000" />
</service>

<monitor service="Citrix-TCP-ICA" class-name=
"org.opennms.netmgt.poller.monitors.CitrixMonitor" />

4.6.7. DhcpMonitor

This monitor is used to monitor the availability and functionality of DHCP servers. This monitor has
two parts, the first one is the monitor class DhcpMonitor executed by Pollerd and the second part is
a background daemon Dhcpd running inside the OpenNMS Meridian JVM and listening for DHCP
responses. A DHCP server is tested by sending a DISCOVER message. If the DHCP server responds
with an OFFER the service is marked as up. The Dhcpd background daemon is disabled by default
and has to be activated in service-configuration.xml in OpenNMS Meridian by setting service
enabled="true". The behavior for testing the DHCP server can be modified in the dhcp-

configuration.xml configuration file.


It is required to install the opennms-plugin-protocol-dhcp before you can use this
feature.

Installing the opennms-plugin-protocol-dhcp package

{apt-get,yum} install {opennms-package-base-name}-plugin-protocol-dhcp

If you try to start OpenNMS Meridian without the opennms-plugin-protocol-dhcp you will see the
following error message in output.log:

65

http://support.citrix.com/article/CTX104147
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

An error occurred while attempting to start the "OpenNMS:Name=Dhcpd" service (class
org.opennms.netmgt.dhcpd.jmx.Dhcpd). Shutting down and exiting.
java.lang.ClassNotFoundException: org.opennms.netmgt.dhcpd.jmx.Dhcpd


Make sure no DHCP client is running on the OpenNMS Meridian server and using
port UDP/68. If UDP/68 is already in use, you will find an error message in
the manager.log. You can test if a process is listening on udp/68 with sudo ss
-lnpu sport = :68.

Monitor facts

Class Name org.opennms.protocols.dhcp.monitor.DhcpMonitor

Remote Enabled false

Table 19. Service monitor parameters configured in poller-configuration.xml

Paramet
er

Description Requi
red

Default value

retry Number of retries before the service is marked as down option
al

0

timeout Time in milliseconds to wait for the DHCP response
from the server

option
al

3000

rrd-
repositor
y

The location to write RRD data. Generally, you will not
want to change this from default

option
al

$OPENNMS_HOME/share/r
rd/response

rrd-base-
name

The name of the RRD file to write (minus the extension,
.rrd or .jrb)

option
al

dhcp

ds-name This is the name as reference for this particular data
source in the RRD file

option
al

dhcp

Dhcpd configuration

Table 20. Dhcpd parameters in dhcp-configuration.xml.

Parameter Description Requir
ed

Default
value

port Defines the port your dhcp server is using requir
ed

5818

macAddress The MAC address which OpenNMS Meridian uses for a dhcp
request

requir
ed

00:06:0D:BE
:9C:B2

66

myIpAddress This parameter will usually be set to the IP address of the
OpenNMS Meridian server, which puts the DHCP
poller in relay mode as opposed to broadcast mode.
In relay mode, the DHCP server being polled will unicast its
responses directly back to the IP address specified
by myIpAddress rather than broadcasting its
responses. This allows DHCP servers to be polled even though
they are not on the same subnet as the OpenNMS
Meridian server, and without the aid of an external relay.
Usage: myIpAddress="10.11.12.13" or myIpAddress="broadcast"

requir
ed

broadcast

extendedMod
e

When extendedMode is false, the DHCP poller will send a
DISCOVER and expect an OFFER in return. When
extendedMode is true, the DHCP poller will first send a
DISCOVER. If no valid response is received it will send an
INFORM. If no valid response is received it will then
send a REQUEST. OFFER, ACK, and NAK are all
considered valid responses in extendedMode.
Usage: extendedMode="true" or extendedMode="false"

requir
ed

false

requestIpAd
dress

This parameter only applies to REQUEST queries sent to the
DHCP server when extendedMode is true. If an IP
address is specified, that IP address will be
requested in the query. If targetHost is specified, the DHCP
server’s own IP address will be requested. Since a
well-managed server will probably not respond to a
request for its own IP, this parameter can also be set to
targetSubnet. This is similar to targetHost except the
DHCP server’s IP address is incremented or
decremented by 1 to obtain an ip address that is on the same
subnet. (The resulting address will not be on the
same subnet if the DHCP server’s subnet is a /32 or
/31. Otherwise, the algorithm used should be reliable.)
Usage: requestIpAddress="10.77.88.99" or
requestIpAddress="targetHost" or
requestIpAddress="targetSubnet"

requir
ed

false

Figure 14. Visualization of DHCP message flow in broadcast mode

67

Figure 15. Visualization of DHCP message flow in relay mode

Example testing DHCP server in the same subnet

Example configuration how to configure the monitor in the poller-configuration.xml. The monitor
will try to send in maximum 3 DISCOVER messages and waits 3 seconds for the DHCP server OFFER
message.

Step 1: Configure a DHCP service in poller-configuration.xml

<service name="DHCP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="rrd-base-name" value="dhcp" />
 <parameter key="ds-name" value="dhcp" />
</service>

<monitor service="DHCP" class-name="org.opennms.protocols.dhcp.monitor.DhcpMonitor"/>

Step 2: Enable the OpenNMS Meridian Dhcpd daemon in service-configuration.xml

<service enabled="true">
 <name>OpenNMS:Name=Dhcpd</name>
 <class-name>org.opennms.netmgt.dhcpd.jmx.Dhcpd</class-name>
 <invoke method="start" pass="1" at="start"/>
 <invoke method="status" pass="0" at="status"/>
 <invoke method="stop" pass="0" at="stop"/>
</service>

68

Step 3: Configure Dhcpd to test a DHCP server in the same subnet as the OpenNMS Meridian server.

<DhcpdConfiguration
 port="5818"
 macAddress="00:06:0D:BE:9C:B2"
 myIpAddress="broadcast
 extendedMode="false"
 requestIpAddress="127.0.0.1">
</DhcpdConfiguration>

Example testing DHCP server in a different subnet in extended mode

You can use the same monitor in poller-configuration.xml as in the example above.

Configure Dhcpd to test DHCP server in a different subnet. The OFFER from the DHCP server is sent to
myIpAddress.

<DhcpdConfiguration
 port="5818"
 macAddress="00:06:0D:BE:9C:B2"
 myIpAddress="10.4.1.234"
 extendedMode="true"
 requestIpAddress="targetSubnet">
</DhcpdConfiguration>


If in extendedMode, the time required to complete the poll for an unresponsive
node is increased by a factor of 3. Thus it is a good idea to limit the number of
retries to a small number.

4.6.8. DiskUsageMonitor

The DiskUsageMonitor monitor can be used to test the amount of free space available on certain
storages of a node.

The monitor gets information about the available free storage spaces available by inspecting the
hrStorageTable of the HOST-RESOURCES-MIB.

A storage’s description (as found in the corresponding hrStorageDescr object) must match the
criteria specified by the disk and match-type parameters to be monitored.

A storage’s available free space is calculated using the corresponding hrStorageSize and
hrStorageUsed objects.


The hrStorageUsed doesn’t account for filesystem reserved blocks (i.e. for the
super-user), so DiskUsageMonitor will report the service as unavailable only
when the amount of free disk space is actually lower than free minus the
percentage of reserved filesystem blocks.

69

http://tools.ietf.org/html/rfc1514

This monitor uses SNMP to accomplish its work. Therefore systems against which it is to be used
must have an SNMP agent supporting the HOST-RESOURCES-MIB installed and configured. Most
modern SNMP agents, including most distributions of the Net-SNMP agent and the SNMP service
that ships with Microsoft Windows, support this MIB. Out-of-box support for HOST-RESOURCES-MIB
among commercial Unix operating systems may be somewhat spotty.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DiskUsageMonitor

Remote Enabled false, relies on SNMP configuration.

Configuration and Usage

Table 21. Monitor specific parameters for the DiskUsageMonitor

Param
eter

Description Requi
red

Default value

disk A pattern that a storage’s description (hrStorageDescr) must
match to be taken into account.

requir
ed

-

free The minimum amount of free space that storages matching the
criteria must have available. This parameter is evaluated
as a percent of the storage’s reported maximum capacity.

option
al

15

match-
type

The way how the pattern specified by the disk parameter must be
compared to storages description Must be one of the
following symbolic operators:
endswith : The disk parameter’s value is evaluated as a string that
storages' description must end with;
exact : The disk parameter’s value is evaluated as a string that
storages" description must exactly match;
regex : The disk parameter’s value is evaluated as a regular
expression that storages' description must
match;
startswith : The disk parameter’s value is evaluated as a string
that storages' description must start with.
Note: Comparisons are case-sensitive

option
al

exact

port Destination port where the SNMP requests shall be sent. option
al

from snmp-
config.xml

retries Deprecated. Same as retry. Parameter retry
takes precedence when both are set.

option
al

from snmp-
config.xml

retry Number of polls to attempt. option
al

from snmp-
config.xml

timeout Timeout in milliseconds for retrieving the values. option
al

from snmp-
config.xml

70

Examples

<!-- Make sure there's at least 5% of free space available on storages ending with
"/home" -->
<service name="DiskUsage-home" interval="300000" user-defined="false" status="on">
 <parameter key="timeout" value="3000" />
 <parameter key="retry" value="2" />
 <parameter key="disk" value="/home" />
 <parameter key="match-type" value="endsWith" />
 <parameter key="free" value="5" />
</service>
<monitor service="DiskUsage-home" class-name=
"org.opennms.netmgt.poller.monitors.DiskUsageMonitor" />

DiskUsageMonitor vs thresholds

Storages' available free space can also be monitored using thresholds if you are already collecting
these data.

4.6.9. DnsMonitor

This monitor is build to test the availability of the DNS service on remote IP interfaces. The monitor
tests the service availability by sending a DNS query for A resource record types against the DNS
server to test.

The monitor is marked as up if the DNS Server is able to send a valid response to the monitor. For
multiple records it is possible to test if the number of responses are within a given boundary.

The monitor can be simulated with the command line tool host:

71

~ % host -v -t a www.google.com 8.8.8.8
Trying "www.google.com"
Using domain server:
Name: 8.8.8.8
Address: 8.8.8.8#53
Aliases:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9324
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.google.com. IN A

;; ANSWER SECTION:
www.google.com. 283 IN A 74.125.232.17
www.google.com. 283 IN A 74.125.232.20
www.google.com. 283 IN A 74.125.232.19
www.google.com. 283 IN A 74.125.232.16
www.google.com. 283 IN A 74.125.232.18

Received 112 bytes from 8.8.8.8#53 in 41 ms

TIP: This monitor is intended for testing the availability of a DNS service. If you want to monitor the
DNS resolution of some of your nodes from a client’s perspective, please use the
DNSResolutionMonitor.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DnsMonitor

Remote Enabled true

Configuration and Usage

Table 22. Monitor specific parameters for the DnsMonitor

Parameter Description Requi
red

Default
value

retry Number of retries before the service is marked as down option
al

0

timeout Time in milliseconds to wait for the A Record response from the
server

option
al

5000

port UDP Port for the DNS server option
al

53

lookup DNS A Record for lookup test option
al

localhost

72

Parameter Description Requi
red

Default
value

fatal-
response-
codes

A comma-separated list of numeric DNS response codes that will
be considered fatal if present in the server’s
response. Default value is 2 corresponds to Server Failed. A
list of codes and their meanings is found in RFC 2929

option
al

2

min-answers Minmal number of records in the DNS server respone for the
given lookup

option
al

-

max-answers Maximal number of records in the DNS server respone for the
given lookup

option
al

-

Examples

The given examples shows how to monitor if the IP interface from a given DNS server resolves a
DNS request. This service should be bound to a DNS server which should be able to give a valid DNS
respone for DNS request www.google.com. The service is up if the DNS server gives between 1 and
10 A record responses.

Example configuration monitoring DNS request for a given server for www.google.com

<service name="DNS-www.google.com" interval="300000" user-defined="false" status="on">
 <parameter key="lookup" value="www.google.com" />
 <parameter key="fatal-response-code" value="2" />
 <parameter key="min-answers" value="1" />
 <parameter key="max-answers" value="10" />
</service>

<monitor service="DNS-www.google.com" class-name=
"org.opennms.netmgt.poller.monitors.DnsMonitor" />

4.6.10. DNSResolutionMonitor

The DNS resolution monitor, tests if the node label of an OpenNMS Meridian node can be resolved.
This monitor uses the name resolver configuration from the poller configuration or from the
operating system where OpenNMS Meridian is running on. It can be used to test a client behavior
for a given host name. For example: Create a node with the node label www.google.com and an IP
interface. Assigning the DNS resolution monitor on the IP interface will test if www.google.com can
be resolved using the DNS configuration defined by the poller. The response from the A record
lookup can be any address, it is not verified with the IP address on the OpenNMS Meridian IP
interface where the monitor is assigned to.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DNSResolutionMonitor

Remote Enabled true

73

http://tools.ietf.org/html/rfc2929

Configuration and Usage

Table 23. Monitor specific parameters for the DNSResolutionMonitor

Parame
ter

Description Requ
ired

Default value

resoluti
on-type

Type of record for the node label test.
Allowed values
v4 for A records,
v6 for AAAA record,
both A and AAAA record must be available,
either A or AAAA record must be available.

optio
nal

either

nameserv
er

The DNS server to query for the records. optio
nal

Use the servers defined by the
system running OpenNMS
Meridian

retry Amount of attempts to resolve the node label
before the service goes down

requi
red

-

timeout Time to wait for a A and/or AAAA record from
the system configured DNS server before trying
a next attempt.

requi
red

-

Examples

The following example shows the possibilities monitoring IPv4 and/or IPv6 for the service
configuration:

<!-- Assigned service test if the node label is resolved for an A record -->
<service name="DNS-Resolution-v4" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="v4"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-v4"/>
 <parameter key="ds-name" value="dns-res-v4"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record using a
specific DNS server -->
<service name="DNS-Resolution-v6" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="v6"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-v6"/>
 <parameter key="ds-name" value="dns-res-v6"/>
 <parameter key="nameserver" value="8.8.8.8"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record AND A

74

record -->
<service name="DNS-Resolution-v4-and-v6" interval="300000" user-defined="false"
status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="both"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-both"/>
 <parameter key="ds-name" value="dns-res-both"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record OR A
record -->
<service name="DNS-Resolution-v4-or-v6" interval="300000" user-defined="false" status
="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="resolution-type" value="either"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="dns-res-either"/>
 <parameter key="ds-name" value="dns-res-either"/>
</service>

<monitor service="DNS-Resolution-v4" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />
<monitor service="DNS-Resolution-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />
<monitor service="DNS-Resolution-v4-and-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />
<monitor service="DNS-Resolution-v4-or-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />

To have response time graphs for the name resolution you have to configure RRD graphs for the
given ds-names (dns-res-v4, dns-res-v6, dns-res-both, dns-res-either) in
'$OPENNMS_HOME/etc/response-graph.properties'.

DNSResolutionMonitor vs DnsMonitor

The DNSResolutionMonitor is used to measure the availability and record outages of a name
resolution from client perspective. The service is mainly used for websites or similar public
available resources. It can be used in combination with the Page Sequence Monitor to give a hint if
a website isn’t available for DNS reasons.

The DnsMonitor on the other hand is a test against a specific DNS server. In OpenNMS Meridian the
DNS server is the node and the DnsMonitor will send a lookup request for a given A record to the
DNS server IP address. The service goes down if the DNS server doesn’t have a valid A record in his
zone database or as some other issues resolving A records.

75

4.6.11. FtpMonitor

The FtpMonitor is able to validate ftp connection dial-up processes. The monitor can test ftp server
on multiple ports and specific login data.

The service using the FtpMonitor is up if the FTP server responds with return codes between 200
and 299. For special cases the service is also marked as up for 425 and 530.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.FtpMonitor

Remote Enabled true

Configuration and Usage

Table 24. Monitor specific parameters for the FtpMonitor.

Param
eter

Description Requi
red

Default
value

retry Number of attempts to get a valid FTP response/response-text option
al

0

timeout Timeout in milliseconds for TCP connection establishment. option
al

3000

port A list of TCP ports to which connection shall be tried. option
al

20,21

passwor
d

This parameter is meant to be used together with the user parameter
to perform basic authentication. This parameter
specify to password to be used. The user and password
parameters are ignored when the basic-authentication parameter is
defined.

option
al

empty
string

userid This parameter is meant to be used together with the password
parameter to perform basic authentication. This
parameter specify to user ID to be used. The userid and
password parameters are ignored when the basic-authentication
parameter is defined.

option
al

-

Examples

Some example configuration how to configure the monitor in the 'poller-configuration.xml'

76

<service name="FTP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="21"/>
 <parameter key="userid" value=""/>
 <parameter key="password" value=""/>
</service>

<service name="FTP-Customer" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="21"/>
 <parameter key="userid" value="Customer"/>
 <parameter key="password" value="MySecretPassword"/>
</service>

<monitor service="FTP" class-name="org.opennms.netmgt.poller.monitors.FtpMonitor"/>
<monitor service="FTP-Customer" class-name=
"org.opennms.netmgt.poller.monitors.FtpMonitor"/>

Hint

Comment from FtpMonitor source

Also want to accept the following ERROR message generated by some FTP servers following a QUIT
command without a previous successful login: "530 QUIT : User not logged in. Please login with
USER and PASS first."

Also want to accept the following ERROR message generated by some FTP servers following a QUIT
command without a previously successful login: "425 Session is disconnected."

See also: http://tools.ietf.org/html/rfc959

4.6.12. HostResourceSwRunMonitor

This monitor test the running state of one or more processes. It does this via SNMP by inspecting
the hrSwRunTable of the HOST-RESOURCES-MIB. The test is done by matching a given process as
hrSwRunName against the numeric value of the hrSwRunState.

This monitor uses SNMP to accomplish its work. Therefore systems against which it is to be used
must have an SNMP agent installed and configured. Furthermore, the SNMP agent on the system
must support the HOST-RESOURCES-MIB. Most modern SNMP agents, including most distributions
of the Net-SNMP agent and the SNMP service that ships with Microsoft Windows, support this MIB.
Out-of-box support for HOST-RESOURCES-MIB among commercial Unix operating systems may be
somewhat spotty.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HostResourceSwRunMonitor

77

http://tools.ietf.org/html/rfc959
http://www.ietf.org/rfc/rfc2790

Remote Enabled false

Configuration and Usage

Table 25. Monitor specific parameters for the HostResourceSwRunMonitor

Parameter Description Requi
red

Default value

port The port of the SNMP agent of the server to test. option
al

from snmp-
config.xml

retry Number of attempts to get a valid response before marking
the service as down.

option
al

from snmp-
config.xml

timeout Timeout in milliseonds wating for the SNMP response for the
process run state from the agent.

option
al

from snmp-
config.xml

service-
name

The name of the process to be monitored. This parameter’s
value is case-sensitive and is evaluated as an
exact match.

requir
ed

-

match-all If the process name appears multiple times in the
hrSwRunTable, and this parameter is set to
true, then all instances of the named process must match the
value specified for run-level.

option
al

false

run-level The maximum allowable value of hrSWRunStatus among
running(1),
runnable(2) = waiting for resource
notRunnable(3) = loaded but waiting for event
invalid(4) = not loaded

option
al

2

service-
name-oid

The numeric object identifier (OID) from which process
names are queried. Defaults to hrSwRunName
and should never be changed under normal
circumstances. That said, changing it to hrSwRunParameters
(.1.3.6.1.2.1.25.4.2.1.5) is often helpful when
dealing with processes running under Java Virtual Machines
which all have the same process name java.

option
al

.1.3.6.1.2.1.2
5.4.2.1.2

service-
status-oid

The numeric object identifier (OID) from which run status is
queried. Defaults to hrSwRunStatus and should
never be changed under normal circumstances.

option
al

.1.3.6.1.2.1.2
5.4.2.1.7

Examples

The following example shows how to monitor the process called httpd running on a server using
this monitor. The configuration in poller-configuration.xml has to be defined as the following:

78

<service name="Process-httpd" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="service-name" value="httpd"/> ①
 <parameter key="run-level" value="3"/> ②
 <parameter key="match-all" value="true"/> ③
</service>

<monitor service="Process-httpd" class-name=
"org.opennms.netmgt.poller.monitors.HostResourceSwRunMonitor"/>

① Name of the process on the system

② Test the state if the process is in a valid state, i.e. have a run-level no higher than notRunnable(3)

③ If the httpd process runs multiple times the test is done for each instance of the process.

4.6.13. HttpMonitor

The HTTP monitor tests the response of an HTTP server on a specific HTTP 'GET' command. During
the poll, an attempt is made to connect on the specified port(s). The monitor can test web server on
multiple ports. By default the a test is made against port 80, 8080 and 8888. If the connection
request is successful, an HTTP 'GET' command is sent to the interface. The response is parsed and a
return code extracted and verified.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpMonitor

Remote Enabled true

Configuration and Usage

Table 26. Monitor specific parameters for the HttpMonitor

Paramet
er

Description Req
uire
d

Default value

basic-
authentic
ation

Authentication credentials to perform
basic authentication.
Credentials should comply to RFC1945
section 11.1, without the Base64
encoding part.
That’s: be a string made of the
concatenation of:
1- the user ID;
2- a colon;
3- the password.
basic-authentication takes precedence
over the user and password parameters.

opti
onal

-

79

http://www.rfc-editor.org/rfc/rfc1945.txt

Paramet
er

Description Req
uire
d

Default value

header[0-
9]+

Additional headers to be sent along with
the request.
Example of valid parameter’s names are
header0, header1 and header180. header is
not a valid parameter name.

opti
onal

-

host-name Specify the Host header’s value. opti
onal

-

nodelabel
-host
-name

If the host-name parameter isn’t set and
the resolve-ip parameter is set to false,
then OpenNMS Meridian will use the
node’s label to set the Host header’s
value if this parameter
is set to true. Otherwise, OpenNMS
Meridian will fall back using the node
interface’s IP address
as Host header value.

opti
onal

false

password This parameter is meant to be used
together with the user parameter to
perform basic
authentication. This parameter specify
to password to be used. The user and
password
parameters are ignored when the basic-
authentication parameter is defined.

opti
onal

empty string

port A list of TCP ports to which connection
shall be tried.

opti
onal

80,8080,8888

retry Number of attempts to get a valid HTTP
response/response-text

opti
onal

0

resolve-
ip

If the host-name parameter isn’t set and
this parameter is set to true, OpenNMS
Meridian will
use DNS to resolve the node interface’s
IP address, and use the result to set the
Host
header’s value. When set to false and
the host-name parameter isn’t set,
OpenNMS Meridian will
try to use the nodelabel-host-name
parameter to set the Host header’s
value.

opti
onal

false

response A comma-separated list of acceptable
HTTP response code ranges.
Example: 200-202,299

opti
onal

If the url parameter is set to /, the
default
value for this parameter is 100-499,
otherwise it’s 100-399.

80

Paramet
er

Description Req
uire
d

Default value

response-
text

Text to look for in the response body.
This will be matched against every line,
and it
will be considered a success at the first
match. If there is a ~ at the beginning of
the parameter, the rest of the string will
be used as a regular expression pattern
match,
otherwise the match will be a substring
match. The regular expression match is
anchored
at the beginning and end of the line, so
you will likely need to put a .* on both
sides
of your pattern unless you are going to
be matching on the entire line.

opti
onal

-

timeout Timeout in milliseconds for TCP
connection establishment.

opti
onal

3000

url URL to be retrieved via the HTTP 'GET'
command

opti
onal

/

user This parameter is meant to be used
together with the password parameter to
perform
basic authentication. This parameter
specify to user ID to be used. The user
and
password parameters are ignored when
the basic-authentication parameter is
defined.

opti
onal

-

user-
agent

Allows you to set the User-Agent HTTP
header (see also RFC2616 section 14.43).

opti
onal

OpenNMS HttpMonitor

verbose When set to true, full communication
between client and the webserver will
be logged
(with a log level of DEBUG).

opti
onal

-

Examples

81

http://www.rfc-editor.org/rfc/rfc2616.txt

<!-- Test HTTP service on port 80 only -->
<service name="HTTP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="80"/>
 <parameter key="url" value="/"/>
</service>

<!-- Test for virtual host opennms.com running -->
<service name="OpenNMSdotCom" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="80"/>
 <parameter key="host-name" value="opennms.com"/>
 <parameter key="url" value="/solutions"/>
 <parameter key="response" value="200-202,299"/>
 <parameter key="response-text" value="~.*[Cc]onsulting.*"/>
</service>

<!-- Test for instance of OpenNMS 1.2.9 running -->
<service name="OpenNMS-129" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="8080"/>
 <parameter key="url" value="/opennms/event/list"/>
 <parameter key="basic-authentication" value="admin:admin"/>
 <parameter key="response" value="200"/>
</service>

<monitor service="HTTP" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor" />
<monitor service="OpenNMSdotCom" class-name=
"org.opennms.netmgt.poller.monitors.HttpMonitor" />
<monitor service="OpenNMS-129" class-name=
"org.opennms.netmgt.poller.monitors.HttpMonitor" />

Testing filtering proxies with HttpMonitor

If you have a filtering proxy server that is supposed to allow retrieval of some URLs but deny
others, you can use the HttpMonitor to verify this behavior.

Let’s say that our proxy server is running on TCP port 3128, and that we should always be able to
retrieve http://www.opennms.org/ but never http://www.myspace.com/ (hey, this is a workplace
after all!). To test this behaviour, one could create the following service monitors:

82

http://www.opennms.org/
http://www.myspace.com/

<service name="HTTP-Allow-opennms.org" interval="300000" user-defined="false" status=
"on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="3128"/>
 <parameter key="url" value="http://www.opennms.org/"/>
 <parameter key="response" value="200-399"/>
</service>

<service name="HTTP-Block-myspace.com" interval="300000" user-defined="false" status=
"on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="3128"/>
 <parameter key="url" value="http://www.myspace.com/"/>
 <parameter key="response" value="400-599"/>
</service>

<monitor service="HTTP-Allow-opennms.org" class-name=
"org.opennms.netmgt.poller.monitors.HttpMonitor"/>
<monitor service="HTTP-Block-myspace.com" class-name=
"org.opennms.netmgt.poller.monitors.HttpMonitor"/>

4.6.14. HttpPostMonitor

If it is required to HTTP POST any arbitrary content to a remote URI, the HttpPostMonitor can be
used. A use case is to HTTP POST to a SOAP endpoint.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpPostMonitor

Remote Enabled false

Configuration and Usage

Table 27. Monitor specific parameters for the HttpPostMonitor

Paramet
er

Description Requi
red

Default
value

payload The body of the POST, for example properly escaped XML. requir
ed

-

auth-
password

The password to use for HTTP BASIC auth. option
al

-

auth-
username

The username to use for HTTP BASIC auth. option
al

-

83

Paramet
er

Description Requi
red

Default
value

banner A string that is matched against the response of the HTTP POST.
If the output contains the banner, the service is determined as up.
Specify a regex by starting with ~.

option
al

-

charset Set the character set for the POST. option
al

UTF-8

mimetype Set the mimetype for the POST. option
al

text/xml

port The port for the web server where the POST is send to. option
al

80

scheme The connection scheme to use. option
al

http

usesslfil
ter

Enables or disables the SSL ceritificate validation. true - false option
al

false

uri The uri to use during the POST. option
al

/

Examples

The following example would create a POST that contains the payload Word.

<service name="MyServlet" interval="300000" user-defined="false" status="on">
 <parameter key="banner" value="Hello"/>
 <parameter key="port" value="8080"/>
 <parameter key="uri" value="/MyServlet">
 <parameter key="payload" value="World"/>
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="30000"/>
</service>
<monitor service="MyServlet" class-name=
"org.opennms.netmgt.poller.monitors.HttpPostMonitor"/>

The resulting POST looks like this:

POST /MyServlet HTTP/1.1
Content-Type: text/xml; charset=utf-8
Host: <ip_addr_of_interface>:8080
Connection: Keep-Alive

World

84

4.6.15. HttpsMonitor

The HTTPS monitor tests the response of an SSL-enabled HTTP server. The HTTPS monitor is an
SSL-enabled extension of the HTTP monitor with a default TCP port value of 443. All HttpMonitor
parameters apply, so please refer to HttpMonitor’s documentation for more information.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpsMonitor

Remote Enabled true

Configuration and Usage

Table 28. Monitor specific parameters for the HttpsMonitor

Paramete
r

Description Require
d

Default
value

port A list of TCP ports to which connection shall be tried. optional 443

Examples

<!-- Test HTTPS service on port 8443 -->
<service name="HTTPS" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="8443"/>
 <parameter key="url" value="/"/>
</service>

<monitor service="HTTPS" class-name="org.opennms.netmgt.poller.monitors.HttpsMonitor"
/>

4.6.16. IcmpMonitor

The ICMP monitor tests for ICMP service availability by sending echo request ICMP messages. The
service is considered available when the node sends back an echo reply ICMP message within the
specified amount of time.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.IcmpMonitor

Remote Enabled true with some restrictions (see below)

Configuration and Usage

Table 29. Monitor specific parameters for the IcmpMonitor

85

Parameter Description Require
d

Default
value

retry Number of attempts to get a response. optional 2

timeout Time in milliseconds to wait for a response. optional 800

allow-
fragmentation

Whether to set the "Don’t Fragment" bit on outgoing
packets

optional true

dscp DSCP traffic-control value. optional 0

packet-size Number of bytes of the ICMP packet to send. optional 64

thresholding-
enabled

Enables ICMP thresholding. optional true

Examples

<service name="ICMP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="icmp"/>
 <parameter key="ds-name" value="icmp"/>
</service>
<monitor service="ICMP" class-name="org.opennms.netmgt.poller.monitors.IcmpMonitor"/>

<!-- Advanced example: set DSCP bits and send a large packet with allow-
fragmentation=false -->
<service name="ICMP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="dscp" value="0x1C"/> <!-- AF32: Class 3, Medium drop probability -->
 <parameter key="allow-fragmentation" value="false"/>
 <parameter key="packet-size" value="2048"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="icmp"/>
 <parameter key="ds-name" value="icmp"/>
</service>
<monitor service="ICMP" class-name="org.opennms.netmgt.poller.monitors.IcmpMonitor"/>

Note on Remote Poller

The IcmpMonitor needs the JNA ICMP implementation to function on remote poller. Though, corner
cases exist where the IcmpMonitor monitor won’t work on remote poller. Examples of such corner
cases are: Windows when the remote poller isn’t running has administrator, and Linux on ARM /
Rasperry Pi. JNA is the default ICMP implementation used in the remote poller.

86

4.6.17. ImapMonitor

This monitor checks if an IMAP server is functional. The test is done by initializing a very simple
IMAP conversation. The ImapMonitor establishes a TCP connection, sends a logout command and
test the IMAP server responses.

The behavior can be simulated with telnet:

telnet mail.myserver.de 143
Trying 62.108.41.197...
Connected to mail.myserver.de.
Escape character is '^]'.
* OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE IDLE STARTTLS
LOGINDISABLED] Dovecot ready. ①
ONMSPOLLER LOGOUT ②
* BYE Logging out ③
ONMSPOLLER OK Logout completed.
Connection closed by foreign host.

① Test IMAP server banner, it has to start * OK to be up

② Sending a ONMSPOLLER LOGOUT

③ Test server responds with, it has to start with * BYE to be up

If one of the tests in the sample above fails the service is marked down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.ImapMonitor

Remote Enabled false

Configuration and Usage

Table 30. Monitor specific parameters for the ImapMonitor

Param
eter

Description Requi
red

Default
value

retry Number of attempts to get a valid IMAP response option
al

0

timeout Time in milliseconds to wait retrieving the banner from TCP
connection before trying a next attempt.

option
al

3000

port The port of the IMAP server. option
al

143

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml

87

<!-- Test IMAP service on port 143 only -->
<service name="IMAP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="port" value="143"/>
 <parameter key="timeout" value="3000"/>
</service>

<monitor service="IMAP" class-name="org.opennms.netmgt.poller.monitors.ImapMonitor" />

4.6.18. ImapsMonitor

The IMAPS monitor tests the response of an SSL-enabled IMAP server. The IMAPS monitor is an
SSL-enabled extension of the IMAP monitor with a default TCP port value of 993. All ImapMonitor
parameters apply, so please refer to ImapMonitor’s documentation for more information.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.ImapsMonitor

Remote Enabled true

Configuration and Usage

Table 31. Monitor specific parameters for the ImapsMonitor

Paramete
r

Description Require
d

Default
value

port The destination port where connections shall be attempted. optional 993

Examples

<!-- IMAPS service at OpenNMS.org is on port 9993 -->
<service name="IMAPS" interval="300000" user-defined="false" status="on">
 <parameter key="port" value="9993"/>
 <parameter key="version" value="3"/>
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="imaps"/>
 <parameter key="ds-name" value="imaps"/>
</service>

<monitor service="IMAPS" class-name="org.opennms.netmgt.poller.monitors.ImapsMonitor"
/>

88

4.6.19. JCifsMonitor

This monitor allows to test a file sharing service based on the CIFS/SMB protocol.


This monitor is not installed by default. You have to install opennmms-plugin-
protocol-cifs from your OpenNMS Meridian installation repository.

With the JCIFS monitor you have different possibilities to test the availability of the JCIFS service:

With the JCifsMonitor it is possible to run tests for the following use cases:

• share is available in the network

• a given file exists in the share

• a given folder exists in the share

• a given folder should contain at least one (1) file

• a given folder folder should contain no (0) files

• by testing on files and folders, you can use a regular expression to ignore specific file and folder
names from the test

A network resource in SMB like a file or folder is addressed as a UNC Path.

\\server\share\folder\file.txt

The Java implementation jCIFS, which implements the CIFS/SMB network protocol, uses SMB URLs
to access the network resource. The same resource as in our example would look like this as an
SMB URL:

smb://workgroup;user:password@server/share/folder/file.txt

The JCifsMonitor can not test:

• file contains specific content

• a specific number of files in a folder, for example folder should contain exactly / more or less
than x files

• Age or modification time stamps of files or folders

• Permissions or other attributes of files or folders

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JCifsMonitor

Remote Enabled false

89

https://en.wikipedia.org/wiki/Path_%28computing%29#Uniform_Naming_Convention
http://www.iana.org/assignments/uri-schemes/prov/smb

Configuration and Usage

Table 32. Monitor specific parameters for the JCifsMonitor

Parameter Description Requi
red

Default
value

retry Number of retries before the service is marked as down. option
al

0

timeout Time in milliseconds to wait for the SMB service. option
al

3000

domain Windows domain where the user is located. You don’t have to use
the domain parameter if you use local user accounts.

option
al

empty
String

username Username to access the resource over a network option
al

empty
String

password Password for the user option
al

empty
String

path Path to the resource you want to test requir
ed

empty
String

mode The test mode which has the following options
path_exist: Service is up if the resource is accessible
path_not_exist: Service is up if the resource is not accessible
folder_empty: Service is up if the folder is empty (0 files)
folder_not_empty: Service is up if the folder has at least one file

option
al

path_exis
t

smbHost Override the IP address of the SMB url to check shares on
different file servers.

option
al

empty
String

folderIgnore
Files

Ignore specific files in folder with regular expression. This
parameter will just be applied on folder_empty and
folder_not_empty, otherwise it will be ignored.

option
al

-


It makes little sense to have retries higher than 1. It is a waste of resources
during the monitoring.


Please consider, if you are accessing shares with Mac OSX you have some side
effects with the hidden file '.DS_Store.' It could give you false positives in
monitoring, you can use then the folderIgnoreFiles parameter.

Example test existence of a file

This example shows how to configure the JCifsMonitor to test if a file share is available over a
network. For this example we have access to a share for error logs and we want to get an outage if
we have any error log files in our folder. The share is named log. The service should go back to
normal if the error log file is deleted and the folder is empty.

90

JCifsMonitor configuration to test that a shared folder is empty

<service name="CIFS-ErrorLog" interval="30000" user-defined="true" status="on">
 <parameter key="retry" value="1" />
 <parameter key="timeout" value="3000" />
 <parameter key="domain" value="contoso" /> ①
 <parameter key="username" value="MonitoringUser" /> ②
 <parameter key="password" value="MonitoringPassword" /> ③
 <parameter key="path" value="/fileshare/log/" /> ④
 <parameter key="mode" value="folder_empty" /> ⑤
</service>

<monitor service="CIFS-ErrorLog" class-name=
"org.opennms.netmgt.poller.monitors.JCifsMonitor" />

① Name of the SMB or Microsoft Windows Domain

② User for accessing the share

③ Password for accessing the share

④ Path to the folder inside of the share as part of the SMB URL

⑤ Mode is set to folder_empty

4.6.20. JDBCMonitor

The JDBCMonitor checks that it is able to connect to a database and checks if it is able to get the
database catalog from that database management system (DBMS). It is based on the JDBC
technology to connect and communicate with the database.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCMonitor

Remote Enabled true

Configuration and Usage

Table 33. Monitor specific parameters for the JDBCMonitor

Parame
ter

Description Requir
ed

Default value

driver JDBC driver class to use requir
ed

com.sybase.jdbc2.jdbc.SybDriver

url JDBC Url to connect to. requir
ed

jdbc:sybase:Tds:OPENNMS_JDBC_HOS
TNAME/tempdb

user Database user requir
ed

sa

91

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Parame
ter

Description Requir
ed

Default value

password Database password requir
ed

empty string

timeout Timeout in ms for the database connection option
al

3000

retries How many retries should be performed
before failing the test

option
al

0


The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or
resolved hostname of the interface the monitored service is assigned to.

Provide the database driver

The JDBCMonitor is based on JDBC and requires a JDBC driver to communicate with any database.
Due to the fact that OpenNMS Meridian itself uses a PostgreSQL database, the PostgreSQL JDBC
driver is available out of the box. For all other database systems a compatible JDBC driver has to be
provided to OpenNMS Meridian as a jar-file. To provide a JDBC driver place the driver-jar in the
opennms/lib folder of your OpenNMS Meridian. To use the JDBCMonitor from a remote poller, the
driver-jar has to be provided to the Remote Poller too. This may be tricky or impossible when using
the Java Webstart Remote Poller, because of code signing requirements.

Examples

The following example checks if the PostgreSQL database used by OpenNMS Meridian is available.

<service name="OpenNMS-DBMS" interval="30000" user-defined="true" status="on">
 <parameter key="driver" value="org.postgresql.Driver"/>
 <parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
 <parameter key="user" value="opennms"/>
 <parameter key="password" value="opennms"/>
</service>

<monitor service="OpenNMS-DBMS" class-name=
"org.opennms.netmgt.poller.monitors.JDBCMonitor" />

4.6.21. JDBCStoredProcedureMonitor

The JDBCStoredProcedureMonitor checks the result of a stored procedure in a remote database. The
result of the stored procedure has to be a boolean value (representing true or false). The service
associated with this monitor is marked as up if the stored procedure returns true and it is marked
as down in all other cases. It is based on the JDBC technology to connect and communicate with the
database.

92

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCStoredProcedureMonitor

Remote Enabled false

Configuration and Usage

Table 34. Monitor specific parameters for the JDBCStoredProcedureMonitor

Parameter Description Requi
red

Default value

driver JDBC driver class to use requir
ed

com.sybase.jdbc2.jdbc.SybDrive
r

url JDBC Url to connect to. requir
ed

jdbc:sybase:Tds:OPENNMS_JDBC_H
OSTNAME/tempdb

user Database user requir
ed

sa

password Database password requir
ed

empty string

timeout Timeout in ms for the database connection option
al

3000

retries How many retries should be performed
before failing the test

option
al

0

stored-
procedure

Name of the database stored procedure to
call

requir
ed

-

schema Name of the database schema in which the
stored procedure is

option
al

test


The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or
resolved hostname of the interface the monitored service is assigned to.

Provide the database driver

The JDBCStoredProcedureMonitor is based on JDBC and requires a JDBC driver to communicate with
any database. Due to the fact that OpenNMS Meridian itself uses a PostgreSQL database, the
PostgreSQL JDBC driver is available out of the box. For all other database systems a compatible
JDBC driver has to be provided to OpenNMS Meridian as a jar-file. To provide a JDBC driver place
the driver-jar in the opennms/lib folder of your OpenNMS Meridian. To use the
JDBCStoredProcedureMonitor from a remote poller, the driver-jar has to be provided to the Remote
Poller too. This may be tricky or impossible when using the Java Webstart Remote Poller, because of
code signing requirements.

Examples

The following example checks a stored procedure added to the PostgreSQL database used by

93

OpenNMS Meridian. The stored procedure returns true as long as less than 250000 events are in the
events table of OpenNMS Meridian.

Stored procedure which is used in the monitor

CREATE OR REPLACE FUNCTION eventlimit_sp() RETURNS boolean AS
$BODY$DECLARE
num_events integer;
BEGIN
 SELECT COUNT(*) into num_events from events;
 RETURN num_events > 250000;
END;$BODY$
LANGUAGE plpgsql VOLATILE NOT LEAKPROOF
COST 100;

<service name="OpenNMS-DB-SP-Event-Limit" interval="300000" user-defined="true"
status="on">
 <parameter key="driver" value="org.postgresql.Driver"/>
 <parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
 <parameter key="user" value="opennms"/>
 <parameter key="password" value="opennms"/>
 <parameter key="stored-procedure" value="eventlimit_sp"/>
 <parameter key="schema" value="public"/>
</service>

<monitor service="OpenNMS-DB-SP-Event-Limit" class-name=
"org.opennms.netmgt.poller.monitors.JDBCStoredProcedureMonitor"/>

4.6.22. JDBCQueryMonitor

The JDBCQueryMonitor runs an SQL query against a database and is able to verify the result of the
query. A read-only connection is used to run the SQL query, so the data in the database is not
altered. It is based on the JDBC technology to connect and communicate with the database.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCQueryMonitor

Remote Enabled false

Configuration and Usage

Table 35. Monitor specific parameters for the JDBCQueryMonitor

Para
meter

Description Requ
ired

Default value

driver JDBC driver class to use requi
red

com.sybase.jdbc2.jdbc.Syb
Driver

94

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Para
meter

Description Requ
ired

Default value

url JDBC URL to connect to. requi
red

jdbc:sybase:Tds:OPENNMS_J
DBC_HOSTNAME/tempdb

user Database user requi
red

sa

passwo
rd

Database password requi
red

empty string

query The SQL query to run requi
red

-

action What evaluation action to perform requi
red

row_count

column The result column to evaluate against requi
red

-

operat
or

Operator to use for the evaluation requi
red

>=

operan
d

The operand to compare against the SQL query result requi
red

depends on the action

messag
e

The message to use if the service is down. Both
operands and the operator are added to the message
too.

optio
nal

generic message
depending on the action

timeou
t

Timeout in ms for the database connection optio
nal

3000

retrie
s

How many retries should be performed before failing
the test

optio
nal

0


The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or
resolved hostname of the interface the monitored service is assigned to.

Table 36. Available action parameters and their default operand

Parameter Description Default
operand

row_count The number of returned rows is compared, not a value of the
resulting rows

1

compare_stri
ng

Strings are always checked for equality with the operand -

compare_int An integer from a column of the first result row is compared 1

Table 37. Available operand parameters

95

Paramete
r

XML entity to use in XML
configs

= =

< <

> >

!= !=

⇐ <=

>= >=

Evaluating the action - operator - operand

Only the first result row returned by the SQL query is evaluated. The evaluation can be against the
value of one column or the number of rows returned by the SQL query.

Provide the database driver

The JDBCQueryMonitor is based on JDBC and requires a JDBC driver to communicate with any
database. Due to the fact that OpenNMS Meridian itself uses a PostgreSQL database, the PostgreSQL
JDBC driver is available out of the box. For all other database systems a compatible JDBC driver has
to be provided to OpenNMS Meridian as a jar-file. To provide a JDBC driver place the driver-jar in
the opennms/lib folder of your OpenNMS Meridian. To use the JDBCQueryMonitor from a remote
poller, the driver-jar has to be provided to the Remote Poller too. This may be tricky or impossible
when using the Java Webstart Remote Poller, because of code signing requirements.

Examples

The following example checks if the number of events in the OpenNMS Meridian database is fewer
than 250000.

<service name="OpenNMS-DB-Event-Limit" interval="30000" user-defined="true" status="
on">
 <parameter key="driver" value="org.postgresql.Driver"/>
 <parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
 <parameter key="user" value="opennms"/>
 <parameter key="password" value="opennms"/>
 <parameter key="query" value="select eventid from events" />
 <parameter key="action" value="row_count" />
 <parameter key="operand" value="250000" />
 <parameter key="operator" value="<" />
 <parameter key="message" value="too many events in OpenNMS database" />
</service>

<monitor service="OpenNMS-DB-Event-Limit" class-name=
"org.opennms.netmgt.poller.monitors.JDBCQueryMonitor" />

96

4.6.23. JmxMonitor

The JMX monitor allows to test service availability of Java applications. The monitor offers the
following functionalities:

• test the application’s connectivity via JMX

• existence of management beans

• test the status of a single or multiple management beans and evaluate their value

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.Jsr160Monitor

Remote Enabled true

Configuration and Usage

Table 38. Monitor specific parameters for the JmxMonitor

Parameter Description Requi
red

Default value

retry Number of attempts to get a response option
al

3

timeout Time in milliseconds to wait for a response option
al

?

port Destination port where the JMX requests shall be sent option
al

from jmx-
config.xml

factory Set this to PASSWORD-CLEAR if credentials are required option
al

STANDARD

protocol Protocol used in the JMX connection string option
al

rmi

urlPath Path used in JMX connection string option
al

/jmxrmi

rmiServerPo
rt

RMI port option
al

45444

remoteJMX Use an alternative JMX URL scheme option
al

false

beans.<vari
able>

Defines a mbeans objectname to access. The
´<variable>´ name is arbitrary.

option
al

-

tests.<vari
able>

Tests a mbeans attribute value. The
´<variable>´ name is arbitrary.

option
al

-

Examples

97

Test if a JMX connection can be established

<service name="JMX-Connection-Test" interval="300000" user-defined="false" status="on
">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="18980"/>
</service>
<monitor service="JMX-Connection-Test" class-name=
"org.opennms.netmgt.poller.monitors.JmxMonitor"/>

Test a specific management bean for a value

<service name="JMX-BeanValue-Test" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="18980"/>
 <parameter key="beans.connected" value=
"org.opennms.workflow:name=client.onms.connected"/>
 <parameter key="tests.isConnected" value="connected.get("Value") ==
true"/>
</service>
<monitor service="JMX-BeanValue-Test" class-name=
"org.opennms.netmgt.poller.monitors.Jsr160Monitor"/>

 Reserved XML characters like >, <, " need to be escaped.

4.6.24. JolokiaBeanMonitor

The JolokiaBeanMonitor is a JMX monitor specialized for the use with the Jolokia framework. If it is
required to execute a method via JMX or poll an attribute via JMX, the JolokiaBeanMonitor can be
used. It requires a fully installed and configured Jolokia agent to be deployed in the JVM container.
If required it allows attribute names, paths, and method parameters to be provided additional
arguments to the call. To determine the status of the service the JolokiaBeanMonitor relies on the
output to be matched against a banner. If the banner is part of the output the status is interpreted
as up. If the banner is not available in the output the status is determined as down. Banner
matching supports regular expression and substring match.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JolokiaBeanMonitor

Remote Enabled false

Configuration and Usage

Table 39. Monitor specific parameters for the JolokiaBeanMonitor

98

http://www.jolokia.org

Parame
ter

Description Required Default
value

beannam
e

The bean name to query against. required -

attrnam
e

The name of the JMX attribute to scrape. optional (attrname or
methodname must be set)

-

attrpat
h

The attribute path. optional -

auth-
usernam
e

The username to use for HTTP BASIC auth. optional -

auth-
passwor
d

The password to use for HTTP BASIC auth. optional -

banner A string that is match against the output of the
system-call. If the output contains the banner,
the service is determined as up. Specify a regex by
starting with ~.

optional -

input1 Method input optional -

input2 Method input optional -

methodn
ame

The name of the bean method to execute, output will
be compared to banner.

optional (attrname or
methodname must be set)

-

port The port of the jolokia agent. optional 8080

url The jolokia agent url. Defaults to
"http://<ipaddr>:<port>/jolokia"

optional -

Table 40. Variables which can be used in the configuration

Variable Description

${ipaddr} IP-address of the interface the service is bound to.

${port} Port the service it bound to.

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml

<parameter key="url" value="http://${ipaddr}:${port}/jolokia"/>
<parameter key="url" value="https://${ipaddr}:${port}/jolokia"/>

AttrName vs MethodName

The JolokiaBeanMonitor has two modes of operation. It can either scrape an attribute from a bean,
or execute a method and compare output to a banner. The method execute is useful when your
application has its own test methods that you would like to trigger via OpenNMS Meridian.

99

The args to execute a test method called "superTest" that take in a string as input would look like
this:

<parameter key="beanname" value="MyBean" />
<parameter key="methodname" value="superTest" />
<parameter key="input1" value="someString"/>

The args to scrape an attribute from the same bean would look like this:

<parameter key="beanname" value="MyBean" />
<parameter key="attrname" value="upTime" />

4.6.25. LdapMonitor

The LDAP monitor tests for LDAP service availability. The LDAP monitor first tries to establish a TCP
connection on the specified port. Then, if it succeeds, it will attempt to establish an LDAP
connection and do a simple search. If the search returns a result within the specified timeout and
attempts, the service will be considered available. The scope of the LDAP search is limited to the
immediate subordinates of the base object. The LDAP search is anonymous by default. The LDAP
monitor makes use of the com.novell.ldap.LDAPConnection class.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.LdapMonitor

Remote Enabled true

Configuration and Usage

Table 41. Monitor specific parameters for the LdapMonitor

Paramet
er

Description Requi
red

Default
value

dn The distinguished name to use if authenticated search is needed. option
al

-

password The password to use if authenticated search is needed. option
al

-

port The destination port where connection shall be attempted. option
al

389

retry Number of attempts to get a search result. option
al

1

searchba
se

The base distinguished name to search from. option
al

base

searchfi
lter

The LDAP search’s filter. option
al

(objectcla
ss=*)

100

Paramet
er

Description Requi
red

Default
value

timeout Time in milliseconds to wait for a result from the search. option
al

3000

version The version of the LDAP protocol to use, specified as an integer.
Note: Only LDAPv3 is supported at the moment.

option
al

3

Examples

<--! OpenNMS.org -->
<service name="LDAP" interval="300000" user-defined="false" status="on">
 <parameter key="port" value="389"/>
 <parameter key="version" value="3"/>
 <parameter key="searchbase" value="dc=opennms,dc=org"/>
 <parameter key="searchfilter" value="uid=ulf"/>
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="ldap"/>
 <parameter key="ds-name" value="ldap"/>
</service>
<monitor service="LDAP" class-name="org.opennms.netmgt.poller.monitors.LdapMonitor"/>

4.6.26. LdapsMonitor

The LDAPS monitor tests the response of an SSL-enabled LDAP server. The LDAPS monitor is an
SSL-enabled extension of the LDAP monitor with a default TCP port value of 636. All LdapMonitor
parameters apply, so please refer to LdapMonitor’s documentation for more information.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.LdapsMonitor

Remote Enabled true

Configuration and Usage

Table 42. Monitor specific parameters for the LdapsMonitor

Paramete
r

Description Require
d

Default
value

port The destination port where connections shall be attempted. optional 636

Examples

101

<!-- LDAPS service at OpenNMS.org is on port 6636 -->
<service name="LDAPS" interval="300000" user-defined="false" status="on">
 <parameter key="port" value="6636"/>
 <parameter key="version" value="3"/>
 <parameter key="searchbase" value="dc=opennms,dc=org"/>
 <parameter key="searchfilter" value="uid=ulf"/>
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="ldaps"/>
 <parameter key="ds-name" value="ldaps"/>
</service>

<monitor service="LDAPS" class-name="org.opennms.netmgt.poller.monitors.LdapsMonitor"
/>

4.6.27. MemcachedMonitor

This monitor allows to monitor Memcached, a distributed memory object caching system. To
monitor the service availability the monitor tests if the Memcached statistics can be requested. The
statistics are processed and stored in RRD files. The following metrics are collected:

Table 43. Collected metrics using the MemcachedMonitor

Metric Description

uptime Seconds the Memcached server has been running since last restart.

rusageuser User time seconds for the server process.

rusagesystem System time seconds for the server process.

curritems Number of items in this servers cache.

totalitems Number of items stored on this server.

bytes Number of bytes currently used for caching items.

limitmaxbytes Maximum configured cache size.

currconnections Number of open connections to this Memcached.

totalconnections Number of successful connect attempts to this server since start.

connectionstructure Number of internal connection handles currently held by the server.

cmdget Number of GET commands received since server startup.

cmdset Number of SET commands received since server startup.

gethits Number of successful GET commands (cache hits) since startup.

getmisses Number of failed GET requests, because nothing was cached.

evictions Number of objects removed from the cache to free up memory.

102

http://memcached.org

Metric Description

bytesread Number of bytes received from the network.

byteswritten Number of bytes send to the network.

threads Number of threads used by this server.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.MemcachedMonitor

Remote Enabled true

Configuration and Usage

Table 44. Monitor specific parameters for the MemcachedMonitor

Paramete
r

Description Require
d

Default
value

timeout Timeout in milliseconds for Memcached connection
establishment.

optional 3000

retry Number of attempts to establish the Memcached connnection. optional 0

port TCP port connecting to Memcached. optional 11211

Examples

The following example shows a configuration in the poller-configuration.xml.

<service name="Memcached" interval="300000" user-defined="false" status="on">
 <parameter key="port" value="11211" />
 <parameter key="retry" value="2" />
 <parameter key="timeout" value="3000" />
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
 <parameter key="ds-name" value="memcached" />
 <parameter key="rrd-base-name" value="memcached" />
</service>

<monitor service="Memcached" class-name=
"org.opennms.netmgt.poller.monitors.MemcachedMonitor" />

4.6.28. NetScalerGroupHealthMonitor

This monitor is designed for Citrix® NetScaler® loadbalancing checks. It checks if more than x
percent of the servers assigned to a specific group on a loadbalanced service are active. The
required data is gathered via SNMP from the NetScaler®. The status of the servers is determined by
the NetScaler®. The provided service it self is not part of the check. The basis of this monitor is the
SnmpMonitorStrategy. A valid SNMP configuration in OpenNMS Meridian for the NetScaler® is

103

required.


A NetScaler® can manage several groups of servers per application. This monitor
just covers one group at a time. If there are multiple groups to check, define one
monitor per group.

 This monitor is not checking the loadbalanced service it self.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NetScalerGroupHealthMonitor

Remote Enabled false

Configuration and Usage

Table 45. Monitor specific parameters for the NetScalerGroupHealthMonitor

Parameter Description Requir
ed

Default
value

group-name The name of the server group to check require
d

-

group-
health

The percentage of active servers vs total server of the group as
an integer

optional 60

Examples

The following example checks a server group called central_webfront_http. If at least 70% of the
servers are active, the service is up. If less then 70% of the servers are active the service is down. A
configuration like the following can be used for the example in the poller-configuration.xml.

<service name="NetScaler_Health" interval="300000" user-defined="false" status="on">
 <parameter key="group-name" value="central_webfront_http" />
 <parameter key="group-health" value="70" />
</service>

<monitor service="NetScaler_Health" class-name=
"org.opennms.netmgt.poller.monitors.NetScalerGroupHealthMonitor” />

Details about the used SNMP checks

The monitor checks the status of the server group based on the NS-ROOT-MIB using the
svcGrpMemberState. svcGrpMemberState is part of the serviceGroupMemberTable. The
serviceGroupMemberTable is indexed by svcGrpMemberGroupName and svcGrpMemberName. A
initial lookup for the group-name is performed. Based on the lookup the serviceGroupMemberTable is
walked with the numeric representation of the server group. The monitor interprets just the server
status code 7-up as active server. Other status codes like 2-unknown or 3-busy are counted for total

104

amount of servers.

4.6.29. NrpeMonitor

This monitor allows to test plugins and checks running on the Nagios Remote Plugin Executor
(NRPE) framework. The monitor allows to test the status output of any available check command
executed by NRPE. Between OpenNMS Meridian and Nagios are some conceptional differences. In
OpenNMS Meridian a service can only be available or not available and the response time for the
service is measured. Nagios on the other hand combines service availability, performance data
collection and thresholding in one check command. For this reason a Nagios check command can
have more states then OK and CRITICAL. Using the NrpeMonitor marks all check command results
other than OK as down. The full output of the check command output message is passed into the
service down event in OpenNMS Meridian.


NRPE configuration on the server is required and the check command has to be
configured, e.g. command[check_apt]=/usr/lib/nagios/plugins/check_apt


OpenNMS Meridian executes every NRPE check in a Java thread without fork() a
process and it is more resource friendly. Nevertheless it is possible to run
NRPE plugins which combine a lot of external programs like sed, awk or cut.
Be aware, each command end up in forking additional processes.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NrpeMonitor

Remote Enabled false

Configuration and Usage

Table 46. Monitor specific parameters for the NrpeMonitor

Param
eter

Description Requi
red

Default
value

retry Number of retries before the service is marked as down. option
al

0

timeout Time in milliseconds to wait for the NRPE executing a check
command.

option
al

3000

command The {check_name} of the command configured as
`command[{check_name}]="/path/to/plugin/check-script"

requir
ed

empty

port Port to access NRPE on the remote server. option
al

5666

padding Padding for sending the command to the NRPE agent. option
al

2

105

http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE—​2D-Nagios-Remote-Plugin-Executor/details

Param
eter

Description Requi
red

Default
value

usessl Enable encryption of network communication. NRPE uses SSL with
anonymous DH and the following cipher suite
TLS_DH_anon_WITH_AES_128_CBC_SHA

option
al

true

Example: Using check_apt with NRPE

This examples shows how to configure the NrpeMonitor running the check_apt command on a
configured NRPE.

Configuration of the NRPE check command on the agent in 'nrpe.cfg'

command[check_apt]=/usr/lib/nagios/plugins/check_apt

Configuration to test the NRPE plugin with the NrpeMonitor

<service name="NRPE-Check-APT" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3" />
 <parameter key="timeout" value="3000" />
 <parameter key="port" value="5666" />
 <parameter key="command" value="check_apt" />
 <parameter key="padding" value="2" />
</service>

<monitor service="NRPE-Check-APT" class-name=
"org.opennms.netmgt.poller.monitors.NrpeMonitor" />

4.6.30. NtpMonitor

The NTP monitor tests for NTP service availability. During the poll an NTP request query packet is
generated. If a response is received, it is parsed and validated. If the response is a valid NTP
response, the service is considered available.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NtpMonitor

Remote Enabled true

Configuration and Usage

Table 47. Monitor specific parameters for the NtpMonitor

Paramete
r

Description Require
d

Default
value

port The destination port where the NTP request shall be sent. optional 123

106

Paramete
r

Description Require
d

Default
value

retry Number of attempts to get a response. optional 0

timeout Time in milliseconds to wait for a response. optional 5000

Examples

<--! Fast NTP server -->
<service name="NTP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="1000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="ntp"/>
 <parameter key="ds-name" value="ntp"/>
</service>
<monitor service="NTP" class-name="org.opennms.netmgt.poller.monitors.NtpMonitor"/>

4.6.31. OmsaStorageMonitor

With OmsaStorageMonitor you are able to monitor your Dell OpenManaged servers RAID array
status. The following OIDS from the STORAGEMANAGEMENT-MIB are supported by this monitor:

virtualDiskRollUpStatus .1.3.6.1.4.1.674.10893.1.20.140.1.1.19
arrayDiskLogicalConnectionVirtualDiskNumber .1.3.6.1.4.1.674.10893.1.20.140.3.1.5
arrayDiskNexusID .1.3.6.1.4.1.674.10893.1.20.130.4.1.26
arrayDiskLogicalConnectionArrayDiskNumber .1.3.6.1.4.1.674.10893.1.20.140.3.1.3
arrayDiskState .1.3.6.1.4.1.674.10893.1.20.130.4.1.4

To test the status of the disk array the virtualDiskRollUpStatus is used. If the result of the
virtualDiskRollUpStatus is not 3 the monitors is marked as down.

Table 48. Possible result of virtual disk rollup status

Resul
t

State
description

Monitor state in OpenNMS
Meridian

1 other DOWN

2 unknown DOWN

3 ok UP

4 non-critical DOWN

5 critical DOWN

6 non-recoverable DOWN

107

http://de.community.dell.com/techcenter/systems-management/w/wiki/438.dell-openmanage-server-administrator-omsa.aspx
http://support.dell.com/support/systemsinfo/document.aspx?~file=/software/svradmin/2.2/en/snmp/snmpc22.htm


You’ll need to know the maximum number of possible logical disks you have in
your environment. For example: If you have 3 RAID arrays, you need for each
logical disk array a service poller.

To give more detailed information in case of an disk array error, the monitor tries to identify the
problem using the other OIDs. This values are used to enrich the error reason in the service down
event. The disk array state is resolved to a human readable value by the following status table.

Table 49. Possible array disk state errors

Valu
e

Status

1 Ready

2 Failed

3 Online

4 Offline

6 Degraded

7 Recovering

11 Removed

15 Resynching

24 Rebuilding

25 noMedia

26 Formating

28 Running Diagnostics

35 Initializing

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.OmsaStorageMonitor

Remote Enabled false

Configuration and Usage

Monitor specific parameters for the OmsaStorageMonitor

Parameter Description Requi
red

Default
value

virtualDisk
Number

The disk index of your RAID array option
al

1

retry Amount of attempts opening a connection and try to get the
greeting banner before the service goes down.

option
al

from snmp-
config.xml

108

Parameter Description Requi
red

Default
value

timeout Time in milliseconds to wait before receiving the
SNMP response.

option
al

from snmp-
config.xml

port The TCP port OpenManage is listening option
al

from snmp-
config.xml

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

The RAID array monitor for your first array is configured with virtualDiskNumber = 1 and can look
like this:

<service name="OMSA-Disk-Array-1" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="6000"/>
 <parameter key="virtualDiskNumber" value="1"/>
</service>

<monitor service="OMSA-Disk-Array-1" class-name=
"org.opennms.netmgt.poller.monitors.OmsaStorageMonitor"/>

If there is more than one RAID array to monitor you need an additional configuration. In this case
virtualDiskNumber = 2. And so on…

<service name="OMSA-Disk-Array-2" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="6000"/>
 <parameter key="virtualDiskNumber" value="2"/>
</service>

<monitor service="OMSA-Disk-Array-2" class-name=
"org.opennms.netmgt.poller.monitors.OmsaStorageMonitor"/>

4.6.32. OpenManageChassisMonitor

The OpenManageChassis monitor tests the status of a Dell chassis by querying its SNMP agent. The
monitor polls the value of the node’s SNMP OID .1.3.6.1.4.1.674.10892.1.300.10.1.4.1 (MIB-Dell-
10892::chassisStatus). If the value is OK (3), the service is considered available.

As this monitor uses SNMP, the queried nodes must have proper SNMP configuration in snmp-
config.xml.

Monitor facts

109

Class Name org.opennms.netmgt.poller.monitors.OpenManageChassisMonitor

Remote Enabled false

Configuration and Usage

Table 50. Monitor specific parameters for the OpenManageChassisMonitor

Paramet
er

Description Requir
ed

Default value

port The port to which connection shall be tried. optional from snmp-
config.xml

retry Number of polls to attempt. optional from snmp-
config.xml

timeout Time (in milliseconds) to wait before receiving the SNMP
response.

optional from snmp-
config.xml

Examples

<!-- Overriding default SNMP config -->
<service name="OMA-Chassis" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="5000"/>
</service>

<monitor service="OMA-Chassis" class-name=
"org.opennms.netmgt.poller.monitors.OpenManageChassisMonitor" />

Dell MIBs

Dell MIBs can be found here. Download the DCMIB<version>.zip or DCMIB<version>.exe file
corresponding to the version of your OpenManage agents. The latest one should be good enough for
all previous version though.

4.6.33. PageSequenceMonitor

The PageSequenceMonitor (PSM) allows OpenNMS to monitor web applications. This monitor has
several configuration options regarding IPv4, IPv6 and how to deal with name resolution. To add
flexibility, the node label and IP address can be passed as variable into the monitor. This allows
running the monitor with node dependent configuration. Beyond testing a web application with a
single URL it can also test a path through a web application. A test path through an web application
can look like this:

1. login to a certain web application

2. Execute an action while being logged in

3. Log off

110

ftp://ftp.us.dell.com/sysman

The service is considered as up if all this is working ok. If there’s an error somewhere, your
application will need attention and the service changes the state to down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.PageSequenceMonitor

Remote Enabled true

Configuration and Usage

The configuration for this monitor consists of several parts. First is the overall configuration for
retries and timeouts. These parameters are global for the whole path through the web application.

Figure 16. Configuration overview of the PSM

The overall layout of the monitor configuration is more complex. Additionally, it is possible to
configure a page sequence containing a path through a web application.

Table 51. Monitor parameters for the PageSequenceMonitor

Paramete
r

Description Requi
red

Default
value

timeout Time in milliseconds to wait before assuming that a packet has not
responded.

option
al

3000

retry The number of retries per page. option
al

0

111

Paramete
r

Description Requi
red

Default
value

strict-
timeout

Defines a timer to wait before a retry attempt is made. It
is only used if at least one (1) retry is configured. If retry
>= 1 and strict-timeout is true the next attempt is delayed and the
Poller Daemon waits NOW - InitialAttempt ms + Timeout
ms. With strict-timout = false the next attempt is
started right after a failure.

option
al

false

page-
sequence

Definition of the page-sequence to execute, see table with Page
Sequence Parameter

requir
ed

-

sequence-
retry

The retry parameter for the entire page sequence. option
al

0

Table 52. Page Sequence Parameter

Parameter Description Requ
ired

Default

name The name of the page-sequence. (Is this
relevant/used?)

optio
nal

-

method HTTP method for example GET or POST - -

http-version HTTP protocol version number, 0.9, 1.0 or 1.1 optio
nal

HTTP/1.1

user-agent Set the user agent field in HTTP header to
identify the OpenNMS monitor

optio
nal

OpenNMS PageSequenceMonitor
(Service name: "${SERVICE
NAME}")

virtual-host Set the virtual host field in HTTP header.
In case of an HTTPS request, this is also the
virtual domain to send as part of the TLS
negotiation, known as server name indication
(SNI) (See: RFC3546 section
3.1)

- -

path The relative URL to call in the request. requi
red

-

scheme Define the URL scheme as http or https optio
nal

http

user-info Set user info field in the HTTP header - -

host Set host field in HTTP header optio
nal

IP interface address of the
service

requireIPv6 Communication requires a connection to an
IPv6 address. (true or false)

- -

requireIPv4 Communication requires a connection to an
IPv4 address. (true or false)

- -

112

https://www.ietf.org/rfc/rfc3546.txt

Parameter Description Requ
ired

Default

disable-ssl-
verification

Enable or disable SSL certificate verification
for HTTPS tests. Please use
this option carefully, for self-signed certificates
import the CA certificate in
the JVM and don’t just disable it.

optio
nal

false

port Port of the web server connecting to optio
nal

80

query ?? - -

failureMatch Text to look for in the response body.
This is a Regular Expression matched against
every line, and it will be considered a
failure at the first match and sets the service
with this monitor Down.

- -

failureMessa
ge

The failure message is used to construct the
reason code. ${n} values may
be used to pull information from matching
groups in the failureMatch
regular expression.

- -

successMatch Text to look for in the response body.
This is a Regular Expression matched against
every line, and it will be considered a
success at the first match and sets the service
with this monitor Up.

optio
nal

-

locationMatc
h

The relative URL which must be loaded for the
request to be considered successful.

optio
nal

-

response-
range

Range for allowed HTTP error codes from the
response.

- -

session-
variable

Assign the value of a regex match group to a
session variable with a user-defined name.
The match group is identified by number and
must be zero or greater.

- -

response-
range

A comma-separated list of acceptable HTTP
response code ranges (200-202,299).

optio
nal

100-399


If you set requireIPv4 and requireIPv6 false, the host IP for connection will be
resolved from system name resolver and the associated IP address from the IP
interface is ignored.

Table 53. Variables which can be passed in the configuration

Variable Description

${nodelabel} Nodelabel of the node the monitor is associated to.

113

Session variables

It is possible to assign strings from a retrieved page to variables that can be used in page
parameters later in the same sequence. First, specify one or more capturing groups in the
successMatch expression (see Java Class Pattern for more information on regular expressions in
Java). The captured values can then be assigned to variable names by using the session-variable
parameter, and used in a later page load.

Per-page response times

It is possible to collect response times for individual pages in a sequence. To use this functionality, a
ds-name attribute must be added to each page whose load time should be tracked. The response time
for each page will be stored in the same RRD file specified for the service via the rrd-base-name
parameter under the specified datasource name.


You will need to delete existing RRD files and let them be recreated with the new
list of datasources when you add a ds-name attribute to a page in a sequence that
is already storing response time data.

Examples

The following example shows how to monitor the OpenNMS web application using several
mechanisms. It first does an HTTP GET of ${ipaddr}/opennms (following redirects as a browser
would) and then checks to ensure that the resulting page has the phrase Password on it. Next, a login
is attempted using HTTP POST to the relative URL for submitting form data (usually, the URL which
the form action points to). The parameters (j_username and j_password) indicate the form’s data and
values to be submitted. After getting the resulting page, first the expression specified in the page’s
failureMatch attribute is verified, which when found anywhere on the page indicates that the page
has failed. If the failureMatch expression is not found in the resulting page, then the expression
specified in the page’s successMatch attribute is checked to ensure it matches the resulting page. If
the successMatch expression is not found on the page, then the page fails. If the monitor was able to
successfully login, then the next page is processed. In the example, the monitor navigates to the
Event page, to ensure that the text Event Queries is found on the page. Finally, the monitor calls the
URL of the logout page to close the session. By using the locationMatch parameter, it is verified that
the logout was successful and a redirect was triggered.


Each page is checked to ensure its HTTP response code fits into the response-
range, before the failureMatch, successMatch, and locationMatch expressions are
evaluated.

114

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Configuration to test the login to the OpenNMS Web application

<service name="OpenNMS-Web-Login" interval="30000" user-defined="true" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="5000"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="ds-name" value="opennmslogin"/>
 <parameter key="page-sequence">
 <page-sequence>
 <page path="/opennms/login.jsp"
 port="8980"
 successMatch="Password" />
 <page path="/opennms/j_spring_security_check"
 port="8980"
 method="POST">
 <parameter key="j_username" value="admin"/>
 <parameter key="j_password" value="admin"/>
 </page>
 <page path="/opennms/index.jsp"
 port="8980"
 successMatch="Log Out" />
 <page path="/opennms/event/index"
 port="8980" successMatch="Event Queries" />
 <page path="/opennms/j_spring_security_logout"
 port="8980"
 method="POST"
 response-range="300-399"
 locationMatch="/opennms" />
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Web-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

115

Test with mixing HTTP and HTTPS in a page sequence

<service name="OpenNMS-Web-Login" interval="30000" user-defined="true" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="5000"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="ds-name" value="opennmslogin"/>
 <parameter key="page-sequence">
 <page-sequence>
 <page scheme="http"
 host="ecomm.example.com"
 port="80"
 path="/ecomm/jsp/Login.jsp"
 virtual-host="ecomm.example.com"
 successMatch="eComm Login"
 timeout="10000"
 http-version="1.1"/>
 <page scheme="https"
 method="POST"
 host="ecomm.example.com" port="443"
 path="/ecomm/controller"
 virtual-host="ecomm.example.com"
 successMatch="requesttab_select.gif"
 failureMessage="Login failed: ${1}"
 timeout="10000"
 http-version="1.1">
 <parameter key="action_name" value="XbtnLogin"/>
 <parameter key="session_timeout" value=""/>
 <parameter key="userid" value="EXAMPLE"/>
 <parameter key="password" value="econ"/>
 </page>
 <page scheme="http"
 host="ecomm.example.com" port="80"
 path="/econsult/controller"
 virtual-host="ecomm.example.com"
 successMatch="You have successfully logged out of eComm"
 timeout="10000" http-version="1.1">
 <parameter key="action_name" value="XbtnLogout"/>
 </page>
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Web-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

116

Test login with dynamic credentials using session variables

<service name="OpenNMS-Web-Login" interval="30000" user-defined="true" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="5000"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="ds-name" value="opennmslogin"/>
 <parameter key="page-sequence">
 <page-sequence name="opennms-login-seq-dynamic-credentials">
 <page path="/opennms"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="(?s)User:.*(.*?).*?Password:.*?
(.*?)">
 <session-variable name="username" match-group="1" />
 <session-variable name="password" match-group="2" />
 </page>
 <page path="/opennms/j_acegi_security_check"
 port="80"
 virtual-host="demo.opennms.org"
 method="POST"
 failureMatch="(?s)Your log-in attempt failed.*Reason: ([^<]*)"
 failureMessage="Login Failed: ${1}"
 successMatch="Log out">"
 <parameter key="j_username" value="${username}" />
 <parameter key="j_password" value="${password}" />
 </page>
 <page path="/opennms/event/index.jsp"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="Event Queries" />
 <page path="/opennms/j_acegi_logout"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="logged off" />
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Web-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

117

Log in to demo.opennms.org without knowing username and password

<service name="OpenNMS-Demo-Login" interval="300000" user-defined="true" status="on">
 <parameter key="page-sequence">
 <page-sequence>
 <page path="/opennms"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="(?s)User:.*(.*?).*?Password:.*?
(.*?)">
 <session-variable name="username" match-group="1" />
 <session-variable name="password" match-group="2" />
 </page>
 <page path="/opennms/j_acegi_security_check"
 port="80"
 virtual-host="demo.opennms.org"
 method="POST"
 successMatch="Log out">"
 <parameter key="j_username" value="${username}" />
 <parameter key="j_password" value="${password}" />
 </page>
 <page path="/opennms/j_acegi_logout"
 port="80"
 virtual-host="demo.opennms.org"
 successMatch="logged off" />
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Demo-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

118

Example with per-page response times

<service name="OpenNMS-Login" interval="300000" user-defined="false" status="on">
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="opennmslogin"/>
 <parameter key="ds-name" value="overall"/>
 <parameter key="page-sequence">
 <page-sequence>
 <page path="/opennms/acegilogin.jsp"
 port="8980"
 ds-name="login-page"/>
 <page path="/opennms/event/index.jsp"
 port="8980"
 ds-name="event-page"/>
 </page-sequence>
 </parameter>
</service>

<monitor service="OpenNMS-Login" class-name=
"org.opennms.netmgt.poller.monitors.PageSequenceMonitor"/>

4.6.34. PercMonitor

This monitor tests the status of a PERC RAID array.

The monitor first polls the RAID-Adapter-MIB::logicaldriveTable (1.3.6.1.4.1.3582.1.1.2) to retrieve
the status of the RAID array you want to monitor. If the value of the status object of the
corresponding logicaldriveEntry is not 2, the array is degraded and the monitor further polls the
RAID-Adapter-MIB::physicaldriveTable (1.3.6.1.4.1.3582.1.1.3) to detect the failed drive(s).


This monitor requires the outdated persnmpd software to be installed on the
polled nodes. Please prefer using OmsaStorageMonitor monitor where
possible.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.PercMonitor

Remote Enabled false (relies on SNMP configuration)

Configuration and Usage

Table 54. Monitor specific parameters for the PercMonitor

Param
eter

Description Requi
red

Default value

array The RAID array you want to monitor. option
al

0.0

119

Param
eter

Description Requi
red

Default value

port The UDP port to connect to option
al

from snmp-
config.xml

retry The number of attempts the monitor shall try getting a response. option
al

from snmp-
config.xml

timeout The amount of thime in milliseconds the monitor shall wait for a
reponse during each polling attempt.

option
al

from snmp-
config.xml

Examples

<!-- Monitor 1st RAID arrays using configuration from snmp-config.xml -->
<service name="PERC" interval="300000" user-defined="false" status="on" />

<monitor service="PERC" class-name="org.opennms.netmgt.poller.monitors.PercMonitor" />

4.6.35. Pop3Monitor

The POP3 monitor tests for POP3 service availability on a node. The monitor first tries to establish a
TCP connection on the specified port. If a connection is established, a service banner should have
been received. The monitor makes sure the service banner is a valid POP3 banner (ie: starts with
"+OK"). If the banner is valid, the monitor sends a QUIT POP3 command and makes sure the service
answers with a valid response (ie: a response that starts with "+OK"). The service is considered
available if the service’s answer to the QUIT command is valid.

The behaviour can be simulated with telnet:

$ telnet mail.opennms.org 110
Trying 192.168.0.100
Connected to mail.opennms.org.
Escape character is '^]'.
+OK <21860.1076718099@mail.opennms.org>
quit
+OK
Connection closed by foreign host.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.Pop3Monitor

Remote Enabled true

Configuration and Usage

Table 55. Monitor specific parameters for the Pop3Monitor

120

Paramete
r

Description Requi
red

Default
value

port TCP port to connect to. option
al

110

retry Number of attempts to find the service available. option
al

0

strict-
timeout

Boolean If set to true, makes sure that at least timeout
milliseconds are elapsed between attempts.

option
al

false

timeout Timeout in milliseconds for the underlying socket’s connect and
read operations.

option
al

3000

Examples

<service name="POP3" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="pop3"/>
 <parameter key="ds-name" value="pop3"/>
</service>
<monitor service="POP3" class-name="org.opennms.netmgt.poller.monitors.Pop3Monitor"/>

4.6.36. PrTableMonitor

The PrTableMonitor monitor tests the prTable of a net-snmp SNMP agent.

A table containing information on running programs/daemons configured
for monitoring in the snmpd.conf file of the agent. Processes violating the
number of running processes required by the agent’s configuration file are
flagged with numerical and textual errors.

— UCD-SNMP-MIB

The monitor looks up the prErrorFlag entries of this table. If the value of a prErrorFlag entry in this
table is set to "1" the service is considered unavailable.

A Error flag to indicate trouble with a process. It goes to 1 if there is an
error, 0 if no error.

— UCD-SNMP-MIB

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.PrTableMonitor

121

http://www.net-snmp.org/docs/mibs/ucdavis.html#prTable

Remote Enabled false

Configuration and Usage

Table 56. Monitor specific parameters for the PrTableMonitor

Param
eter

Description Requi
red

Default value

port The port to which connection shall be tried. option
al

from snmp-
config.xml

retry Number of polls to attempt. option
al

from snmp-
config.xml

retries Deprecated. Same as retry. Parameter retry
takes precedence if both are set.

option
al

from snmp-
config.xml

timeout Time in milliseconds to wait before receiving the SNMP
response.

option
al

from snmp-
config.xml

Examples

<!-- Overriding default SNMP config -->
<service name="Process-Table" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="5000"/>
</service>

<monitor service="Process-Table" class-name=
"org.opennms.netmgt.poller.monitors.PrTableMonitor" />

UCD-SNMP-MIB

The UCD-SNMP-MIB may be found here.

4.6.37. RadiusAuthMonitor

This monitor allows to test the functionality of the RADIUS authentication system. The availability
is tested by sending an AUTH packet to the RADIUS server. If a valid ACCEPT response is received,
the RADIUS service is up and considered as available.


To use this monitor it is required to install the RADIUS protocol for OpenNMS
Meridian.

{apt-get,yum} install {opennms-package-base-name}-plugin-protocol-radius

The test is similar to test the behavior of a RADIUS server by evaluating the result with the
command line tool radtest.

122

http://www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt
http://freeradius.org/rfc/rfc2865.html

root@vagrant:~# radtest "John Doe" hello 127.0.0.1 1812 radiuspassword
Sending Access-Request of id 49 to 127.0.0.1 port 1812
 User-Name = "John Doe"
 User-Password = "hello"
 NAS-IP-Address = 127.0.0.1
 NAS-Port = 1812
 Message-Authenticator = 0x00000000000000000000000000000000
rad_recv: Access-Accept packet from host 127.0.0.1 port 1812, id=49, length=37 ①
 Reply-Message = "Hello, John Doe"

① The Access-Accept message which is evaluated by the monitor.

Monitor facts

Class Name org.opennms.protocols.radius.monitor.RadiusAuthMonitor

Remote Enabled false

Configuration and Usage

Table 57. Monitor specific parameters for the RadiusAuthMonitor

Param
eter

Description Requi
red

Default
value

timeout Time in milliseconds to wait for the RADIUS service. option
al

5000

retry This is a placeholder for the second optional monitor parameter
description.

option
al

0

authpor
t

RADIUS authentication port. option
al

1812

acctpor
t

RADIUS accounting port. option
al

1813

user Username to test the authentication option
al

OpenNMS

passwor
d

Password to test the authentication option
al

OpenNMS

secret The RADIUS shared secret used for communication between the
client/NAS and the RADIUS server.

option
al

secret

authtyp
e

RADIUS authentication type. The following authentication types are
supported: chap, pap, mschapv1, mschapv2, eapmd5, eapmschapv2

option
al

pap

nasid The Network Access Server identifier originating the Access-
Request.

option
al

opennms

123

http://freeradius.org/rfc/rfc2865.html#NAS-Identifier

Examples

Example configuration how to configure the monitor in the poller-configuration.xml.

<service name="Radius-Authentication" interval="300000" user-defined="false" status=
"on">
 <parameter key="retry" value="3" />
 <parameter key="timeout" value="3000" />
 <parameter key="user" value="John Doe" />
 <parameter key="password" value="hello" />
 <parameter key="secret" value="radiuspassword" />
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response" />
 <parameter key="ds-name" value="radiusauth" />
</service>

<monitor service="Radius-Authentication" class-name=
"org.opennms.protocols.radius.monitor.RadiusAuthMonitor" />

4.6.38. SmbMonitor

This monitor is used to test the NetBIOS over TCP/IP name resolution in Microsoft Windows
environments. The monitor tries to retrieve a NetBIOS name for the IP address of the interface.
Name services for NetBIOS in Microsoft Windows are provided on port 137/UDP or 137/TCP.

The service uses the IP address of the interface, where the monitor is assigned to. The service is up
if for the given IP address a NetBIOS name is registered and can be resolved.

For troubleshooting see the usage of the Microsoft Windows command line tool nbtstat or on Linux
nmblookup.


Microsoft deprecated the usage of NetBIOS. Since Windows Server 2000 DNS
is used as the default name resolution.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SmbMonitor

Remote Enabled false

Configuration and Usage

Table 58. Monitor specific parameters for the SmbMonitor

Parameter Description Require
d

Default
value

retry Number of attempts to get a valid response required -

timeout Timeout in milliseconds for TCP connection establishment required -

124

Parameter Description Require
d

Default
value

do-node-
status

Try to get the NetBIOS node status type for the given
address

optional true

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

<service name="SMB" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="timeout" value="3000"/>
</service>

<monitor service="SMB" class-name="org.opennms.netmgt.poller.monitors.SmbMonitor"/>

4.6.39. SmtpMonitor

The SMTP monitor tests for SMTP service availability on a node. The monitor first tries to establish
a TCP connection on the specified port. If a connection is established, a service banner should have
been received. The monitor makes sure the service banner is a valid SMTP banner (starts with
"220"). If the banner is valid, the monitor sends a HELO SMTP command, identifying itself with the
hostname of the OpenNMS server, and makes sure the service answers with a valid response (starts
with "250"). If the response to the HELO is valid, the monitor issues a QUIT SMTP command. The
service is considered available if the service’s answer to the HELO command is valid (starts with
"221").

The behaviour can be simulated with telnet or netcat:

$ nc -v gmail-smtp-in.l.google.com 25
Ncat: Version 7.60 (https://nmap.org/ncat)
Ncat: Connected to 2607:f8b0:4002:c06::1a:25.
220 mx.google.com ESMTP j17-v6si13545102ywb.87 - gsmtp
HELO opennms.com
250 mx.google.com at your service
QUIT
221 2.0.0 closing connection j17-v6si13545102ywb.87 - gsmtp

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SmtpMonitor

Remote Enabled true

Configuration and Usage

Table 59. Monitor specific parameters for the SmtpMonitor

125

Paramet
er

Description Requir
ed

Default
value

port TCP port to connect to. optiona
l

25

retry Number of attempts to find the service available. optiona
l

0

timeout Timeout in milliseconds for the underlying socket’s connect and
read operations.

optiona
l

3000

Examples

<service name="SMTP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1" />
 <parameter key="timeout" value="3000" />
 <parameter key="port" value="25" />
 <parameter key="rrd-repository" value="${install.share.dir}/rrd/response" />
 <parameter key="rrd-base-name" value="smtp" />
 <parameter key="ds-name" value="smtp" />
</service>
<monitor service="SMTP" class-name="org.opennms.netmgt.poller.monitors.SmtpMonitor" />

4.6.40. SnmpMonitor

The SNMP monitor gives a generic possibility to monitor states and results from SNMP agents. This
monitor has two basic operation modes:

• Test the response value of one specific OID (scalar object identifier);

• Test multiple values in a whole table.

To decide which mode should be used, the walk and match-all parameters are used.

See the Operating mode selection'' and Monitor specific parameters for the SnmpMonitor'' tables
below for more information about these operation modes.

Table 60. Operating mode selection

wal
k

match-
all

Operating mode

true true tabular, all values must match

false tabular, any value must match

count specifies that the value of at least minimum and at most maximum
objects encountered in

126

wal
k

match-
all

Operating mode

fals
e

true scalar

false scalar

count tabular, between minimum and maximum values must match


This monitor can’t be used on the OpenNMS Meridian Remote Poller. It is
currently not possible for the Remote Poller to have access to the SNMP
configuration of a central OpenNMS Meridian.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SnmpMonitor

Remote Enabled false

When the monitor is configured to persist the response time, it will count the total amount of time
spent until a successful response is obtained, including the retries. It won’t store the time spent
during the last successful attempt.

Configuration and Usage

Table 61. Monitor specific parameters for the SnmpMonitor

Paramet
er

Description Requ
ired

Default value

hex Specifies that the value monitored should be
compared against its hexadecimal representation.
Useful when the monitored value is a string
containing non-printable characters.

optio
nal

false

match-all Can be set to:
count: specifies that the value of at least minimum
and at most maximum objects encountered in
the walk must match the criteria specified by operand
and operator.
true and walk is set to true: specifies that the value of
every object encountered in the walk
must match the criteria specified by the operand and
operator parameters.
false and walk is set to true: specifies that the value of
any object encountered in the walk must
match the criteria specified by the operand and
operator parameters.

optio
nal

true

127

Paramet
er

Description Requ
ired

Default value

maximum Valid only when match-all is set to count, otherwise
ignored. Should be used in conjunction
with the minimum parameter. Specifies that the value of
at most maximum objects encountered in
the walk must meet the criteria specified by the
operand and operator parameters.

optio
nal

0

minimum Valid only when match-all is set to count, otherwise
ignored. Should be used in conjunction
with the maximum parameter. Specifies that the value of
at least minimum objects encountered in the
walk must meet the criteria specified by the operand
and operator parameters.

optio
nal

0

oid The object identifier of the MIB object to monitor.
If no other parameters are present, the monitor
asserts that the agent’s response for this
object must include a valid value (as opposed to an
error, no-such-name, or end-of-view
condition) that is non-null.

optio
nal

.1.3.6.1.2.1.1.2.0
(SNMPv2-
MIB::SysObjectID)

operand The value to be compared against the observed value
of the monitored object. Note:
Comparison will always succeed if either the operand
or operator parameter isn’t set and the
monitored value is non-null.

optio
nal

-

128

Paramet
er

Description Requ
ired

Default value

operator The operator to be used for comparing the monitored
object against the operand parameter.
Must be one of the following symbolic operators:
< (<): Less than. Both operand and observed object
value must be numeric.
> (>): Greater than. Both operand and observed
object value must be numeric.
<= (⇐): Less than or equal to. Both operand and
observed object value must be numeric.
>= (>=): Greater than or equal to. Both operand and
observed object value must be numeric.
=: Equal to. Applied in numeric context if both
operand and observed object value are numeric,
otherwise in string context as a case-sensitive exact
match.
!=: Not equal to. Applied in numeric context if both
operand and observed object value are
numeric, otherwise in string context as a case-
sensitive exact match.
~: Regular expression match. Always applied in string
context.
Note: Comparison will always succeed if either the
operand or operator parameter isn’t set
and the monitored value is non-null. Keep
in mind that you need to escape all < and > characters
as XML entities (< and >
respectively)

optio
nal

-

port Destination port where the SNMP requests shall be
sent.

optio
nal

from snmp-config.xml

reason-
template

A user-provided template used for the monitor’s
reason code if the service is unvailable.
Defaults to a reasonable value if unset.
See below for an explanation of the possible template
parameters.

optio
nal

depends on operation
mode

retry Number of polls to attempt. optio
nal

from snmp-config.xml

retries Deprecated Same as retry. Parameter retry takes
precedence if both are set.

optio
nal

from snmp-config.xml

timeout Timeout in milliseconds for retrieving the object’s
value.

optio
nal

from snmp-config.xml

129

Paramet
er

Description Requ
ired

Default value

walk false: Sets the monitor to poll for a scalar object
unless if the match-all parameter is set to
count, in which case the match-all parameter takes
precedence.
true: Sets the monitor to poll for a tabular object
where the match-all parameter defines how
the tabular object’s values must match the criteria
defined by the operator and operand
parameters. See also the match-all, minimum, and
maximum parameters.

optio
nal

false

Table 62. Variables which can be used in the reason-template parameter

Variable Description

${hex} Value of the hex parameter.

${ipaddr} IP address polled.

${matchAll} Value of the match-all parameter.

${matchCount} When match-all is set to count, contains the number of matching instances
encountered.

${maximum} Value of the maximum parameter.

${minimum} Value of the minimum paramater.

${observedValue
}

Polled value that made the monitor succeed or fail.

${oid} Value of the oid parameter.

${operand} Value of the operand parameter.

${operator} Value of the operator parameter.

${port} Value of the port parameter.

${retry} Value of the retry parameter.

${timeout} Value of the timeout parameter.

${walk} Value of the walk parameter.

Example for monitoring scalar object

As a working example we want to monitor the thermal system fan status which is provided as a
scalar object ID.

cpqHeThermalSystemFanStatus .1.3.6.1.4.1.232.6.2.6.4.0

The manufacturer MIB gives the following information:

130

Description of the cpqHeThermalSystemFanStatus from CPQHLTH-MIB

SYNTAX INTEGER {
 other (1),
 ok (2),
 degraded (3),
 failed (4)
}
ACCESS read-only
DESCRIPTION
"The status of the fan(s) in the system.

This value will be one of the following:
other(1)
Fan status detection is not supported by this system or driver.

ok(2)
All fans are operating properly.

degraded(3)
A non-required fan is not operating properly.

failed(4)
A required fan is not operating properly.

If the cpqHeThermalDegradedAction is set to shutdown(3) the
system will be shutdown if the failed(4) condition occurs."

The SnmpMonitor is configured to test if the fan status returns ok(2). If so, the service is marked as
up. Any other value indicates a problem with the thermal fan status and marks the service down.

Example SnmpMonitor as HP InsightManager fan monitor in poller-configuration.xml

<service name="HP-Insight-Fan-System" interval="300000" user-defined="false" status=
"on">
 <parameter key="oid" value=".1.3.6.1.4.1.232.6.2.6.4.0"/> ①
 <parameter key="operator" value="="/> ②
 <parameter key="operand" value="2"/> ③
 <parameter key="reason-template" value="System fan status is not ok. The state
should be ok(${operand}) the observed value is ${observedValue}. Please check your HP
Insight Manager. Syntax: other(1), ok(2), degraded(3), failed(4)"/> ④
</service>

<monitor service="HP-Insight-Fan-System" class-name=
"org.opennms.netmgt.poller.monitors.SnmpMonitor" />

① Scalar object ID to test

② Operator for testing the response value

③ Integer 2 as operand for the test

131

http://h18013.www1.hp.com/products/servers/management/hpsim/mibkit.html

④ Encode MIB status in the reason code to give more detailed information if the service goes down

Example test SNMP table with all matching values

The second mode shows how to monitor values of a whole SNMP table. As a practical use case the
status of a set of physical drives is monitored. This example configuration shows the status
monitoring from the CPQIDA-MIB.

We use as a scalar object id the physical drive status given by the following tabular OID:

cpqDaPhyDrvStatus .1.3.6.1.4.1.232.3.2.5.1.1.6

Description of the cpqDaPhyDrvStatus object id from CPQIDA-MIB

SYNTAX INTEGER {
 other (1),
 ok (2),
 failed (3),
 predictiveFailure (4)
}
ACCESS read-only
DESCRIPTION
Physical Drive Status.
This shows the status of the physical drive.
The following values are valid for the physical drive status:

other (1)
 Indicates that the instrument agent does not recognize
 the drive. You may need to upgrade your instrument agent
 and/or driver software.

ok (2)
 Indicates the drive is functioning properly.

failed (3)
 Indicates that the drive is no longer operating and
 should be replaced.

predictiveFailure(4)
 Indicates that the drive has a predictive failure error and
 should be replaced.

The configuration in our monitor will test all physical drives for status ok(2).

132

http://h18013.www1.hp.com/products/servers/management/hpsim/mibkit.html

Example SnmpMonitor as HP Insight physical drive monitor in poller-configuration.xml

<service name="HP-Insight-Drive-Physical" interval="300000" user-defined="false"
status="on">
 <parameter key="oid" value=".1.3.6.1.4.1.232.3.2.5.1.1.6"/> ①
 <parameter key="walk" value="true"/> ②
 <parameter key="operator" value="="/> ③
 <parameter key="operand" value="2"/> ④
 <parameter key="match-all" value="true"/> ⑤
 <parameter key="reason-template" value="One or more physical drives are not ok.
The state should be ok(${operand}) the observed value is ${observedValue}. Please
check your HP Insight Manager. Syntax: other(1), ok(2), failed(3),
predictiveFailure(4), erasing(5), eraseDone(6), eraseQueued(7)"/> ⑥
</service>

<monitor service="HP-Insight-Drive-Physical" class-name=
"org.opennms.netmgt.poller.monitors.SnmpMonitor" />

① OID for SNMP table with all physical drive states

② Enable walk mode to test every entry in the table against the test criteria

③ Test operator for integer

④ Integer 2 as operand for the test

⑤ Test in walk mode has to be passed for every entry in the table

⑥ Encode MIB status in the reason code to give more detailed information if the service goes down

Example test SNMP table with all matching values

This example shows how to use the SnmpMonitor to test if the number of static routes are within a
given boundary. The service is marked as up if at least 3 and at maxium 10 static routes are set on a
network device. This status can be monitored by polling the table ipRouteProto from the RFC1213-
MIB2.

ipRouteProto 1.3.6.1.2.1.4.21.1.9

The MIB description gives us the following information:

133

http://www.ietf.org/rfc/rfc1213.txt
http://www.ietf.org/rfc/rfc1213.txt

SYNTAX INTEGER {
 other(1),
 local(2),
 netmgmt(3),
 icmp(4),
 egp(5),
 ggp(6),
 hello(7),
 rip(8),
 is-is(9),
 es-is(10),
 ciscoIgrp(11),
 bbnSpfIgp(12),
 ospf(13),
 bgp(14)}
}
ACCESS read-only
DESCRIPTION
"The routing mechanism via which this route was learned.
Inclusion of values for gateway routing protocols is not
intended to imply that hosts should support those protocols."

To monitor only local routes, the test should be applied only on entries in the ipRouteProto table
with value 2. The number of entries in the whole ipRouteProto table has to be counted and the
boundaries on the number has to be applied.

Example SnmpMonitor used to test if the number of local static route entries are between 3 or 10.

<service name="All-Static-Routes" interval="300000" user-defined="false" status="on">
 <parameter key="oid" value=".1.3.6.1.2.1.4.21.1.9" /> ①
 <parameter key="walk" value="true" /> ②
 <parameter key="operator" value="=" /> ③
 <parameter key="operand" value="2" /> ④
 <parameter key="match-all" value="count" /> ⑤
 <parameter key="minimum" value="3" /> ⑥
 <parameter key="maximum" value="10" /> ⑦
</service>

<monitor service="All-Static-Routes" class-name=
"org.opennms.netmgt.poller.monitors.SnmpMonitor" />

① OID for SNMP table ipRouteProto

② Enable walk mode to test every entry in the table against the test criteria

③ Test operator for integer

④ Integer 2 as operand for testing local route entries

⑤ Test in walk mode has is set to count to get the number of entries in the table regarding operator
and operand

134

⑥ Lower count boundary set to 3

⑦ High count boundary is set to 10

4.6.41. SshMonitor

The SSH monitor tests the availability of a SSH service. During the poll an attempt is made to
connect on the specified port. If the connection request is successful, then the service is considered
up. Optionaly, the banner line generated by the service may be parsed and compared against a
pattern before the service is considered up.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SshMonitor

Remote Enabled true

Configuration and Usage

Table 63. Monitor specific parameters for the SshMonitor

Paramet
er

Description Requi
red

Default value

banner Regular expression to be matched against the service’s banner. option
al

-

client-
banner

The client banner that OpenNMS Meridian will use to identify
itself on the service.

option
al

SSH-1.99-
OpenNMS_1.5

match Regular expression to be matched against the service’s banner.
Deprecated, please use the banner parameter instead.
Note that this parameter takes precedence over the banner
parameter, though.

option
al

-

port TCP port to which SSH connection shall be tried. option
al

22

retry Number of attempts to establish the SSH connnection. option
al

0

timeout Timeout in milliseconds for SSH connection establishment. option
al

3000

Examples

135

<service name="SSH" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="1"/>
 <parameter key="banner" value="SSH"/>
 <parameter key="client-banner" value="OpenNMS poller"/>
 <parameter key="timeout" value="5000"/>
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
 <parameter key="rrd-base-name" value="ssh"/>
 <parameter key="ds-name" value="ssh"/>
</service>
<monitor service="SSH" class-name="org.opennms.netmgt.poller.monitors.SshMonitor"/>

4.6.42. SSLCertMonitor

This monitor is used to test if a SSL certificate presented by a remote network server are valid. A
certificate is invalid if its initial time is prior to the current time, or if the current time is prior to 7
days (configurable) before the expiration time. The monitor only supports SSL on the socket and
does not support a higher level protocol above it.

You can simulate the behavior by running a command like this:

echo | openssl s_client -connect <site>:<port> 2>/dev/null | openssl x509 -noout
-dates

The output shows you the time range a certificate is valid:

notBefore=Dec 24 14:11:34 2013 GMT
notAfter=Dec 25 10:37:40 2014 GMT

You can configure a threshold in days applied on the notAfter date.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SSLCertMonitor

Remote Enabled true

Configuration and Usage

Table 64. Monitor specific parameters for the SSLCertMonitor

Parame
ter

Description Requi
red

Default
value

port TCP port for the service with SSL certificate. requir
ed

-1

retry Number of attempts to get the certificate state option
al

0

136

Parame
ter

Description Requi
red

Default
value

timeout Time in milliseconds to wait before next attempt. option
al

3000

days Number of days before the certificate expires that we mark the
service as failed.

option
al

7

server-
name

This is the DNS hostname to send as part of the TLS negotiation,
known as server name indication (SNI) (See:
RFC3546 section 3.1)

option
al

``

Table 65. Variables which can be passed in the configuration for server-name

Variable Description

${ipaddr} The node’s IP-Address

${nodeid} The node ID

${nodelabel} Label of the node the monitor is associated to.

${svcname} The service name


The monitor has no support for communicating on other protocol layers above
the SSL session layer. It is not able to send a Host header for HTTPS, or issue a
STARTTLS command for IMAP, POP3, SMTP, FTP, XMPP, LDAP, or NNTP.

Examples

The following example shows how to monitor SSL certificates on services like IMAPS, SMTPS and
HTTPS. If the certificates expire within 30 days the service goes down and indicates this issue in the
reason of the monitor. In this example the monitoring interval is reduced to test the certificate
every 2 hours (7,200,000 ms). Configuration in poller-configuration.xml is as the following:

137

https://www.ietf.org/rfc/rfc3546.txt

<service name="SSL-Cert-IMAPS-993" interval="7200000" user-defined="false" status="on
">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="port" value="993"/>
 <parameter key="days" value="30"/>
</service>
<service name="SSL-Cert-SMTPS-465" interval="7200000" user-defined="false" status="on
">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="2000"/>
 <parameter key="port" value="465"/>
 <parameter key="days" value="30"/>
</service>
<service name="SSL-Cert-HTTPS-443" interval="7200000" user-defined="false" status="on
">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="port" value="443"/>
 <parameter key="days" value="30"/>
 <parameter key="server-name" value="${nodelabel}.example.com"/>
</service>

<monitor service="SSL-Cert-IMAPS-993" class-name=
"org.opennms.netmgt.poller.monitors.SSLCertMonitor" />
<monitor service="SSL-Cert-SMTPS-465" class-name=
"org.opennms.netmgt.poller.monitors.SSLCertMonitor" />
<monitor service="SSL-Cert-HTTPS-443" class-name=
"org.opennms.netmgt.poller.monitors.SSLCertMonitor" />

4.6.43. StrafePingMonitor

This monitor is used to monitor packet delay variation to a specific endpoint using ICMP. The main
use case is to monitor a WAN end point and visualize packet loss and ICMP packet round trip time
deviation. The StrafePingMonitor performs multiple ICMP echo requests (ping) and stores the
response-time of each as well as the packet loss, in a RRD file. Credit is due to Tobias Oetiker, as this
graphing feature is an adaptation of the SmokePing tool that he developed.

138

http://en.wikipedia.org/wiki/Packet_delay_variation
http://oss.oetiker.ch/smokeping/

Figure 17. Visualization of a graph from the StrafePingMonitor

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.StrafePingMonitor

Remote Enabled false

Configuration and Usage

Monitor specific parameters for the StrafePingMonitor

Parameter Description Requi
red

Default value

timeout Time in milliseconds to wait before assuming that a
packet has not responded

option
al

800

retry The number of retries to attempt when a packet fails
to respond in the given timeout

option
al

2

ping-count The number of pings to attempt each interval requir
ed

20

failure-
ping-count

The number of pings that need to fail for the service
to be considered down

requir
ed

20

allow-
fragmentatio
n

Whether to set the "Don’t Fragment" bit on outgoing
packets

option
al

true

dscp DSCP traffic-control value. option
al

0

packet-size Number of bytes of the ICMP packet to send. option
al

64

wait-
interval

Time in milliseconds to wait between each ICMP echo-
request packet

requir
ed

50

139

Parameter Description Requi
red

Default value

rrd-
repository

The location to write RRD data. Generally, you will not
want to change this from default

requir
ed

$OPENNMS_HOME/share/
rrd/response

rrd-base-
name

The name of the RRD file to write (minus the
extension, .rrd or .jrb)

requir
ed

strafeping

Examples

The StrafePingMonitor is typically used on WAN connections and not activated for every ICMP
enabled device in your network. Further this monitor is much I/O heavier than just a simple RRD
graph with a single ICMP response time measurement. By default you can find a separate poller
package in the 'poller-configuration.xml' called strafer. Configure the include-range or a filter to
enable monitoring for devices with the service StrafePing.

 Don’t forget to assign the service StrafePing on the IP interface to be activated.

The following example enables the monitoring for the service StrafePing on IP interfaces in the
range 10.0.0.1 until 10.0.0.20. Additionally the Nodes have to be in a surveillance category named
Latency.

<package name="strafer" >
 <filter>categoryName == 'Latency'</filter>
 <include-range begin="10.0.0.1" end="10.0.0.20"/>
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <service name="StrafePing" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="0"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="ping-count" value="20"/>
 <parameter key="failure-ping-count" value="20"/>
 <parameter key="wait-interval" value="50"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="strafeping"/>
 </service>
 <downtime interval="30000" begin="0" end="300000"/>
 <downtime interval="300000" begin="300000" end="43200000"/>
 <downtime interval="600000" begin="43200000" end="432000000"/>
 <downtime begin="432000000" delete="true"/>
 </package>
 <monitor service="StrafePing" class-name=
"org.opennms.netmgt.poller.monitors.StrafePingMonitor"/>

140

4.6.44. TcpMonitor

This monitor is used to test IP Layer 4 connectivity using TCP. The monitor establishes an TCP
connection to a specific port. To test the availability of the service, the greetings banner of the
application is evaluated. The behavior is similar to a simple test using the telnet command as
shown in the example.

Simulating behavior of the monitor with telnet

root@vagrant:~# telnet 127.0.0.1 22
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 ①

① Service greeting banner

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.TcpMonitor

Remote Enabled true

Configuration and Usage

Table 66. Monitor specific parameters for the TcpMonitor

Param
eter

Description Requi
red

Default
value

port TCP port of the application. requir
ed

-1

retry Number of retries before the service is marked as down. option
al

0

timeout Time in milliseconds to wait for the TCP service. option
al

3000

banner Evaluation of the service connection banner with regular expression.
By default any banner result is valid.

option
al

*

Examples

This example shows to test if the ICA service is available on TCP port 1494. The test evaluates the
connection banner starting with ICA.

141

https://en.wikipedia.org/wiki/Independent_Computing_Architecture

<service name="TCP-Citrix-ICA" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="0" />
 <parameter key="banner" value="ICA" />
 <parameter key="port" value="1494" />
 <parameter key="timeout" value="3000" />
 <parameter key="rrd-repository" value="/var/lib/opennms/rrd/response" />
 <parameter key="rrd-base-name" value="tcpCitrixIca" />
 <parameter key="ds-name" value="tcpCitrixIca" />
</service>

<monitor service="TCP-Citrix-ICA" class-name=
"org.opennms.netmgt.poller.monitors.TcpMonitor" />

4.6.45. SystemExecuteMonitor

If it is required to execute a system call or run a script to determine a service status, the
SystemExecuteMonitor can be used. It is calling a script or system command, if required it provides
additional arguments to the call. To determine the status of the service the SystemExecuteMonitor
can rely on 0 or a non-0 exit code of system call. As an alternative, the output of the system call can
be matched against a banner. If the banner is part of the output the status is interpreted as up. If
the banner is not available in the output the status is determined as down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SystemExecuteMonitor

Remote Enabled true

Configuration and Usage

Table 67. Monitor specific parameters for the SystemExecuteMonitor

Param
eter

Description Requi
red

Default
value

script The system-call to execute. requir
ed

-

args The arguments to hand over to the system-call. It supports variable
replacement, see below.

option
al

-

banner A string that is match against the output of the system-call. If the
output contains the banner, the service is determined as UP.

option
al

-

The parameter args supports variable replacement for the following set of variables.

Table 68. Variables which can be used in the configuration

Variable Description

${timeout} Timeout in milliseconds, based on config of the service.

142

Variable Description

${timeoutsec} Timeout in seconds, based on config of the service.

${retry} Amount of retries based on config of the service.

${svcname} Service name based on the config of the service.

${ipaddr} IP-address of the interface the service is bound to.

${nodeid} Nodeid of the node the monitor is associated to.

${nodelabel} Nodelabel of the node the monitor is associated to.

Examples

<parameter key="args" value="-i ${ipaddr} -t ${timeout}"/>
<parameter key="args" value="http://${nodelabel}/${svcname}/static"/>

SystemExecuteMonitor vs GpMonitor

The SystemExecuteMonitor is the successor of the GpMonitor. The main differences are:

• Variable replacement for the parameter args

• There are no fixed arguments handed to the system-call

• The SystemExecuteMonitor supports RemotePoller deployment

To migrate services from the GpMonitor to the SystemExecuteMonitor it is required to alter the
parameter args. To match the arguments called hoption for the hostAddress and toption for the
timeoutInSeconds. The args string that matches the GpMonitor call looks like this:

<parameter key="args" value="--hostname ${ipaddr} --timeout ${timeoutsec}" />

To migrate the GpMonitor parameters hoption and toption just replace the --hostname and --timeout
directly in the args key.

4.6.46. VmwareCimMonitor

This monitor is part of the VMware integration provided in Provisiond. The monitor is specialized
to test the health status provided from all Host System (host) sensor data.

 This monitor is only executed if the host is in power state on.

143



This monitor requires to import hosts with Provisiond and the VMware import.
OpenNMS Meridian requires network access to VMware vCenter and the hosts.
To get the sensor data the credentials from vmware-config.xml for the responsible
vCenter is used. The following asset fields are filled from Provisiond and is
provided by VMware import feature: VMware Management Server, VMware
Managed Entity Type and the foreignId which contains an internal VMware
vCenter Identifier.

The global health status is evaluated by testing all available host sensors and evaluating the state of
each sensor. A sensor state could be represented as the following:

• Unknown(0)

• OK(5)

• Degraded/Warning(10)

• Minor failure(15)

• Major failure(20)

• Critical failure(25)

• Non-recoverable error(30)

The service is up if all sensors have the status OK(5). If any sensor gives another status then OK(5)
the service is marked as down. The monitor error reason contains a list of all sensors which not
returned status OK(5).



In case of using Distributed Power Management the standBy state forces a service
down. The health status is gathrered with a direct connection to the host and
in stand by this connection is unavailable and the service is down. To deal
with stand by states, the configuration ignoreStandBy can be used. In case of a
stand by state, the service is considered as up.

state can be changed see the ignoreStandBy configuration parameter.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.VmwareCimMonitor

Remote Enabled false

Configuration and Usage

Table 69. Monitor specific parameters for the VmwareCimMonitor

Parameter Description Require
d

Default
value

retry Number of retries before the service is marked as down. optional 0

timeout Time in milliseconds to wait collecting the CIM sensor
data.

optional 3000

144

http://www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf

Parameter Description Require
d

Default
value

ignoreStandBy Treat power state standBy as up. optional false

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

<service name="VMwareCim-HostSystem" interval="300000" user-defined="false" status="
on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
</service>

<monitor service="VMwareCim-HostSystem" class-name=
"org.opennms.netmgt.poller.monitors.VmwareCimMonitor"/>

4.6.47. VmwareMonitor

This monitor is part of the VMware integration provided in Provisiond and test the power state of a
virtual machine (VM) or a host system (host). If the power state of a VM or host is poweredOn the
service is up. The state off the service on the VM or Host is marked as down. By default standBy is
also considered as down. In case of using Distributed Power Management the standBy state can be
changed see the ignoreStandBy configuration parameter.



The information for the status of a virtual machine is collected from the
responsible VMware vCenter using the credentials from the vmware-config.xml.
It is also required to get specific asset fields assigned to an imported virtual
machine and host system. The following asset fields are required, which are
populated by the VMware integration in Provisiond: VMware Management Server,
VMware Managed Entity Type and the foreignId which contains an internal
VMware vCenter Identifier.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.VmwareMonitor

Remote Enabled false

Configuration and Usage

Table 70. Monitor specific parameters for the VmwareMonitor

Parameter Description Requir
ed

Default
value

retry Number of retries before the service is marked as down. optiona
l

0

145

http://www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf

Parameter Description Requir
ed

Default
value

timeout Time in milliseconds to wait for the vCenter to get the power
state information.

optiona
l

3000

ignoreStand
By

Treat power state standBy as up. optiona
l

false

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

<service name="VMware-ManagedEntity" interval="300000" user-defined="false" status="
on">
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
</service>

<monitor service="VMware-ManagedEntity" class-name=
"org.opennms.netmgt.poller.monitors.VmwareMonitor"/>

4.6.48. Win32ServiceMonitor

The Win32ServiceMonitor enables OpenNMS Meridian to monitor the running state of any
Windows service. The service status is monitored using the Microsoft Windows® provided SNMP
agent providing the LAN Manager MIB-II. For this reason it is required the SNMP agent and
OpenNMS Meridian is correctly configured to allow queries against part of the MIB tree. The status
of the service is monitored by polling the

svSvcOperatingState = 1.3.6.1.4.1.77.1.2.3.1.3

of a given service by the display name.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.Win32ServiceMonitor

Remote Enabled false

Configuration and Usage

Table 71. Monitor specific parameters for the Win32ServiceMonitor

Parame
ter

Description Requi
red

Default value

retry Number of attempts to get the service state from SNMP agent requir
ed

From snmp-
config.xml

146

http://technet.microsoft.com/en-us/library/cc977581.aspx

Parame
ter

Description Requi
red

Default value

timeout Time in milliseconds to wait for the SNMP result before next
attempt.

requir
ed

From snmp-
config.xml

service-
name

The name of the service, this should be the exact name of the
Windows service to monitor as it appears in the
Services MSC snap-in. Short names such as you might use with
net start will not work here.

requir
ed

Server


Non-English Windows The service-name is sometime encoded in languages other
than English. Like in French, the Task Scheduler service is Planificateur de tâche.
Because of the "â" (non-English character), the OID value is encoded in hexa (0x50
6C 61 6E 69 66 69 63 61 74 65 75 72 20 64 65 20 74 C3 A2 63 68 65 73).

Troubleshooting

If you’ve created a Win32ServiceMonitor poller and are having difficulties with it not being
monitored properly on your hosts, chances are there is a difference in the name of the service
you’ve created, and the actual name in the registry.

For example, I need to monitor a process called Example Service on one of our production servers. I
retrieve the Display name from looking at the service in service manager, and create an entry in the
poller-configuration.xml files using the exact name in the Display name field.

However, what I don’t see is the errant space at the end of the service display name that is revealed
when doing the following:

snmpwalk -v 2c -c <communitystring> <hostname> .1.3.6.1.4.1.77.1.2.3.1.1

This provides the critical piece of information I am missing:

iso.3.6.1.4.1.77.1.2.3.1.1.31.83.116.97.102.102.119.97.114.101.32.83.84.65.70.70.86.73
.69.87.32.66.97.99.107.103.114.111.117.110.100.32 = STRING: "Example Service "

 Note the extra space before the close quote.

The extra space at the end of the name was difficult to notice in the service manager GUI, but is
easily visible in the snmpwalk output. The right way to fix this would be to correct the service Display
name field on the server, however, the intent of this procedure is to recommend verifying the true
name using snmpwalk as opposed to relying on the service manager GUI.

Examples

Monitoring the service running state of the Task Scheduler on an English local Microsoft Windows®
Server requires at minimum the following entry in the poller-configuration.xml.

147

<service name="Windows-Task-Scheduler" interval="300000" user-defined="false" status=
"on">
 <parameter key="service-name" value="Task Scheduler"/>
</service>

<monitor service="Windows-Task-Scheduler" class-name=
"org.opennms.netmgt.poller.monitors.Win32ServiceMonitor"/>

4.6.49. WsManMonitor

This monitor can be used to issue a WS-Man Get command and validate the results using a SPEL
expression.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.WsManMonitor

Remote Enabled false

Configuration and Usage

Table 72. Monitor specific parameters for the WsManMonitor

Parameter Description Require
d

Default
value

resource-
uri

Resource URI require
d

-

rule SPEL expression applied against the result of the Get require
d

-

selector. Used to filter the result set. All selectors must prefixed with
selector.

optional (None)

Examples

The following monitor will issue a Get against the configured resource and verify that the correct
service tag is returned:

148

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

<service name="WsMan-ServiceTag-Check" interval="300000" user-defined="false" status=
"on">
 <parameter key="resource-uri" value="http://schemas.dell.com/wbem/wscim/1/cim-
schema/2/root/dcim/DCIM_ComputerSystem"/>
 <parameter key="selector.CreationClassName" value="DCIM_ComputerSystem"/>
 <parameter key="selector.Name" value="srv:system"/>
 <parameter key="rule" value="#IdentifyingDescriptions matches '.*ServiceTag' and
#OtherIdentifyingInfo matches 'C7BBBP1'"/>
</service>

<monitor service="WsMan-ServiceTag-Check" class-name=
"org.opennms.netmgt.poller.monitors.WsManMonitor/>

4.6.50. XmpMonitor

The XMP monitor tests for XMP service/agent availability by establishing an XMP session and
querying the target agent’s sysObjectID variable contained in the Core MIB. The service is
considered available when the session attempt succeeds and the agent returns its sysObjectID
without error.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.XmpMonitor

Remote Enabled false

Configuration and Usage

These parameters can be set in the XMP service entry in collectd-configuration.xml and will
override settings from xmp-config.xml. Also, don’t forget to add an entry in response-
graph.properties so that response values will be graphed.

Table 73. Monitor specific parameters for the XmpMonitor

Paramete
r

Description Require
d

Default
value

timeout Time in milliseconds to wait for a successful session. optional 5000

authenUser The authenUser parameter for use with the XMP session. optional xmpUser

port TCP port to connect to for XMP session establishment optional 5270

mib Name of MIB to query optional core

object Name of MIB object to query optional sysObjectID

Examples

149

http://www.opennms.org/wiki/XMP

Adding entry in collectd-configuration.xml

<service name="XMP" interval="300000" user-defined="false" status="on">
 <parameter key="timeout" value="3000"/>
 <parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
 <parameter key="rrd-base-name" value="xmp"/>
 <parameter key="ds-name" value="xmp"/>
</service>
<monitor service="XMP" class-name="org.opennms.netmgt.poller.monitors.XmpMonitor"/>

Add entry in response-graph.properties

reports=icmp, \
xmp, \

report.xmp.name=XMP
report.xmp.columns=xmp
report.xmp.type=responseTime
report.xmp.command=--title="XMP Response Time" \
 --vertical-label="Seconds" \
 DEF:rtMills={rrd1}:xmp:AVERAGE \
 DEF:minRtMills={rrd1}:xmp:MIN \
 DEF:maxRtMills={rrd1}:xmp:MAX \
 CDEF:rt=rtMills,1000,/ \
 CDEF:minRt=minRtMills,1000,/ \
 CDEF:maxRt=maxRtMills,1000,/ \
 LINE1:rt#0000ff:"Response Time" \
 GPRINT:rt:AVERAGE:" Avg \\: %8.2lf %s" \
 GPRINT:rt:MIN:"Min \\: %8.2lf %s" \
 GPRINT:rt:MAX:"Max \\: %8.2lf %s\\n"

150

Chapter 5. Performance Management
In OpenNMS collection of performance data is done by the Collectd daemon. Management Agents
and protocols to access performance data is implemented in Collectors. These Collectors are
scheduled and run in parallel in a global defined Thread Pool in Collectd.

This section describes how to configure Collectd for performance data collection with all available
Collectors coming with OpenNMS Meridian.

5.1. Collectd Configuration
Table 74. Configuration and log files related to Collectd

File Description

$OPENNMS_HOME/etc/collectd-
configuration.xml

Configuration file for global Collectd daemon and Collectors
configuration

$OPENNMS_HOME/logs/collectd.l
og

Log file for all Collectors and the global Collectd daemon

$OPENNMS_HOME/etc/snmp-
graph.properties

RRD graph definitions to render performance data measurements
in the Web UI

$OPENNMS_HOME/etc/snmp-
graph.properties.d

Directory with RRD graph definitions for devices and applications
to render performance data measurements in the Web UI

$OPENNMS_HOME/etc/events/open
nms.events.xml

Event definitions for Collectd, i.e. dataCollectionSucceeded, and
dataCollectionFailed

To change the behavior for performance data collection, the collectd-configuration.xml file can be
modified. The configuration file is structured in the following parts:

• Global daemon config: Define the size of the used Thread Pool to run Collectors in parallel.

• Collection packages: Packages to allow the grouping of configuration parameters for Collectors.

• Collection service association: Based on the name of the collection service, the implementation
for application or network management protocols are assigned.

151

Figure 18. Collectd overview for associated files and configuration

The global behavior, especially the size of the Thread Pool for Collectd, is configured in the
collectd-configuration.xml.

Global configuration parameters for Collectd

<collectd-configuration
 threads="50"> ①

① Size of the Thread Pool to run Collectors in parallel

5.2. Collection Packages
To define more complex collection configuration it is possible to group Service configurations which
provide performance metrics into Collection Packages. They allow to assign to Nodes different
Service Configurations to differentiate collection of performance metrics and connection settings. To
assign a Collection Package to nodes the Rules/Filters syntax can be used.

Multiple packages can be configured, and an interface can exist in more than one package. This
gives great flexibility how the service levels will be determined for a given device. The order how
Collection Packages are defined is important when IP Interfaces match multiple Collection Packages
with the same Service configuration. The last Collection Package on the service will be applied. This
can be used to define a less specific catch all filter for a default configuration. A more specific
Collection Package can be used to overwrite the default setting.

Collection Package Attributes

<package name="package1" ①
 <filter>IPADDR != '0.0.0.0'</filter> ②
 <include-range begin="1.1.1.1" end="254.254.254.254"/> ③
 <include-range begin="::1" end="ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"/> ④

① Unique name of the collection package.

② Apply this package to all IP interfaces with a configured IPv4 address (not equal 0.0.0.0)

152

http://www.opennms.org/wiki/Filters

③ Evaluate IPv4 rule to collect for all IPv4 interfaces in the given range

④ Evaluate IPv6 rule to collect for all IPv6 interfaces in the given range

5.2.1. Service Configurations

Service Configurations define what Collector to use and which performance metrics needs to be
collected. Service Configurations contains common Service Attributes as well as Collector specific
parameters.

Service Configuration Attributes

<service name="SNMP" ①
 interval="300000" ②
 user-defined="false" ③
 status="on" ④
 <parameter key="collection" value="default"/> ⑤
 <parameter key="thresholding-enabled" value="true"/> ⑥
</service>

<collector service="SNMP" class-name="org.opennms.netmgt.collectd.SnmpCollector"/> ⑦

① Service Configuration name which is mapped to a specific Collector implementation.

② The interval at which the service is to be collected. (in milliseconds).

③ Marker to say if service is user defined, used specifically for UI purposes.

④ Service is collected only if on.

⑤ Assign performance data collection metric groups named default.

⑥ Enable threshold evaluation for metrics provided by this service.

⑦ Run the SnmpCollector implementation for the service named SNMP

153

Figure 19. Configuration overview for data collection with Collectd

5.3. Collectors

5.3.1. JmxCollector

The JmxCollector is used to collect performance data via JMX. Attributes are extracted from the
available MBeans.

Collector Facts

Class Name org.opennms.netmgt.collectd.Jsr160Collector

Package core

Collector Parameters

Table 75. Collector specific parameters for the Jsr160Collector

Parameter Description Requ
ired

Default value

collection The name of the JMX Collection to use requi
red

(none)

thresholdin
g-enabled

Whether collected performance data shall be tested
against thresholds

optio
nal

true

154

Parameter Description Requ
ired

Default value

retry Number of retries optio
nal

3

friendlyNam
e

Name of the path in which the metrics should be
stored

optio
nal

Value of the port, or
'jsr160' if no port is set.

factory The password strategy to use.
Supported values are: STANDARD (for authentication),
PASSWORD_CLEAR (same as STANDARD) and SASL (if secure
connection is required)

optio
nal

STANDARD

url The connection url, e.g.
service:jmx:rmi:localhost:18980. The
ip address can be substituted. Use ${ipaddr} in that
case, e.g.:
service:jmx:rmi:${ipaddr}:18980

optio
nal

(none)

username The username if authentication is required. optio
nal

(none)

password The password if authentication is required. optio
nal

(none)

port Deprecated. JMX port. optio
nal

1099

protocol Deprecated. Protocol used in the JMX connection
string.

optio
nal

rmi

urlPath Deprecated. Path used in JMX connection string. optio
nal

/jmxrmi

rmiServerPo
rt

Deprecated. RMI port. optio
nal

45444

remoteJMX Deprecated. Use an alternative JMX URL scheme. optio
nal

false


The parameters port, protocol, urlPath, rmiServerPort and remoteJMX are
deprecated and should be replaced with the url parameter. If url is not defined
the collector falls back to Legacy Mode and the deprecated parameters are used
instead to build the connection url.


If a service requires different configuration it can be overwritten with an entry in
$OPENNMS_HOME/etc/jmx-config.xml.

JMX Collection Configuration

JMX Collections are defined in the etc/jmx-datacollection-config.xml and etc/jmx-datacollection-
config.d/.

Here is a snippet providing a collection definition named opennms-poller:

155

<jmx-collection name="opennms-poller">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>
 <mbeans>
 <mbean name="OpenNMS Pollerd" objectname="OpenNMS:Name=Pollerd">
 <attrib name="NumPolls" alias="ONMSPollCount" type="counter"/>
 </mbean>
 </mbeans>
</jmx-collection>

3rd Party JMX Services

Some java applications provide their own JMX implementation and require certain libraries to be
present on the classpath, e.g. the java application server Wildfly. In order to successfully collect
data the following steps may be required:

• Place the jmx client lib to the $OPENNMS_HOME/lib folder (e.g. jboss-cli-client.jar)

• Configure the JMX-Collector accordingly (see below)

• Configure the collection accordingly (see above)

Example

<service name="JMX-WILDFLY" interval="300000" user-defined="false" status="on">
 <parameter key="url" value="service:jmx:http-remoting-jmx://${ipaddr}:9990"/>
 <parameter key="retry" value="2"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="factory" value="PASSWORD-CLEAR"/>
 <parameter key="username" value="admin"/>
 <parameter key="password" value="admin"/>
 <parameter key="rrd-base-name" value="java"/>
 <parameter key="collection" value="jsr160"/>
 <parameter key="thresholding-enabled" value="true"/>
 <parameter key="ds-name" value="jmx-wildfly"/>
 <parameter key="friendly-name" value="jmx-wildfly"/>
</service>
<collector service="JMX-WILDFLY" class-name=
"org.opennms.netmgt.collectd.Jsr160Collector"/>

5.3.2. SnmpCollector

The SnmpCollector is used to collect performance data through the SNMP protocol. Access to the
SNMP Agent is configured through the SNMP configuration in the Web User Interface.

156

Collector Facts

Class Name org.opennms.netmgt.collectd.SnmpCollector

Collector Parameters

Table 76. Collector specific parameters for the SnmpCollector

Parameter Description Requir
ed

Default value

collection The name of the SNMP Collection to use. require
d

default

thresholding-
enabled

Whether collected performance data shall be tested
against thresholds.

optiona
l

true

timeout Timeout in milliseconds to wait for SNMP responses. optiona
l

SNMP
configuration

SNMP Collection Configuration

SNMP Collection are defined in the etc/datacollection-config.xml and etc/datacollection.d/*.xml
files.

<?xml version="1.0"?>
<datacollection-config rrd-repository="/var/lib/opennms/rrd/snmp/"> ①
 <snmp-collection name="default" ②
 snmpStorageFlag="select"> ③
 <rrd step="300"> ④
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>

 <include-collection dataCollectionGroup="MIB2"/> ⑤
 <include-collection dataCollectionGroup="3Com"/>
 ...
 <include-collection dataCollectionGroup="VMware-Cim"/>
 </snmp-collection>
</datacollection-config>

① Directory where to persist RRD files on the file system, ignored if NewTS is used as time series
storage.

② Name of the SNMP data collection referenced in the Collection Package in collectd-

configuration.xml.

③ Configure SNMP MIB-II interface metric collection behavior: all means collect metrics from all
interfaces, primary only from interface provisioned as primary interface, select only from

157

manualy selected interfaces from the Web UI.

④ RRD archive configuration for this set of performance metrics, ignored when NewTS is used as
time series storage.

⑤ Include device or application specific performance metric OIDS to collect.

Figure 20. Configuration overview for SNMP data collection

5.3.3. WS-Management

Web Services-Management (WS-Management) is a DMTF open standard defining a SOAP-based
protocol for the management of servers, devices, applications and various Web services. Windows
Remote Management (WinRM) is the Microsoft implementation of WS-Management Protocol.
OpenNMS Meridian currently provides support for detecting, polling and collecting metrics from
WS-Man endpoints.

Setup

Before setting up OpenNMS Meridian to communicate with a WS-Management agent, you should
confirm that it is properly configured and reachable from the OpenNMS Meridian system. If you
need help enabling the WS-Management agent, consult the documentation from the manufacturer.
Here are some link resources that could help:

• Installation and Configuration for Windows Remote Management

• Troubleshooting WinRM connection and authentication

We suggest using the Openwsman command line client for validating authentication and
connectivity. Packages are available for most distributions under wsmancli.

For example:

wsman identify -h localhost -P 5985 -u wsman -p secret

Once validated, add the agent specific details to the OpenNMS Meridian configuration, defined in
the next section.

Troubleshooting and Commands

For troubleshooting there is a set of commands you can use in Powershell verified on Microsoft

158

https://msdn.microsoft.com/en-us/library/windows/desktop/aa384372(v=vs.85).aspx
http://www.hurryupandwait.io/blog/understanding-and-troubleshooting-winrm-connection-and-authentication-a-thrill-seekers-guide-to-adventure
https://github.com/Openwsman/openwsman/wiki/openwsman-command-line-client

Windows Server 2012.

Enable WinRM in PowerShell

Enable-PSRemoting

Setup Firewall for WinRM over HTTP

netsh advfirewall firewall add rule name="WinRM-HTTP" dir=in localport=5985
protocol=TCP action=allow

Setup Firewall for WinRM over HTTPS

netsh advfirewall firewall add rule name="WinRM-HTTPS" dir=in localport=5986
protocol=TCP action=allow

Test WinRM on local Windows Server

winrm id

Show WinRM configuration on Windows Server

winrm get winrm/config

Show listener for configuration on Windows Server

winrm e winrm/config/listener

Test connectivity from a Linux system

nc -z -w1 <windows-server-ip-or-host> 5985;echo $?


Use BasicAuthentication just with WinRM over HTTPS with verifiable certificates
in production environment.

Enable BasicAuthentication

winrm set winrm/config/client/auth '@{Basic="true"}'
winrm set winrm/config/service/auth '@{Basic="true"}'
winrm set winrm/config/service '@{AllowUnencrypted="true"}'

Agent Configuration

The agent specific configuration details are maintained in etc/wsman-config.xml. This file has a
similar structure as etc/snmp-config.xml, which the reader may already be familiar with.

159

This file is consulted when a connection to a WS-Man Agent is made. If the IP address of the agent is
matched by the range, specific or ip-match elements of a definition, then the attributes on that
definition are used to connect to the agent. Otherwise, the attributes on the outer wsman-config
definition are used.

This etc/wsman-config.xml files is automatically reloaded when modified.

Here is an example with several definitions:

<?xml version="1.0"?>
<wsman-config retry="3" timeout="1500" ssl="true" strict-ssl="false" path="/wsman">
 <definition ssl="true" strict-ssl="false" path="/wsman" username="root" password=
"calvin" product-vendor="Dell" product-version="iDRAC 6">
 <range begin="192.168.1.1" end="192.168.1.10"/>
 </definition>
 <definition ssl="false" port="5985" path="/wsman" username="Administrator"
password="P@ssword">
 <ip-match>172.23.1-4.1-255</ip-match>
 <specific>172.23.1.105</specific>
 </definition>
</wsman-config>

Table 77. Collector configuration attributes

Attribute Description Default

timeout HTTP Connection and response timeout in milliseconds. HTTP client
default

retry Number of retries on connection failure. 0

username Username for basic authentication. none

password Password used for basic authentication. none

port HTTP/S port Default for
protocol

max-
elements

Maximum number of elements to retrieve in a single request. no limit

ssl Enable SSL False

strict-ssl Enforce SSL certificate verification. True

path Path in the URL to the WS-Management service. /

product-
vendor

Used to overwrite the detected product vendor. none

product-
version

Used to overwrite the detected product version. none

gss-auth Enables GSS authentication. When enabled a reverse
lookup is performed on the target IP address in order to determine the
canonical host name.

False

160


If you try to connect against Microsoft Windows Server make sure to set specific
ports for WinRM connections. By default Microsoft Windows Server uses port
TCP/5985 for plain text and port TCP/5986 for SSL connections.

Collector

Configuration for the WS-Management collector is stored in etc/wsman-datacollection-config.xml
and etc/wsman-datacollection.d/*.xml.


The contents of these files are automatically merged and reloaded when changed.
The default WS-Management collection looks as follows:

<?xml version="1.0"?>
<wsman-datacollection-config rrd-repository="${install.share.dir}/rrd/snmp/">
 <collection name="default">
 <rrd step="300">
 <rra>RRA:AVERAGE:0.5:1:2016</rra>
 <rra>RRA:AVERAGE:0.5:12:1488</rra>
 <rra>RRA:AVERAGE:0.5:288:366</rra>
 <rra>RRA:MAX:0.5:288:366</rra>
 <rra>RRA:MIN:0.5:288:366</rra>
 </rrd>

 <!--
 Include all of the available system definitions
 -->
 <include-all-system-definitions/>
 </collection>
</wsman-datacollection-config>

The magic happens with the <include-all-system-definitions/> element which automatically
includes all of the system definitions into the collection group.


If required, you can include a specific system-definition with <include-system-
definition>sys-def-name</include-system-definition>.

System definitions and related groups can be defined in the root etc/wsman-datacollection-
config.xml file, but it is preferred that be added to a device specific configuration files in etc/wsman-
datacollection-config.d/*.xml.


Avoid modifying any of the distribution configuration files and create new ones
to store you specific details instead.

Here is an example configuration file for a Dell iDRAC:

161

<?xml version="1.0"?>
<wsman-datacollection-config>
 <group name="drac-system"
 resource-uri="http://schemas.dell.com/wbem/wscim/1/cim-
schema/2/root/dcim/DCIM_ComputerSystem"
 resource-type="node">
 <attrib name="OtherIdentifyingInfo" index-of="#IdentifyingDescriptions matches
'.*ServiceTag'" alias="serviceTag" type="String"/>
 </group>

 <group name="drac-power-supply"
 resource-uri="http://schemas.dmtf.org/wbem/wscim/1/*"
 dialect="http://schemas.microsoft.com/wbem/wsman/1/WQL"
 filter="select
InputVoltage,InstanceID,PrimaryStatus,SerialNumber,TotalOutputPower from
DCIM_PowerSupplyView where DetailedState != 'Absent'"
 resource-type="dracPowerSupplyIndex">
 <attrib name="InputVoltage" alias="inputVoltage" type="Gauge"/>
 <attrib name="InstanceID" alias="instanceId" type="String"/>
 <attrib name="PrimaryStatus" alias="primaryStatus" type="Gauge"/>
 <attrib name="SerialNumber" alias="serialNumber" type="String"/>
 <attrib name="TotalOutputPower" alias="totalOutputPower" type="Gauge"/>
 </group>

 <system-definition name="Dell iDRAC (All Version)">
 <rule>#productVendor matches '^Dell.*' and #productVersion matches
'.*iDRAC.*'</rule>
 <include-group>drac-system</include-group>
 <include-group>drac-power-supply</include-group>
 </system-definition>
</wsman-datacollection-config>

System Definitions

Rules in the system definition are written using SpEL expressions.

The expression has access to the following variables in it`s evaluation context:

Name Type

(root) org.opennms.netmgt.model.OnmsNode

agent org.opennms.netmgt.collection.api.CollectionAgent

productVendor java.lang.String

productVersion java.lang.String

If a particular agent is matched by any of the rules, then the collector will attempt to collect the
referenced groups from the agent.

162

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Group Definitions

Groups are retrieved by issuing an Enumerate command against a particular Resource URI and
parsing the results. The Enumerate commands can include an optional filter in order to filter the
records and attributes that are returned.

 When configuring a filter, you must also specify the dialect.

The resource type used by the group must of be of type node or a generic resource type. Interface
level resources are not supported.

When using a generic resource type, the IndexStorageStrategy cannot be used since records have no
implicit index. Instead, you must use an alternative such as the SiblingColumnStorageStrategy.

If a record includes a multi-valued key, you can collect the value at a specific index with an index-of
expression. This is best demonstrated with an example. Let`s assume we wanted to collect the
ServiceTag from the following record:

<IdentifyingDescriptions>CIM:GUID</IdentifyingDescriptions>
<IdentifyingDescriptions>CIM:Tag</IdentifyingDescriptions>
<IdentifyingDescriptions>DCIM:ServiceTag</IdentifyingDescriptions>
<OtherIdentifyingInfo>45454C4C-3700-104A-8052-C3C01BB25031</OtherIdentifyingInfo>
<OtherIdentifyingInfo>mainsystemchassis</OtherIdentifyingInfo>
<OtherIdentifyingInfo>C8BBBP1</OtherIdentifyingInfo>

Specifying, the attribute name OtherIdentifyingInfo would not be sufficient, since there are
multiple values for that key. Instead, we want to retrieve the value for the OtherIdentifyingInfo key
at the same index where IdentifyingDescriptions is set to DCIM:ServiceTag.

This can be achieved using the following attribute definition:

<attrib name="OtherIdentifyingInfo" index-of="#IdentifyingDescriptions matches
'.*ServiceTag'" alias="serviceTag" type="String"/>

Detector

The WS-Management detector attempts to connect to the agent defined in wsman-config.xml and
issues an Identify command. If a valid response is received, the product vendor and product
version are stored in the vendor and modelNumber fields of the associated node`s assets table.

For example, a Windows Server 2008 machine returns:

Product Vendor Microsoft Corporation

Product Version OS: 6.1.7601 SP: 1.0 Stack: 2.0

If these assets field are being used for another purpose, this behavior can be disabled by settings
the updateAssets parameters to false in the detector configuration of the appropriate foreign

163

source.


Some agents may respond to the Identify command with generic identities such
as Openwsman 2.0.0. These values can be overridden by specifying the product-
vendor and product-version attributes in wsman-config.xml.

Example detector configuration:

<detector name="WS-Man" class=
"org.opennms.netmgt.provision.detector.wsman.WsManDetector">
 <parameter key="updateAssets" value="true"/>
</detector>

The response is logged as DEBUG information in provisiond.log and looks like the following:

ID: 3
Response-Code: 200
309Encoding: UTF-8
Content-Type: application/soap+xml;charset=UTF-8
Headers: {Content-Length=[787], content-type=[application/soap+xml;charset=UTF-8],
Date=[Mon, 08 Feb 2016 14:21:20 GMT], Server=[Microsoft-HTTPAPI/2.0]}
Payload:
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xml:lang="en-US">
 <s:Header/>
 <s:Body>
 <wsmid:IdentifyResponse xmlns:wsmid=
"http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd">
 <wsmid:ProtocolVersion>
http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd</wsmid:ProtocolVersion>
 <wsmid:ProductVendor>Microsoft Corporation</wsmid:ProductVendor> ①
 <wsmid:ProductVersion>OS: 6.2.9200 SP: 0.0 Stack: 3.0</wsmid:ProductVersion> ②
 <wsmid:SecurityProfiles>

<wsmid:SecurityProfileName>http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/
basic</wsmid:SecurityProfileName>

<wsmid:SecurityProfileName>http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/
spnego-kerberos</wsmid:SecurityProfileName>
 </wsmid:SecurityProfiles>
 </wsmid:IdentifyResponse>
 </s:Body>
</s:Envelope>

① ProductVendor: Stored to the asset field vendor

② ProductVersion: Stored in the asset field modelNumber

164


The information of the asset fields are used in the System Definition Rule to decide
which performance metrics will be gathered from Collectd.

5.4. Stress Testing

5.5. Stress Testing
The metrics:stress Karaf Shell command can be used to simulate load on the active persistence
strategy, whether it be RRDtool, JRobin, or Newts.

The tool works by generating collection sets, similar to those built when performing data collection,
and sending these to the active persistence layer. By using the active persistence layer, we ensure
that we use the same write path which is used by the actual data collection services.

To get started, log into the Karaf Shell on your system:

ssh -p 8101 admin@localhost

Generate samples for 10 nodes every 15 seconds and printing the statistic report every 30 seconds:

metrics:stress -n 10 -i 15 -r 30

While active, the command will continue to generate and persist collection sets. During this time
you can monitor the system I/O and other relevant statistics.

When your done, use CTRL+C to stop the stress tool.

A complete list of options is available using:

metrics:stress --help

5.5.1. Interpreting the output

The statistics output by the tool can be be interpreted as follows:

numeric-attributes-generated

The number of numeric attributes that were sent to the persistence layer. We have no guarantee
as to whether or not these were actually persisted.

string-attributes-generated

The number of string attributes that were sent to the persistence layer. We have no guarantee as
to whether or not these were actually persisted.

batches

The count is used to indicate how many batches of collection sets (one at every interval) were

165

sent to the persistence layer. The timers show how much time was spent generating the batch,
and sending the batch to the persistence layer.

166

Chapter 6. Events
Events are central to the operation of the OpenNMS Meridian platform, so it’s critical to have a firm
grasp of this topic.


Whenever something in OpenNMS Meridian appears to work by magic, it’s
probably events working behind the curtain.

6.1. Anatomy of an Event
Events are structured historical records of things that happen in OpenNMS Meridian and the nodes,
interfaces, and services it manages. Every event has a number of fixed fields and zero or more
parameters.

Mandatory Fields

UEI (Universal Event Identifier)

A string uniquely identifying the event’s type. UEIs are typically formatted in the style of a URI,
but the only requirement is that they start with the string uei..

Event Label

A short, static label summarizing the gist of all instances of this event.

Description

A long-form description describing all instances of this event.

Log Message

A long-form log message describing this event, optionally including expansions of fields and
parameters so that the value is tailored to the event at hand.

Severity

A severity for this event type. Possible values range from Cleared to Critical.

Event ID

A numeric identifier used to look up a specific event in the OpenNMS Meridian system.

Notable Optional Fields

Operator Instruction

A set of instructions for an operator to respond appropriately to an event of this type.

Alarm Data

If this field is provided for an event, OpenNMS Meridian will create, update, or clear alarms for
events of that type according to the alarm-data specifics.

6.2. Sources of Events
Events may originate within OpenNMS Meridian itself or from outside.

167

Internally-generated events can be the result of the platform’s monitoring and management
functions (e.g. a monitored node becoming totally unavailable results in an event with the UEI
uei.opennms.org/nodes/nodeDown) or they may act as inputs or outputs of housekeeping processes.

The following subsections summarize the mechanisms by which externally-created events can
arrive.

6.2.1. SNMP Traps

If SNMP-capable devices in the network are configured to send traps to OpenNMS Meridian, these
traps are transformed into events according to pre-configured rules. The Trapd service daemon,
which enables OpenNMS Meridian to receive SNMP traps, is enabled by default.


Disabling the Trapd service daemon will render OpenNMS Meridian incapable of
receiving SNMP traps.

Event definitions are included with OpenNMS Meridian for traps from many vendors' equipment.

6.2.2. Syslog Messages

Syslog messages sent over the network to OpenNMS Meridian can be transformed into events
according to pre-configured rules.


The Syslogd service daemon, which enables OpenNMS Meridian to receive syslog
messages over the network, must be enabled for this functionality to work. This
service daemon is disabled by default.

Parsers

Different parsers can be used to convert the syslog message fields into OpenNMS Meridian event
fields.

Parser Description

org.opennms.netmgt.syslogd.CustomSy
slogParser

Default parser that uses a regex statement to parse the
syslog header.

org.opennms.netmgt.syslogd.RadixTre
eSyslogParser

Parser that uses an internal list of grok-style statements to
parse the syslog header.

org.opennms.netmgt.syslogd.SyslogNG
Parser

Parser that strictly parses messages in the default pattern of
syslog-ng.

org.opennms.netmgt.syslogd.Rfc5424S
yslogParser

Parser that strictly parses the RFC 5424 format for syslog
messages.

RadixTreeSyslogParser

The RadixTreeSyslogParser normally uses a set of internally-defined patterns to parse multiple
syslog message formats. If you wish to customize the set of patterns, you can put a new set of
patterns into a syslog-grok-patterns.txt in the etc directory for OpenNMS Meridian.

168

The patterns are defined in grok-style statements where each token is defined by a
%{PATTERN:semantic} clause. Whitespace in the pattern will match 0…n whitespace characters and
character literals in the pattern will match the corresponding characters. The '%' character literal
must be escaped by using a backslash, ie. '\%'.


The RadixTreeSyslogParser’s grok implementation only supports a limited
number of pattern types. However, these patterns should be sufficient to parse
any syslog message format.

The patterns should be arranged in the file from most specific to least specific since the first pattern
to successfully match the syslog message will be used to construct the OpenNMS Meridian event.

Patter
n

Description

INT Positive integer.

MONTH 3-character English month abbreviation.

NOSPAC
E

String that contains no whitespace.

STRING String. Because this matches any character, it must be followed by a delimiter in the
pattern string.

Semantic Token Description

day 2-digit day of month (1-31).

facilityPriority Facility-priority integer.

hostname String hostname (unqualified or FQDN), IPv4 address, or IPv6 address.

hour 2-digit hour of day (0-23).

message Remaining string message.

messageId String message ID.

minute 2-digit minute (0-59).

month 2-digit month (1-12).

processId String process ID.

processName String process name.

second 2-digit second (0-59).

secondFraction 1- to 6-digit fractional second value as a string.

timezone String timezone value.

version Version.

year 4-digit year.

169

6.2.3. TL1 Autonomous Messages

Autonomous messages can be retrieved from certain TL1-enabled equipment and transformed into
events.


The Tl1d service daemon, which enables OpenNMS Meridian to receive TL1
autonomous messages, must be enabled for this functionality to work. This
service daemon is disabled by default.

6.2.4. XML-TCP

Any application or script can create custom events in OpenNMS Meridian by sending properly-
formatted XML data over a TCP socket.

6.2.5. ReST

Posting an event in XML format to the appropriate endpoint in the OpenNMS Meridian ReST API
will cause the creation of a corresponding event, just as with the XML-TCP interface.

6.3. The Event Bus
At the heart of OpenNMS Meridian lies an event bus. Any OpenNMS Meridian component can
publish events to the bus, and any component can subscribe to receive events of interest that have
been published on the bus. This publish-subscribe model enables components to use events as a
mechanism to send messages to each other. For example, the provisioning subsystem of OpenNMS
Meridian publishes a node-added event whenever a new node is added to the system. Other
subsystems with an interest in new nodes subscribe to the node-added event and automatically
receive these events, so they know to start monitoring and managing the new node if their
configuration dictates. The publisher and subscriber components do not need to have any
knowledge of each other, allowing for a clean division of labor and lessening the programming
burden to add entirely new OpenNMS Meridian subsystems or modify the behavior of existing
ones.

6.3.1. Associate an Event to a given node

There are 2 ways to associate an existing node to a given event prior sending it to the Event Bus:

• Set the nodeId of the node in question to the event.

• For requisitioned nodes, set the _foreignSource and _foreignId as parameters to the event.
Then, any incoming event without a nodeId and these 2 parameters will trigger a lookup on the
DB; if a node is found, the nodeId attribute will be dynamically set into the event, regardless
which method has been used to send it to the Event Bus. :imagesdir: ../../images

6.4. Event Configuration
The back-end configuration surrounding events is broken into two areas: the configuration of
Eventd itself, and the configuration of all types of events known to OpenNMS Meridian.

170

6.4.1. The eventd-configuration.xml file

The overall behavior of Eventd is configured in the file OPENNMS_HOME/etc/eventd-configuration.xml.
This file does not need to be changed in most installations. The configurable items include:

TCPAddress

The IP address to which the Eventd XML/TCP listener will bind. Defaults to 127.0.0.1.

TCPPort

The TCP port number on TCPAddress to which the Eventd XML/TCP listener will bind. Defaults to
5817.

UDPAddress

The IP address to which the Eventd XML/UDP listener will bind. Defaults to 127.0.0.1.

UDPPort

The UDP port number on TCPAddress to which the Eventd XML/UDP listener will bind. Defaults to
5817.

receivers

The number of threads allocated to service the event intake work done by Eventd.

queueLength

The maximum number of events that may be queued for processing. Additional events will be
dropped. Defaults to unlimited.

getNextEventID

An SQL query statement used to retrieve the ID of the next new event. Changing this setting is
not recommended.

socketSoTimeoutRequired

Whether to set a timeout value on the Eventd receiver socket.

socketSoTimeoutPeriod

The socket timeout, in milliseconds, to set if socketSoTimeoutRequired is set to yes.

logEventSummaries

Whether to log a simple (terse) summary of every event at level INFO. Useful when
troubleshooting event processing on busy systems where DEBUG logging is not practical.

6.4.2. The eventconf.xml file and its tributaries

The set of known events is configured in OPENNMS_HOME/etc/eventconf.xml. This file opens with a
<global> element, whose <security> child element defines which event fields may not be
overridden in the body of an event submitted via any Eventd listener. This mechanism stops a
mailicious actor from, for instance, sending an event whose operator-action field amounts to a
phishing attack.

After the <global> element, this file consists of a series of <event-file> elements. The content of

171

each <event-file> element specifies the path of a tributary file whose contents will be read and
incorporated into the event configuration. These paths are resolved relative to the OPENNMS_HOME/etc
directory; absolute paths are not allowed.

Each tributary file contains a top-level <events> element with one or more <event> child elements.
Consider the following event definition:

 <event>
 <uei>uei.opennms.org/nodes/nodeLostService</uei>
 <event-label>OpenNMS-defined node event: nodeLostService</event-label>
 <descr><p>A %service% outage was identified on interface
 %interface% because of the following condition: %parm[eventReason]%.<
/p> <p>
 A new Outage record has been created and service level
 availability calculations will be impacted until this outage is
 resolved.</p></descr>
 <logmsg dest="logndisplay">
 %service% outage identified on interface %interface%.
 </logmsg>
 <severity>Minor</severity>
 <alarm-data reduction-key="%uei%:%dpname%:%nodeid%:%interface%:%service%" alarm-
type="1" auto-clean="false"/>
 </event>

Every event definition has this same basic structure. See Anatomy of an Event for a discussion of
the structural elements.

A word about severities

When setting severities of events, it’s important to consider each event in the context of your
infrastructure as a whole. Events whose severity is critical at the zoomed-in level of a single device
may not merit a Critical severity in the zoomed-out view of your entire enterprise. Since an event
with Critical severity can never have its alarms escalated, this severity level should usually be
reserved for events that unequivocally indicate a truly critical impact to the business. Rock legend
Nigel Tufnel offered some wisdom on the subject.

Replacement tokens

Various tokens can be included in the description, log message, operator instruction and automatic
actions for each event. These tokens will be replaced by values from the current event when the
text for the event is constructed. Not all events will have values for all tokens, and some refer
specifically to information available only in events derived from SNMP traps.

%eventid%

The event’s numeric database ID

%uei%

The Universal Event Identifier for the event.

%source%

The source of the event (which OpenNMS Meridian service daemon created it).

172

https://www.youtube.com/watch?v=4xgx4k83zzc

%time%

The time of the event.

%dpname%

The ID of the Minion (formerly distributed poller) that the event was received on.

%nodeid%

The numeric node ID of the device that caused the event, if any.

%nodelabel%

The node label for the node given in %nodeid% if available.

%host%

%interface%

The IP interface associated with the event, if any.

%interfaceresolv%

Does a reverse lookup on the %interface% and returns its name if available.

%service%

The service associated with the event, if any.

%severity%

The severity of the event.

%snmphost%

The host of the SNMP agent that generated the event.

%id%

The SNMP Enterprise OID for the event.

%idtext%

The decoded (human-readable) SNMP Enterprise OID for the event (?).

%ifalias%

The interface' SNMP ifAlias.

%generic%

The Generic trap-type number for the event.

%specific%

The Specific trap-type number for the event.

%community%

The community string for the trap.

%version%

The SNMP version of the trap.

%snmp%

The SNMP information associated with the event.

173

%operinstruct%

The operator instructions for the event.

%mouseovertext%

The mouse over text for the event.

Parameter tokens

Many events carry additional information in parameters (see Anatomy of an Event). These
parameters may start life as SNMP trap variable bindings, or varbinds for short. You can access
event parameters using the parm replacement token, which takes several forms:

%parm[all]%

Space-separated list of all parameter values in the form parmName1="parmValue1"

parmName2="parmValue2" and so on.

%parm[values-all]%

Space-separated list of all parameter values (without their names) associated with the event.

%parm[names-all]%

Space-separated list of all parameter names (without their values) associated with the event.

%parm[<name>]%

Will return the value of the parameter named <name> if it exists.

%parm[##]%

Will return the total number of parameters as an integer.

%parm[#<num>]%

Will return the value of parameter number <num> (one-indexed).

%parm[name-#<num>]%

Will return the name of parameter number <num> (one-indexed).

The structure of the eventconf.xml tributary files

The ordering of event definitions is very important, as an incoming event is matched against them
in order. It is possible and often useful to have several event definitions which could match variant
forms of a given event, for example based on the values of SNMP trap variable bindings.

The tributary files included via the <event-file> tag have been broken up by vendor. When
OpenNMS Meridian starts, each tributary file is loaded in order. The ordering of events inside each
tributary file is also preserved.

The tributary files listed at the very end of eventconf.xml contain catch-all event definitions. When
slotting your own event definitions, take care not to place them below these catch-all files;
otherwise your definitions will be effectively unreachable.

A few tips

• To save memory and shorten startup times, you may wish to remove event definition files that
you know you do not need.

• If you need to customize some events in one of the default tributary files, you may wish to make

174

a copy of the file containing only the customized events, and slot the copy above the original;
this practice will make it easier to maintain your customizations in case the default file changes
in a future release of OpenNMS Meridian.

6.4.3. Reloading the event configuration

After making manual changes to OPENNMS_HOME/etc/eventconf.xml or any of its tributary files, you
can trigger a reload of the event configuration by issuing the following command on the OpenNMS
Meridian server:

OPENNMS_HOME/bin/send-event.pl uei.opennms.org/internal/reloadDaemonConfig -p
'daemonName Eventd'

6.5. Debugging
When debugging events, it may be helpful to lower the minimum severity at which Eventd will log
from the default level of WARN. To change this setting, edit OPENNMS_HOME/etc/log4j2.xml and locate
the following line:

 <KeyValuePair key="eventd" value="WARN" />

Changes to log42.xml will be take effect within 60 seconds with no extra action needed. At level
DEBUG, Eventd will log a verbose description of every event it handles to
OPENNMS_HOME/logs/eventd.log. On busy systems, this setting may create so much noise as to be
impractical. In these cases, you can get terse event summaries by setting Eventd to log at level INFO
and setting logEventSummaries="yes" in OPENNMS_HOME/etc/eventd-configuration.xml. Note that
changes to eventd-configuration.xml require a full restart of OpenNMS Meridian.

175

Chapter 7. Alarms

7.1. Alarm Sounds
Often users want an audible indication of a change in alarm state. The OpenNMS Meridian alarm
list page has the optional ability to generate a sound either on each new alarm or (more
annoyingly) on each change to an alarm event count on the page.

The figure Alarm Sounds View shows the alarm list page when alarms sounds are enabled.

Alarm Sounds View

By default the alarm sound feature is disabled. System Administrators must activate the sound
feature and also set the default sound setting for all users. However users can modify the default
sound setting for the duration of their logged-in session using a drop down menu with the following
options:

176

• Sound off: no sounds generated by the page.

• Sound on new alarm: sounds generated for every new alarm on the page.

• Sound on new alarm count: sounds generated for every increase in alarm event count for
alarms on the page.

7.2. Flashing Unacknowledged Alarms
By default OpenNMS Meridian displays the alarm list page with acknowledged and unacknowledged
alarms listed in separate search tabs. In a number of operational environments it is useful to see all
of the alarms on the same page with unacknowledged alarms flashing to indicate that they haven’t
yet been noticed by one of the team. This allows everyone to see at a glance the real time status of
all alarms and which alarms still need attention.

The figure Alarm Sounds View also shows the alarm list page when flashing unacknowledged
alarms are enabled. Alarms which are unacknowledged flash steadily. Alarms which have been
acknowledged do not flash and also have a small tick beside the selection check box. All alarms can
be selected to be escalated, cleared, acknowledged and unacknowledged.

7.3. Configuring Alarm Sounds and Flashing
By default OpenNMS Meridian does not enable alarm sounds or flashing alarms. The default
settings are included in opennms.properties. However rather than editing the default
opennms.properties file, the system administrator should enable these features by creating a new
file in opennms.properties.d and applying the following settings;

${OPENNMS_HOME}/etc/opennms.properties.d/alarm.listpage.properties

177

Configuration properties related to Alarm sound and flashing visualization

Alarm List Page Options
Several options are available to change the default behaviour of the Alarm List
Page.
<opennms url>/opennms/alarm/list.htm
#
The alarm list page has the ability to generate a sound either on each new alarm
or (more annoyingly) on each change to an alarm event count on the page.
#
Turn on the sound feature. Set true and Alarm List Pages can generate sounds in the
web browser.
opennms.alarmlist.sound.enable=true
#
Set the default setting for how the Alarm List Pages generates sounds. The default
setting can be
modified by users for the duration of their logged-in session using a drop down menu
.
off = no sounds generated by the page.
newalarm = sounds generated for every new alarm in the page
newalarmcount = sounds generated for every increase in alarm event count for
alarms on the page
#
opennms.alarmlist.sound.status=off

By default the alarm list page displays acknowledged and unacknowledged alarms in
separate search tabs
Some users have asked to be able to see both on the same page. This option allows
the alarm list page
to display acknowledged and unacknowledged alarms on the same list but
unacknowledged alarms
flash until they are acknowledged.
#
opennms.alarmlist.unackflash=true

The sound played is determined by the contents of the following file ${OPENNMS_HOME}/jetty-
webapps/opennms/sounds/alert.wav

If you want to change the sound, create a new wav file with your desired sound, name it alert.wav
and replace the default file in the same directory.

178

Chapter 8. Notifications

8.1. Introduction
OpenNMS Meridian uses notifications to make users aware of an event. Common notification
methods are email and paging, but notification mechanisms also exist for:

• Arbitrary HTTP GET and POST operations

• Arbitrary external commands

• Asterisk call origination

• IRCcat Internet Relay Chat bot

• SNMP Traps

• Slack, Mattermost, and other API-compatible team chat platforms

• Twitter, GNU Social, and other API-compatible microblog services

• User-provided scripts in any JSR-223 compatible language

• XMPP

The notification daemon Notifd creates and sends notifications according to configured rules when
selected events occur in OpenNMS Meridian.

8.2. Getting Started
The status of notifications is indicated by an icon at the top right of the web UI’s navigation bar.
OpenNMS Meridian installs with notifications globally disabled by default.

8.2.1. Enabling Notifications

To enable notifications in OpenNMS Meridian, log in to the web UI as a user with administrator
privileges. Hover over the user icon and click the Configure OpenNMS link. The controls for global
notification status appear in the top-level configuration menu as Notification Status. Click the On
radio button and then the Update button. Notifications are now globally enabled.


The web workflow above is functionally equivalent to editing the notifd-
configuration.xml file and setting status="on" in the top-level notifd-

configuration element. This configuration file change is picked up on the fly with
no need to restart or send an event.

8.2.2. Configuring Destination Paths

To configure notification destination paths in OpenNMS Meridian, navigate to Configure OpenNMS
and, in the Event Management section, choose Configure Notifications. In the resulting dialog choose
Configure Destination Paths.

179


The destination paths configuration is stored in the destinationPaths.xml file.
Changes to this file are picked up on the fly with no need to restart or send an
event.

8.2.3. Configuring Event Notifications

To configure notifications for individual events in OpenNMS Meridian, navigate to Configure
OpenNMS and, in the Event Management section, choose _Configure Notifications. Then choose
Configure Event Notifications.


The event notification configuration is stored in the notifications.xml file.
Changes to this file are picked up on the fly with no need to restart or send an
event.



The filter rule configured in notifications.xml, for ex: <rule>IPADDR !=

'0.0.0.0'</rule> is not strict by default. That means if there is any event that is
not associated with any node/interface, it would not validate rule and by default
notification would be saved. The rule can be changed to be strict i.e. <rule
strict="true">IPADDR != '0.0.0.0'</rule> then the rule will always be evaluated
and if there is no node/interface associated with event, notification wouldn’t be
saved.

8.3. Concepts
Notifications are how OpenNMS Meridian informs users about an event that happened in the
network, without the users having to log in and look at the UI. The core concepts required to
understand notifications are:

• Events and UEIs

• Users, Groups, and On-Call Roles

• Duty Schedules

• Destination Paths

• Notification Commands

These concepts fit together to form an Event Notification Definition. Also related, but presently only
loosely coupled to notifications, are Alarms and Acknowledgments.

8.3.1. Events and UEIs

As discussed in the chapter on Events, events are central to the operation of OpenNMS Meridian.
Almost everything that happens in the system is the result of, or the cause of, one or more events;
Every notification is triggered by exactly one event. A good understanding of events is therefore
essential to a working knowledge of notifications.

Every event has a UEI (Uniform Event Identifier), a string uniquely identifying the event’s type.
UEIs are typically formatted in the style of a URI, but the only requirement is that they start with

180

the string uei.. Most notifications are triggered by an exact UEI match (though they may also be
triggered with partial UEI matches using regular expression syntax).

8.3.2. Users, Groups, and On-Call Roles

Users are entities with login accounts in the OpenNMS Meridian system. Ideally each user
corresponds to a person. They are used to control access to the web UI, but also carry contact
information (e-mail addresses, phone numbers, etc.) for the people they represent. A user may
receive a notification either individually or as part of a Group or On-Call Role. Each user has several
technology-specific contact fields, which must be filled if the user is to receive notifications by the
associated method.

Groups are lists of users. In large systems with many users it is helpful to organize them into
Groups. A group may receive a notification, which is often a more convenient way to operate than
on individual user. Groups allow to assign a set of users to On Call Roles to build more complex
notification workflows.

How to create or modify membership of Users in a Group

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Groups

4. Create a new Group with Add new group or modify an existing Group by clicking the Modify
icon next to the Group

5. Select User from Available Users and use the >> to add them to the Currently in Group or
select the users in the Currently in Group list and use << to remove them from the list.

6. Click Finish to persist and apply the changes


The order of the Users in the group is relevant and is used as the order for
Notifications when this group is used as Target in a Destination Path.

How to delete a Group

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure Groups

4. Use the trash bin icon next to the Group to delete

5. Confirm delete request with OK

On-Call Roles are an overlay on top of groups, designed to enable OpenNMS Meridian to target the
appropriate user or users according to a calendar configuration. A common use case is to have
System Engineers in On-Call rotations with a given schedule. The On-Call Roles allow to assign a
predefined Duty Schedule to an existing Group with Users. For each On-Call Role a User is assigned
as a Supervisor to be responsible for the group of people in this On-Call Role.

181

How to assign a Group to an On-Call Role

1. Login as a User with administrative permissions

2. Choose Configure OpenNMS from the user specific main navigation which is named as your
login user name

3. Choose Configure Users, Groups and On-Call roles and select Configure On-Call Roles

4. Use Add New On-Call Role and set a Name for this On-Call Role, assign an existing Group and
give a meaningful description

5. Click Save to persist

6. Define a Duty Schedule in the calendar for the given date by click on the Plus (+) icon of the day
and provide a notification time for a specific User from the associated Group

7. Click Save to persist the Schedule

8. Click Done to apply the changes

8.3.3. Duty Schedules

Every User and Group may have a Duty Schedule, which specifies that user’s (or group’s) weekly
schedule for receiving notifications. If a notification should be delivered to an individual user, but
that user is not on duty at the time, the notification will never be delivered to that user. In the case
of notifications targeting a user via a group, the logic differs slightly. If the group is on duty at the
time the notification is created, then all users who are also on duty will be notified. If the group is
on duty, but no member user is currently on duty, then the notification will be queued and sent to
the next user who comes on duty. If the group is off duty at the time the notification is created, then
the notification will never be sent.

8.3.4. Destination Paths

A Destination Path is a named, reusable set of rules for sending notifications. Every destination path
has an initial step and zero or more escalation steps.

Each step in a destination path has an associated delay which defaults to zero seconds. The initial
step’s delay is called the initial delay, while an escalation step’s delay is simply called its delay.

Each step has one or more targets. A target may be a user, a group, an on-call role, or a one-off e-
mail address.



While it may be tempting to use one-off e-mail addresses any time an individual
user is to be targeted, it’s a good idea to reserve one-off e-mail addresses for
special cases. If a user changes her e-mail address, for instance, you’ll need to
update in every destination path where it appears. The use of one-off e-mail
addresses is meant for situations where a vendor or other external entity is
assisting with troubleshooting in the short term.

When a step targets one or more groups, a delay may also be specified for each group. The default
is zero seconds, in which case all group members are notified simultaneously. If a longer delay is
set, the group members will be notified in alphabetical order of their usernames.

182



Avoid using the same name for a group and a user. The destination path
configuration does not distinguish between users and groups at the step level, so
the behavior is undefined if you have both a user and a group named admin. It is
for this reason that the default administrators group is called Admin (with a capital
A) — case matters.

Within a step, each target is associated with one or more notification commands. If multiple
commands are selected, they will execute simultaneously.

Each step also has an auto-notify switch, which may be set to off, on, or auto. This switch specifies
the logic used when deciding whether or not to send a notice for an auto-acknowledged notification
to a target that was not on duty at the time the notification was first created. If off, notices will
never be sent to such a target; if on, they will always be sent; if auto, the system employs heuristics
aimed at "doing the right thing".

8.3.5. Notification Commands

A Notification Command is a named, reusable execution profile for a Java class or external program
command used to convey notices to targets. The following notification commands are included in
the default configuration:

callHomePhone, callMobilePhone, and callWorkPhone

Ring one of the phone numbers configured in the user’s contact information. All three are
implemented using the in-process Asterisk notification strategy, and differ only in which contact
field is used.

ircCat

Conveys a notice to an instance of the IRCcat Internet Relay Chat bot. Implemented by the in-
process IRCcat notification strategy.

javaEmail and javaPagerEmail

By far the most commonly used commands, these deliver a notice to a user’s email or pagerEmail
contact field value. By configuring a user’s pagerEmail contact field value to target an email-to-
SMS gateway, SMS notifications are trivially easy to configure. Both are implemented using the
in-process JavaMail notification strategy.

microblogDM, microblogReply, and microblogUpdate

Sends a notice to a user as a direct message, at a user via an at-reply, or to everybody as an
update via a microblog service with a Twitter v1-compatible API. Each command is implemented
with a separate, in-process notification strategy.

numericPage and textPage

Sends a notice to a user’s numeric or alphanumeric pager. Implemented as an external
command using the qpage utility.

xmppGroupMessage and xmppMessage

Sends a message to an XMPP group or user. Implemented with the in-process XMPP notification
strategy.

183

Notification commands are customizable and extensible by editing the notificationCommands.xml
file.


Use external binary notification commands sparingly to avoid fork-bombing your
OpenNMS Meridian system. Originally, all notification commands were external.
Today only the numericPage and textPage commands use external programs to do
their work.

8.4. Bonus Notification Methods
A handful of newer notification methods are included in OpenNMS Meridian but currently require
manual steps to activate.

8.4.1. Mattermost

If your organization uses the Mattermost team communications platform, you can configure
OpenNMS Meridian to send notices to any Mattermost channel via an incoming webhook. You must
configure an incoming webhook in your Mattermost team and do a bit of manual configuration to
your OpenNMS Meridian instance.

First, add the following bit of XML to the notificationCommands.xml configuration file (no
customization should be needed):

<command binary="false">
 <name>mattermost</name>
 <execute>org.opennms.netmgt.notifd.MattermostNotificationStrategy</execute>
 <comment>class for sending messages to a Mattermost team channel for
notifications</comment>
 <argument streamed="false">
 <switch>-subject</switch>
 </argument>
 <argument streamed="false">
 <switch>-tm</switch>
 </argument>
</command>

Then create a new file called mattermost.properties in the opennms.properties.d directory with the
following contents (customizing values as appropriate):

org.opennms.netmgt.notifd.mattermost.webhookURL=https://mattermost.example.com/hooks/b
f980352b5f7232efe721dbf0626bee1

Restart OpenNMS so that the mattermost.properties file will be loaded. Your new mattermost
notification command is now available for use in a destination path.

184

Additional Options

The following table lists optional properties that you may use in mattermost.properties to customize
your Mattermost notifications.


To improve the layout, the property names have been shortened to their final
component; you must prepend org.opennms.netmgt.notifd.mattermost. when
using them.

Table 78. Additional available parameters for the Mattermost notification strategy

Param
eter

Description Requi
red

Default
value

Example

channe
l

Specify a channel or private group other than
the one targeted by the webhook

optio
nal

Webhook
default

NetOps

userna
me

The username to associate with the notification
posts

optio
nal

None OpenNMS_Bot

iconEm
oji

An emoji sequence to use as the icon for the
notification posts

optio
nal

No icon :metal:

iconUR
L

The URL of an image to use as the icon for the
notification posts

optio
nal

No icon https://example.org/a
ssets/icon.png


Some of the optional configuration parameters are incompatible with some
versions of Mattermost. For instance, the channel option is known not to
work with Mattermost 3.7.0.

For more information on incoming webhooks in Mattermost, see Mattermost Integration Guide.

8.4.2. Slack Notifications

If your organization uses the Slack team communications platform, you can configure OpenNMS
Meridian to send notices to any Slack channel via an incoming webhook. You must configure an
incoming webhook in your Slack team and do a bit of manual configuration to your OpenNMS
Meridian instance.

First, add the following bit of XML to the notificationCommands.xml configuration file (no
customization should be needed):

185

https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://docs.mattermost.com/developer/webhooks-incoming.html

<command binary="false">
 <name>slack</name>
 <execute>org.opennms.netmgt.notifd.SlackNotificationStrategy</execute>
 <comment>class for sending messages to a Slack team channel for
notifications</comment>
 <argument streamed="false">
 <switch>-subject</switch>
 </argument>
 <argument streamed="false">
 <switch>-tm</switch>
 </argument>
</command>

Then create a new file called slack.properties in the opennms.properties.d directory with the
following contents (customizing values as appropriate):

org.opennms.netmgt.notifd.slack.webhookURL=
https://hooks.slack.com/services/AEJ7IIYAI/XOOTH3EOD/c3fc4a662c8e07fe072aeeec

Restart OpenNMS so that the slack.properties file will be loaded. Your new slack notification
command is now available for use in a destination path.

Additional Options

The following table lists optional properties that you may use in slack.properties to customize your
Slack notifications.


To improve the layout, the property names have been shortened to their final
component; you must prepend org.opennms.netmgt.notifd.slack. when using
them.

Table 79. Additional parameters for the Slack notification strategy

Param
eter

Description Requi
red

Default
value

Example

channe
l

Specify a channel or private group other than
the one targeted by the webhook

optio
nal

Webhook
default

NetOps

userna
me

The username to associate with the notification
posts

optio
nal

None OpenNMS_Bot

iconEm
oji

An emoji sequence to use as the icon for the
notification posts

optio
nal

No icon :metal:

iconUR
L

The URL of an image to use as the icon for the
notification posts

optio
nal

No icon https://example.org/a
ssets/icon.png

For more information on incoming webhooks in Slack, see Slack API.

186

https://example.org/assets/icon.png
https://example.org/assets/icon.png
https://api.slack.com/incoming-webhooks

Chapter 9. Provisioning

9.1. Introduction
The introduction of OpenNMS version 1.8 empowers enterprises and services providers like never
before with a new service daemon for maintaining the managed entity inventory in OpenNMS. This
new daemon, Provisiond, unifies all previous entity control mechanisms available in 1.6 (Capsd and
the Importer), into a new and improved, massively parallel, policy based provisioning system.
System integrators should note, Provisiond comes complete with a RESTFul Web Service API for easy
integration with external systems such as CRM or external inventory systems as well as an adapter
API for interfacing with other management systems such as configuration management.

OpenNMS 1.0, introduced almost a decade ago now, provided a capabilities scanning daemon,
Capsd, as the mechanism for provisioning managed entities. Capsd, deprecated with the release of
1.8.0, provided a rich automatic provisioning mechanism that simply required an IP address to seed
its algorithm for creating and maintaining the managed entities (nodes, interfaces, and IP based
services). Version 1.2 added and XML-RPC API as a more controlled (directed) strategy for
provisioning services that was mainly used by non telco based service providers (i.e. managed
hosting companies). Version 1.6 followed this up with yet another and more advanced mechanism
called the Importer service daemon. The Importer provided large service providers with the ability
to strictly control the OpenNMS entity provisioning with an XML based API for completely defining
and controlling the entities where no discovery and service scanning scanning was feasible.

The Importer service improved OpenNMS' scalability for maintaining managed entity databases by
an order of magnitude. This daemon, while very simple in concept and yet extremely powerful and
flexible provisioning improvement, has blazed the trail for Provisiond. The Importer service has
been in production for 3 years in service provider networks maintaining entity counts of more than
50,000 node level entities on a single instances of OpenNMS. It is a rock solid provisioning tool.

Provisiond begins a new era of managed entity provisioning in OpenNMS.

9.2. Concepts
Provisioning is a term that is familiar to service providers (a.k.a. operators, a.k.a. telephone
companies) and OSS systems but not so much in the non OSS enterprises.

Provisiond receives "requests" for adding managed entities via 2 basic mechanisms, the OpenNMS
Meridian traditional "New Suspect" event, typically via the Discovery daemon, and the import
requisition (XML definition of node entities) typically via the Provisioning Groups UI. If you are
familiar with all previous releases of OpenNMS, you will recognize the New Suspect Event based
Discovery to be what was previously the Capsd component of the auto discovery behavior. You will
also recognize the import requisition to be of the Model Importer component of OpenNMS.
Provisiond now unifies these two separate components into a massively parallel advanced policy
based provisioning service.

187

9.2.1. Terminology

The following terms are used with respect to the OpenNMS Meridian provisioning system and are
essential for understanding the material presented in this guide.

Entity

Entities are managed objects in OpenNMS Meridian such as Nodes, IP interfaces, SNMP Interfaces,
and Services.

Foreign Source and Foreign ID

The Importer service from 1.6 introduced the idea of foreign sources and foreign IDs. The Foreign
Source uniquely identifies a provisioning source and is still a basic attribute of importing node
entities into OpenNMS Meridian. The concept is to provide an external (foreign) system with a way
to uniquely identify itself and any node entities that it is requesting (via a requisition) to be
provisioned into OpenNMS Meridian.

The Foreign ID is the unique node ID maintained in foreign system and the foreign source uniquely
identifies the external system in OpenNMS Meridian.

OpenNMS Meridian uses the combination of the foreign source and foreign ID become the unique
foreign key when synchronizing the set of nodes from each source with the nodes in the OpenNMS
Meridian DB. This way the foreign system doesn’t have to keep track of the OpenNMS Meridian
node IDs that are assigned when a node is first created. This is how Provisiond can decided if a node
entity from an import requisition is new, has been changed, or needs to be deleted.

Foreign Source Definition

Additionally, the foreign source has been extended to also contain specifications for how entities
should be discovered and managed on the nodes from each foreign source. The name of the foreign
source has become pervasive within the provisioning system and is used to simply some of the
complexities by weaving this name into:

• the name of the provisioning group in the Web-UI

• the name of the file containing the persisted requisition (as well as the pending requisition if it
is in this state)

• the foreign-source attribute value inside the requisition (obviously, but, this is pointed out to
indicate that the file name doesn’t necessarily have to equal the value of this attribute but is
highly recommended as an OpenNMS Meridian best practice)

• the building attribute of the node defined in the requisition (this value is called “site” in the
Web-UI and is assigned to the building column of the node’s asset record by Provisiond and is
the default value used in the Site Status View feature)

Import Requisition

Import requisition is the terminology OpenNMS Meridian uses to represent the set of nodes,
specified in XML, to be provisioned from a foreign source into OpenNMS Meridian. The requisition
schema (XSD) can be found at the following location. http://xmlns.opennms.org/xsd/config/model-

188

http://xmlns.opennms.org/xsd/config/model-import

import

Auto Discovery

Auto discovery is the term used by OpenNMS Meridian to characterize the automatic provisioning
of nodes entities. Currently, OpenNMS Meridian uses an ICMP ping sweep to find IP address on the
network. For the IPs that respond and that are not currently in the DB, OpenNMS Meridian
generates a new suspect event. When this event is received by Provisiond, it creates a node and it
begins a node scan based on the default foreign source definition.

Directed Discovery

Provisiond takes over for the Model Importer found in version 1.6 which implemented a unique,
first of its kind, controlled mechanism for specifying managed entities directly into OpenNMS
Meridian from one or more data sources. These data sources often were in the form of an in-
housed developed inventory or stand-alone provisioning system or even a set of element
management systems. Using this mechanism, OpenNMS Meridian is directed to add, update, or
delete a node entity exactly as defined by the external source. No discovery process is used for
finding more interfaces or services.

Enhanced Directed Discovery

Directed discovery is enhanced with the capability to scan nodes that have been directed nodes for
entities (interfaces.

Policy Based Discovery

The phrase, Policy based Directed Discovery, is a term that represents the latest step in OpenNMS
Meridian provisioning evolution and best describes the new provisioning architecture now in
OpenNMS Meridian for maintaining its inventory of managed entities. This term describes the
control that is given over the Provisioning system to OpenNMS Meridian users for managing the
behavior of the NMS with respect to the new entities that are being discovered. Current behaviors
include persistence, data collection, service monitoring, and categorization policies.

9.2.2. Addressing Scalability

The explosive growth and density of the IT systems being deployed today to support not traditional
IP services is impacting management systems like never before and is demanding from them
tremendous amounts of scalability. The scalability of a management system is defined by its
capacity for maintaining large numbers of managing entities coupled with its efficiency of
managing the entities.

Today, It is not uncommon for OpenNMS Meridian deployments to find node entities with tens of
thousands of physical interfaces being reported by SNMP agents due to virtualization (virtual hosts,
interfaces, as well as networks). An NMS must be capable of using the full capacity every resource
of its computing platform (hardware and OS) as effectively as possible in order to manage these
environments. The days of writing scripts or single threaded applications will just no longer be able
to do the work required an NMS when dealing with the scalability challenges facing systems and
systems administrators working in this domain.

189

http://xmlns.opennms.org/xsd/config/model-import

Parallelization and Non-Blocking I/O

Squeezing out every ounce of power from a management system’s platform (hardware and OS) is
absolutely required to complete all the work of a fully functional NMS such as OpenNMS Meridian.
Fortunately, the hardware and CPU architecture of a modern computing platform provides multiple
CPUs with multiple cores having instruction sets that include support for atomic operations. While
these very powerful resources are being provided by commodity systems, it makes the complexity
of developing applications to use them vs. not using them, orders of magnitude more complex.
However, because of scalability demands of our complex IT environments, multi-threaded NMS
applications are now essential and this has fully exposed the complex issues of concurrency in
software development.

OpenNMS Meridian has stepped up to this challenge with its new concurrency strategy. This
strategy is based on a technique that combines the efficiency of parallel (asynchronous) operations
(traditionally used by most effectively by single threaded applications) with the power of a fully
current, non-blocking, multi-threaded design. The non-blocking component of this new
concurrency strategy added greater complexity but OpenNMS Meridian gained orders of
magnitude in increased scalability.


Java Runtimes, based on the Sun JVM, have provided implementations for
processor based atomic operations and is the basis for OpenNMS Meridian’ non-
blocking concurrency algorithms.

Provisioning Policies

Just because you can, doesn’t mean you should! Because the massively parallel operations being
created for Provisiond allows tremendous numbers of nodes, interfaces, and services to be very
rapidly discovered and persisted, doesn’t mean it should. A policy API was created for Provisiond
that allows implementations to be developed that can be applied to control the behavior of
Provisiond. The 1.8 release includes a set of flexible provisioning policies that control the
persistence of entities and their attributes constrain monitoring behavior.

When nodes are imported or re-scanned, there is, potentially, a set of zero or more provisioning
policies that are applied. The policies are defined in the foreign source’s definition. The policies for
an auto-discovered node or nodes from provisioning groups that don’t have a foreign source
definition, are the policies defined in the default foreign source definition.

The Default Foreign Source Definition

Contained in the libraries of the Provisioning service is the "template" or default foreign source.
The template stored in the library is used until the OpenNMS Meridian admin user alters the
default from the Provisioning Groups WebUI. Upon edit, this template is exported to the OpenNMS
Meridian etc/ directory with the file name: default-foreign-source.xml.

190

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<foreign-source date-stamp="2009-10-16T18:04:12.844-05:00"
 name="default"
 xmlns=
"http://xmlns.opennms.org/[http://xmlns.opennms.org/xsd/config/foreign-source">
 <scan-interval>1d</scan-interval>
 <detectors>
 <detector class="org.opennms.netmgt.provision.detector.datagram.DnsDetector"
name="DNS"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.FtpDetector" name
="FTP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.HttpDetector"
name="HTTP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.HttpsDetector"
name="HTTPS"/>
 <detector class="org.opennms.netmgt.provision.detector.icmp.IcmpDetector" name=
"ICMP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.ImapDetector"
name="IMAP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.LdapDetector"
name="LDAP"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.NrpeDetector"
name="NRPE"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.Pop3Detector"
name="POP3"/>
 <detector class="
org.opennms.netmgt.provision.detector.radius.RadiusAuthDetector" name="Radius"/>
 <detector class="org.opennms.netmgt.provision.detector.simple.SmtpDetector"
name="SMTP"/>
 <detector class="org.opennms.netmgt.provision.detector.snmp.SnmpDetector" name=
"SNMP"/>
 <detector class="org.opennms.netmgt.provision.detector.ssh.SshDetector" name=
"SSH"/>
 </detectors>
 <policies/>
</foreign-source>

Automatic Rescanning

The default foreign source defines a scan-interval of 1d, which will cause all nodes in the
requisition to be scanned daily. You may set the scan interval using any combination of the
following signifiers:

• w: Weeks

• d: Days

• h: Hours

• m: Minutes

• s: Seconds

191

• ms: Milliseconds

For example, to rescan every 6 days and 53 minutes, you would set the scan-interval to 6d 53m.

Don’t forget, for the new scan interval to take effect, you will need to import the requisition one
more time so that the foreign source becomes active.

Disabling Rescan

For a large number of devices, you may want to set the scan-interval to 0 to disable automatic
rescan altogether. OpenNMS Meridian will not attempt to rescan the nodes in the requisition
unless you trigger a manual (forced) rescan through the web UI or Provisioning ReST API.

9.3. Getting Started
An NMS is of no use until it is setup for monitoring and entities are added to the system. OpenNMS
Meridian installs with a base configuration with a configuration that is sufficient get service level
monitoring and performance management quickly up and running. As soon as managed entities
are provisioned, the base configuration will automatically begin monitoring and reporting.

Generally speaking, there are two methods of provisioning in OpenNMS Meridian: Auto Discovery
and Directed Discovery. We’ll start with Auto Discovery, but first, we should quickly review the
configuration of SNMP so that newly discovered devices can be immediately scanned for entities as
well as have reporting and thresholding available.

9.3.1. Provisioning the SNMP Configuration

OpenNMS Meridian requires SNMP configuration to be properly setup for your network in order to
properly understand Network and Node topology as well as to automatically enable performance
data collection. Network topology is updated as nodes (a.k.a. devices or hosts) are provisioned.
Navigate to the Admin/Configure SNMP Community Names by IP address as shown below.

Configuring SNMP community names

192

193

194

195



Provisiond includes an option to add community information in the Single Node
provisioning interface. This, is equivalent of entering a single IP address in the
screen with the convenience of setting the community string at the same time a
node is provisioned. See the Quick Node Add feature below for more details about
this capability.

This screen sets up SNMP within OpenNMS Meridian for agents listening on IP addresses 10.1.1.1
through 10.254.254.254. These settings are optimized into the snmp-configuration.xml file.
Optimization means that the minimal configuration possible will be written. Any IP addresses
already configured that are eclipsed by this range will be removed. Here is the resulting
configuration.

196

Sample snmp-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<snmp-config
xmlns="http://xmlns.opennms.org/xsd/config/snmp[http://xmlns.opennms.org/xsd/config/sn
mp]"
port="161" retry="3" timeout="800" read-community="public"

version="v1" max-vars-per-pdu="10">

<definition retry="1" timeout="2000"

read-community="public" version="v2c">

<specific>10.12.23.32</specific>

</definition>

</snmp-config>

However, If an IP address is then configured that is within the range, the range will be split into two
separate ranges and a specific entry will be added. For example, if a configuration was added
through the same UI for the IP: 10.12.23.32 having the community name public, then the resulting
configuration will be:

<?xml version="1.0" encoding="UTF-8"?>
<snmp-config xmlns="http://xmlns.opennms.org/xsd/config/snmp"
 port="161"
 retry="3"
 timeout="800"
 read-community="public"
 version="v1"
 max-vars-per-pdu="10">

 <definition retry="1" timeout="2000" read-community="YrusoNoz" version="v2c">
 <range begin="10.1.1.1" end="10.12.23.31"/>
 <range begin="10.12.23.33" end="10.254.254.254"/>
 </definition>

 <definition retry="1" timeout="2000" read-community="public" version="v2c">
 <specific>10.12.23.32</specific>
 </definition>
</snmp-config>


the bold IP addresses show where the range was split and the specific with
community name "public" was added.

197

Now, with SNMP configuration provisioned for our 10 networks, we are ready to begin adding
nodes. Our first example will be to automatically discover and add all managed entities (nodes, IP
interfaces, SNMP Interfaces, and Monitored IP based Services). We will then give an example of
how to be more directed and deliberate about your discovery by using Provisioning Groups.

Automatically discovered entities are analyzed, persisted to the relational data store, and then
managed based on the policies defined in the default foreign source definition. This is very similar
to the way that entities were previously handled by the (now obsolete) Capsd daemon but with
finer grained sense of control.

9.3.2. Automatic Discovery

Currently in OpenNMS Meridian, the ICMP is used to automatically provision node entities into
OpenNMS Meridian. This functionality has been in OpenNMS since is 1.0 release, however, in 1.8, a
few of the use cases have been updated with Provisiond’s replacement of Capsd.

Separation of Concerns

Version 1.8 Provisiond separates what was called Capsd scanning in to 3 distinct phases: entity
scanning, service detection, and node merging. These phases are now managed separately by
Provisiond. Immediately following the import of a node entity, tasks are created for scanning a
node to discover the node entity’s interfaces (SNMP and IP). As interfaces are found, they are
persisted and tasks are scheduled for service detection of each IP interface.

For auto discovered nodes, a node merging phase is scheduled; Nodes that have been directly
provisioned will not be included in the node merging process. Merging will only occur when 2
automatically discovered nodes appear to be the same node.


the use case and redesign of node merging is still an outstanding issue with the
1.8.0 release

9.3.3. Enhanced Directed Discovery

This new form of provisioning first appears in OpenNMS with version 1.8 and the new Provisiond
service. It combines the benefits of the Importer’s strictly controlled methodology of directed
provisioning (from version 1.6) with OpenNMS’ robustly flexible auto discovery. Enhanced Directed
discovery begins with an enhanced version of the same import requisition used in directed
provisioning and completes with a policy influenced persistence phase that sorts though the details
of all the entities and services found during the entity and service scanning phase.

If you are planning to use this form of provisioning, it important to understand the conceptual
details of how Provisiond manages entities it is directed to provision. This knowledge will enable
administrators and systems integrators to better plan, implement, and resolve any issues involved
with this provisioning strategy.

Understanding the Process

There are 3 phases involved with directing entities to be discovered: import, node scan, and service
scan. The import phase also has sub phases: marshal, audit, limited SNMP scan, and re-parent.

198

Marshal and Audit Phases

It is important to understand that the nodes requisitioned from each foreign source are managed as
a complete set. Nodes defined in a requisition from the foreign source CRM and CMDB, for example,
will be managed separately from each other even if they should contain exactly the same node
definitions. To OpenNMS Meridian, these are individual entities and they are managed as a set.

Requisitions are referenced via a URL. Currently, the URL can be specified as one of the following
protocols: FILE, HTTP, HTTPS, and DNS. Each protocol has a protocol handler that is used to stream
the XML from a foreign source, i.e. http://inv.corp.org/import.cgi?customer=acme or
file:/opt/opennms/etc/imports/acme.xml. The DNS protocol is a special handler developed for
Provisioning sets of nodes as a foreign-source from a corporate DNS server. See DNS Protocol
Handler for details.

Upon the import request (either on schedule or on demand via an Event) the requisition is
marshaled into Java objects for processing. The nodes defined in the requisition represent what
OpenNMS Meridian should have as the current set of managed entities from that foreign source.
The audit phase determines for each node defined (or not defined) in the requisition which are to
be processed as an Add, Update, or Delete operation during the Import Phase. This determination is
made by comparing the set foreign IDs of each node in the requisition set with the set of foreign IDs
of currently managed entities in OpenNMS Meridian.

The intersection of the IDs from each set will become the Update operations, the extra set of foreign
IDs that are in the requisition become the Add operations, and the extra set of foreign IDs from the
managed entities become the Delete operations. This implies that the foreign IDs from each foreign
source must be unique.

Naturally, the first time an import request is processed from a foreign source there will be zero (0)
node entities from the set of nodes currently being managed and each node defined in the
requisition will become an Add Operation. If a requisition is processed with zero (0) node
definitions, all the currently managed nodes from that foreign source will become Delete
operations (all the nodes, interfaces, outages, alarms, etc. will be removed from OpenNMS
Meridian).

When nodes are provisioned using the Provisioning Groups Web-UI, the requisitions are stored on
the local file system and the file protocol handler is used to reference the requisition. Each
Provisioning Group is a separate foreign source and unique foreign IDs are generated by the Web-
UI. An MSP might use Provisioning Groups to define the set of nodes to be managed by customer
name where each customer’s set of nodes are maintained in a separate Provisioning Group.

Import Phase

The import phase begins when Provisiond receives a request to import a requisition from a URL.
The first step in this phase is to load the requisition and marshal all the node entities defined in the
requisition into Java objects.

If any syntactical or XML structural problems occur in the requisition, the entire import is
abandoned and no import operations are completed.

Once the requisition is marshaled, the requisition nodes are audited against the persisted node

199

http://inv.corp.org/import.cgi?customer=acme

entities. The set of requisitioned nodes are compared with a subset of persisted nodes and this
subset is generated from a database query using the foreign source defined in the requisition. The
audit generates one of three operations for each requisition node: insert, update, delete based on
each requisitioned node’s foreign ID. Delete operations are created for any nodes that are not in the
requisition but are in the DB subset, update operations are created for requisition nodes that match
a persisted node from the subset (the intersection), and insert operations are created from the
remaining requisition nodes (nodes in the requisition that are not in the DB subset).

If a requisition node has an interface defined as the Primary SNMP interface, then during the
update and insert operations the node will be scanned for minimal SNMP attribute information.
This scan find the required node and SNMP interface details required for complete SNMP support
of the node and only the IP interfaces defined in the requisition.


this not the same as Provisiond SNMP discovery scan phases: node scan and
interface scan.

Node Scan Phase

Where directed discovery leaves off and enhanced directed discovery begins is that after all the
operations have completed, directed discovery is finished and enhanced directed discovery takes
off. The requisitioned nodes are scheduled for node scans where details about the node are
discovered and interfaces that were not directly provisioned are also discovered. All physical
(SNMP) and logical (IP) interfaces are discovered and persisted based on any Provisioning Policies
that may have been defined for the foreign source associated with the import requisition.

Service Scan (detection) Phase

Additionally, the new Provisiond enhanced directed discovery mechanism follows interface
discovery with service detection on each IP interface entity. This is very similar to the Capsd plugin
scanning found in all former releases of OpenNMS except that the foreign source definition is used
to define what services should be detected on these interfaces found for nodes in the import
requisition.

9.4. Import Handlers

9.4.1. File Handler

9.4.2. HTTP Handler

9.4.3. DNS Handler

The new Provisioning service in OpenNMS Meridian is continuously improving and adapting to the
needs of the community.

One of the most recent enhancements to the system is built upon the very flexible and extensible
API of referencing an import requisition’s location via a URL. Most commonly, these URLs are files
on the file system (i.e. file:/opt/opennms/etc/imports/<my-provisioning-group.xml>) as requisitions
created by the Provisioning Groups UI. However, these same requisitions for adding, updating, and

200

deleting nodes (based on the original model importer) can also come from URLs specifying the
HTTP protocol: http://myinventory.server.org/nodes.cgi

Now, using Java’s extensible protocol handling specification, a new protocol handler was created so
that a URL can be specified for requesting a Zone Transfer (AXFR) request from a DNS server. The A
records are recorded and used to build an import requisition. This is handy for organizations that
use DNS (possibly coupled with an IP management tool) as the data base of record for nodes in the
network. So, rather than ping sweeping the network or entering the nodes manually into OpenNMS
Meridian Provisioning UI, nodes can be managed via 1 or more DNS servers.

The format of the URL for this new protocol handler is: dns://<host>[:port]/<zone>[/<foreign-
source>/][?expression=<regex>]

DNS Import Examples:

Simple

dns://my-dns-server/myzone.com

This URL will import all A records from the host my-dns-server on port 53 (default port) from zone
"myzone.com" and since the foreign source (a.k.a. the provisioning group) is not specified it will
default to the specified zone.

Using a Regular Expression Filter

dns://my-dns-server/myzone.com/portland/?expression=^por-.*

This URL will import all nodes from the same server and zone but will only manage the nodes in
the zone matching the regular expression ^port-.* and will and they will be assigned a unique
foreign source (provisioning group) for managing these nodes as a subset of nodes from within the
specified zone.

If your expression requires URL encoding (for example you need to use a ? in the expression) it
must be properly encoded.

dns://my-dns-server/myzone.com/portland/?expression=^por[0-9]%3F

DNS Setup

Currently, the DNS server requires to be setup to allow a zone transfer from the OpenNMS Meridian
server. It is recommended that a secondary DNS server is running on OpenNMS Meridian and that
the OpenNMS Meridian server be allowed to request a zone transfer. A quick way to test if zone
transfers are working is:

dig -t AXFR @<dnsServer> <zone>

Configuration

201

http://myinventory.server.org/nodes.cgi

The configuration of the Provisoning system has moved from a properties file (model-
importer.properties) to an XML based configuration container. The configuration is now extensible
to allow the definition of 0 or more import requisitions each with their own cron based schedule
for automatic importing from various sources (intended for integration with external URL such as
http and this new dns protocol handler.

A default configuration is provided in the OpenNMS Meridian etc/ directory and is called:
provisiond-configuration.xml. This default configuration has an example for scheduling an import
from a DNS server running on the localhost requesting nodes from the zone, localhost and will be
imported once per day at the stroke of midnight. Not very practical but is a good example.

<?xml version="1.0" encoding="UTF-8"?>
 <provisiond-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.opennms.org/xsd/config/provisiond-configuration"
 foreign-source-dir="/opt/opennms/etc/foreign-sources"
 requistion-dir="/opt/opennms/etc/imports"
 importThreads="8"
 scanThreads="10"
 rescanThreads="10"
 writeThreads="8" >

 <!--http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
 Field Name Allowed Values Allowed Special Characters
 Seconds 0-59 , - * / Minutes 0-59 , - * / Hours 0-23 , - * /
 Day-of-month1-31, - * ? / L W C Month1-12 or JAN-DEC, - * /
 Day-of-Week1-7 or SUN-SAT, - * ? / L C # Year (Opt)empty, 1970-2099, - * /
 -->

 <requisition-def import-name="localhost"
 import-url-resource="dns://localhost/localhost">

 <cron-schedule>0 0 0 * * ? *</cron-schedule> <!-- daily, at midnight -->
 </requisition-def>
</provisiond-configuration>

Configuration Reload

Like many of the daemon configuration in the 1.7 branch, the configurations are reloadable
without having to restart OpenNMS Meridian, using the reloadDaemonConfig uei:

/opt/opennms/bin/send-event.pl
uei.opennms.org/internal/reloadDaemonConfig --parm 'daemonName Provisiond'

This means that you don’t have to restart OpenNMS Meridian every time you update the
configuration.

202

9.5. Provisioning Examples
Here are a few practical examples of enhanced directed discovery to help with your understanding
of this feature.

9.5.1. Basic Provisioning

This example adds three nodes and requires no OpenNMS Meridian configuration other than
specifying the node entities to be provisioned and managed in OpenNMS Meridian.

Defining the Nodes via the Web-UI

Using the Provisioning Groups Web-UI, three nodes are created given a single IP address. Navigate
to the Admin Menu and click Provisioning Groups Menu from the list of Admin options and create
the group Bronze.

Creating a new Provisioning Group

Clicking the Add New Group button will create the group and will redisplay the page including this
new group among the list of any group(s) that have already been created.


At this point, the XML structure for holding the new provisioning group (a.k.a. an
import requisition) has been persisted to the '$OPENNMS_ETC/imports/pending'
directory.

Clicking the Edit link will bring you to the screen where you can begin the process of defining node
entities that will be imported into OpenNMS Meridian. Click the Add Node button will begin the
node entity creation process fill in the node label and click the Save button.

Creating a new Node definition in the Provisioning Group

203

At this point, the provisioning group contains the basic structure of a node entity but it is not
complete until the interface(s) and interface service(s) have been defined. After having clicked the
Save button, as we did above presents, in the Web-UI, the options Add Interface, Add Node Category,
and Add Node Asset. Click the Add Interface link to add an interface entity to the node.

Adding an Interface to the node definition

Enter the IP address for this interface entity, a description, and specify the Primary attribute as P
(Primary), S (Secondary), N (Not collected), or C (Collected) and click the save button. Now the node
entity has an interface for which services can be defined for which the Web-UI now presents the
Add Service link. Add two services (ICMP, SNMP) via this link.

A complete node definition with all required elements defined.

204

Now the node entity definition contains all the required elements necessary for importing this
requisition into OpenNMS Meridian. At this point, all the interfaces that are required for the node
should be added. For example, NAT interfaces should be specified there are services that they
provide because they will not be discovered during the Scan Phase.

Two more node definitions will be added for the benefit of this example.

The completed requisition for the example Bronze Provisioning Group

205

This set of nodes represents an import requisition for the Bronze provisioning group. As this
requisition is being edited via the WebUI, changes are being persisted into the OpenNMS Meridian
configuration directory '$OPENNMS_etc/imports/' pending as an XML file having the name
bronze.xml.


The name of the XML file containing the import requisition is the same as the
provisioning group name. Therefore naming your provisioning group without the
use of spaces makes them easier to manage on the file system.

Click the Done button to return to the Provisioning Groups list screen. The details of the “Bronze”
group now indicates that there are 3 nodes in the requisition and that there are no nodes in the DB
from this group (a.k.a. foreign source). Additionally, you can see that time the requisition was last
modified and the time it last imported are given (the time stamps are stored as attributes inside the
requisition and are not the file system time stamps). These details are indicative of how well the DB
represents what is in the requisition.

206


You can tell that this is a pending requisition for 2 reasons: 1) there are 3 nodes
defined and 0 nodes in the DB, 2) the requisition has been modified since the last
import (in this case never).

Import the Nodes

In this example, you see that there are 3 nodes in the pending requisition and 0 in the DB. Click the
Import button to submit the requisition to the provisioning system (what actually happens is that
the Web-UI sends an event to the Provisioner telling it to begin the Import Phase for this group).


Do not refresh this page to check the values of these details. To refresh the details
to verify the import, click the Provisioning Groups bread crumb item.

You should be able to immediately verify the importation of this provisioning group because the
import happens very quickly. Provisiond has several threads ready for processing the import
operations of the nodes defined in this requisition.

A few SNMP packets are sent and received to get the SNMP details of the node and the interfaces
defined in the requisition. Upon receipt of these packets (or not) each node is inserted as a DB
transaction.

The nodes are now added to OpenNMS Meridian and are under management.

Following the import of a node with thousands of interfaces, you will be able to refresh the
Interface table browser on the Node page and see that interfaces and services are being discovered
and added in the background. This is the discovery component of directed discovery.

207

Adding a Node

To direct that another node be added from a foreign source (in this example the Bronze
Provisioning Group) simply add a new node definition and re-import. It is important to remember
that all the node definitions will be re-imported and the existing managed nodes will be updated, if
necessary.

Changing a Node

To direct changes to an existing node, simply add, change, or delete elements or attributes of the
node definition and re- import. This is a great feature of having directed specific elements of a node
in the requisition because that attributes will simply be changed. For example, to change the IP
address of the Primary SNMP interface for the node, barbrady.opennms.org, just change the
requisition and re-import.

Each element in the Web-UI has an associated Edit icon Click this icon to change the IP address for
barbrady.opennms.org, click save, and then Click the Done button.

Changing the IP address of barbrady.opennms.org from 10.1.1.2 to 192.168.1.1

The Web-UI will return you to the Provisioning Groups screen where you will see that there are the
time stamp showing that the requisition’s last modification is more recent that the last import time.

The Provisioning Group must be re-imported

This provides an indication that the group must be re-imported for the changes made to the
requisition to take effect. The IP Interface will be simply updated and all the required events
(messages) will be sent to communicate this change within OpenNMS Meridian.

The IP interface for barbrady.opennms.org is immediately updated

208

Deleting a Node

Barbrady has not been behaving, as one might expect, so it is time to remove him from the system.
Edit the provisioning group, click the delete button next to the node barbrady.opennms.org, click the
Done button.

Bronze Provisioning Group definition indicates a node has been removed and requires an import to
delete the node entity from the OpenNMS Meridian system

Click the Import button for the Bronze group and the Barbrady node and its interfaces, services,
and any other related data will be immediately deleted from the OpenNMS Meridian system. All the
required Events (messages) will be sent by Provisiond to provide indication to the OpenNMS
Meridian system that the node Barbrady has been deleted.

Barbrady has been deleted

Deleting all the Nodes

There is a convenient way to delete all the nodes that have been provided from a specific foreign
source. From the main Admin/Provisioning Groups screen in the Web-UI, click the Delete Nodes
button. This button deletes all the nodes defined in the Bronze requisition. It is very important to
note that once this is done, it cannot be undone! Well it can’t be undone from the Web-UI and can
only be undone if you’ve been good about keeping a backup copy of your '$OPENMS_ETC/' directory
tree. If you’ve made a mistake, before you re-import the requisition, restore the Bronze.xml
requisition from your backup copy to the '$OPENNMS_ETC/imports' directory.

All node definitions have been removed from the Bronze requisition. The Web-UI indicates an import is

209

now required to remove them from OpenNMS Meridian.

Clicking the Import button will cause the Audit Phase of Provisiond to determine that all the nodes
from the Bronze group (foreign source) should be deleted from the DB and will create Delete
operations. At this point, if you are satisfied that the nodes have been deleted and that you will no
longer require nodes to be defined in this Group, you will see that the Delete Nodes button has now
changed to the Delete Group button. The Delete Group button is displayed when there are no nodes
entities from that group (foreign source) in OpenNMS Meridian.

When no node entities from the group exist in OpenNMS Meridian, then the Delete Group button is
displayed.

9.5.2. Advanced Provisioning Example

In the previous example, we provisioned 3 nodes and let Provisiond complete all of its import
phases using a default foreign source definition. Each Provisioning Group can have a separate
foreign source definition that controls:

• The rescan interval

• The services to be detected

• The policies to be applied

This example will demonstrate how to create a foreign source definition and how it is used to
control the behavior of Provisiond when importing a Provisioning Group/foreign source requisition.

First let’s simply provision the node and let the default foreign source definition apply.

The node definition used for the Advanced Provisioning Example

210

Following the import, All the IP and SNMP interfaces, in addition to the interface specified in the
requisition, have been discovered and added to the node entity. The default foreign source
definition has no polices for controlling which interfaces that are discovered either get persisted or
managed by OpenNMS Meridian.

Logical and Physical interface and Service entities directed and discovered by Provisiond.

211

212

Service Detection

As IP interfaces are found during the node scan process, service detection tasks are scheduled for
each IP interface. The service detections defined in the foreign source determines which services
are to be detected and how (i.e. the values of the parameters that parameters control how the
service is detected, port, timeout, etc.).

Applying a New Foreign Source Definition

This example node has been provisioned using the Default foreign source definition. By navigating
to the Provisioning Groups screen in the OpenNMS Meridian Web-UI and clicking the Edit Foreign
Source link of a group, you can create a new foreign source definition that defines service detection
and policies. The policies determine entity persistence and/or set attributes on the discovered
entities that control OpenNMS Meridian management behaviors.

When creating a new foreign source definition, the default definition is used as a template.

213

In this UI, new Detectors can be added, changed, and removed. For this example, we will remove
detection of all services accept ICMP and DNS, change the timeout of ICMP detection, and a new

214

Service detection for OpenNMS Meridian Web-UI.

Custom foreign source definition created for NMS Provisioning Group (foreign source).

Click the Done button and re-import the NMS Provisioning Group. During this and any subsequent
re-imports or re- scans, the OpenNMS Meridian detector will be active, and the detectors that have
been removed will no longer test for the related services for the interfaces on nodes managed in
the provisioning group (requisition), however, the currently detected services will not be removed.
There are 2 ways to delete the previously detected services:

1. Delete the node in the provisioning group, re-import, define it again, and finally re-import again

2. Use the ReST API to delete unwanted services. Use this command to remove each unwanted
service from each interface, iteratively:

curl -X DELETE -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/nodes/6/ipinterfaces/172.16.1.1/services/DNS

215


There is a sneaky way to do #1. Edit the provisioning group and just change the
foreign ID. That will make Provisiond think that a node was deleted and a new
node was added in the same requisition! Use this hint with caution and an full
understanding of the impact of deleting an existing node.

Provisioning with Policies

The Policy API in Provisiond allow you to control the persistence of discovered IP and SNMP
Interface entities and Node Categories during the Scan phase.

Matching IP Interface Policy

The Matching IP Interface policy controls whether discovered interfaces are to be persisted and if
they are to be persisted, whether or not they will be forced to be Managed or Unmanaged.

Continuing with this example Provisioning Group, we are going to define a few policies that:

a. Prevent discovered 10 network addresses from being persisted

b. Force 192.168 network addresses to be unmanaged

From the foreign source definition screen, click the Add Policy button and the definition of a new
policy will begin with a field for naming the policy and a drop down list of the currently installed
policies. Name the policy no10s, make sure that the Match IP Interface policy is specified in the class
list and click the Save button. This action will automatically add all the parameters required for the
policy.

The two required parameters for this policy are action and matchBehavior.

The action parameter can be set to DO_NOT_PERSIST, Manage, or UnManage.

Creating a policy to prevent persistence of 10 network IP interfaces.

The DO_NOT_PERSIST action does just what it indicates, it prevents discovered IP interface entities
from being added to OpenNMS Meridian when the matchBehavior is satisfied. The Manage and
UnManage values for this action allow the IP interface entity to be persisted by control whether or
not that interface should be managed by OpenNMS Meridian.

The matchBehavior action is a boolean control that determines how the optional parameters will

216

be evaluated. Setting this parameter’s value to ALL_PARAMETERS causes Provisiond to evaluate
each optional parameter with boolean AND logic and the value ANY_PARAMETERS will cause OR
logic to be applied.

Now we will add one of the optional parameters to filter the 10 network addresses. The Matching IP
Interface policy supports two additional parameters, hostName and ipAddress. Click the Add
Parameter link and choose ipAddress as the key. The value for either of the optional parameters can
be an exact or regular expression match. As in most configurations in OpenNMS Meridian where
regular expression matching can be optionally applied, prefix the value with the ~ character.

Example Matching IP Interface Policy to not Persist 10 Network addresses

Any subsequent scan of the node or re-imports of NMS provisioning group will force this policy to
be applied. IP Interface entities that already exist that match this policy will not be deleted. Existing
interfaces can be deleted by recreating the node in the Provisioning Groups screen (simply change
the foreign ID and re-import the group) or by using the ReST API:

curl -X DELETE -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/nodes/6/ipinterfaces/10.1.1.1

The next step in this example is to define a policy that sets discovered 192.168 network addresses to
be unmanaged (not managed) in OpenNMS Meridian. Again, click the Add Policy button and let’s
call this policy noMgt192168s. Again, choose the Mach IP Interface policy and this time set the
action to UNMANAGE.

Policy to not manage IP interfaces from 192.168 networks

217

 The UNMANAGE behavior will be applied to existing interfaces.

Matching SNMP Interface Policy

Like the Matching IP Interface Policy, this policy controls the whether discovered SNMP interface
entities are to be persisted and whether or not OpenNMS Meridian should collect performance
metrics from the SNMP agent for Interface’s index (MIB2 IfIndex).

In this example, we are going to create a policy that doesn’t persist interfaces that are AAL5 over
ATM or type 49 (ifType). Following the same steps as when creating an IP Management Policy, edit
the foreign source definition and create a new policy. Let’s call it: noAAL5s. We’ll use Match SNMP
Interface class for each policy and add a parameter with ifType as the key and 49 as the value.

Matching SNMP Interface Policy example for Persistence and Data Collection

218



At the appropriate time during the scanning phase, Provisiond will evaluate the
policies in the foreign source definition and take appropriate action. If during the
policy evaluation process any policy matches for a “DO_NOT_PERSIST” action, no
further policy evaluations will happen for that particular entity (IP Interface,
SNMP Interface).

Node Categorization Policy

With this policy, nodes entities will automatically be assigned categories. The policy is defined in
the same manner as the IP and SNMP interface polices. Click the Add Policy button and give the
policy name, cisco and choose the Set Node Category class. Edit the required category key and set
the value to Cisco. Add a policy parameter and choose the sysObjectId key with a value
~^\.1\.3\.6\.1\.4\.1\.9\..*.

Example: Node Category setting policy

219

New Import Capabilities

Several new XML entities have been added to the import requisition since the introduction of the
OpenNMS Importer service in version 1.6. So, in addition to provisioning the basic node, interface,
service, and node categories, you can now also provision asset data.

Provisiond Configuration

The configuration of the Provisioning system has moved from a properties file (model-
importer.properties) to an XML based configuration container. The configuration is now extensible
to allow the definition of 0 or more import requisitions each with their own Cron based schedule
for automatic importing from various sources (intended for integration with external URL such as
HTTP and this new DNS protocol handler.

A default configuration is provided in the OpenNMS Meridian etc/ directory and is called:
provisiond-configuration.xml. This default configuration has an example for scheduling an import
from a DNS server running on the localhost requesting nodes from the zone, localhost and will be
imported once per day at the stroke of midnight. Not very practical but is a good example.

220

<?xml version="1.0" encoding="UTF-8"?>
 <provisiond-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.opennms.org/xsd/config/provisiond-configuration"
 foreign-source-dir="/opt/opennms/etc/foreign-sources"
 requistion-dir="/opt/opennms/etc/imports"
 importThreads="8"
 scanThreads="10"
 rescanThreads="10"
 writeThreads="8" >
 <!--
 http://www.quartz-scheduler.org/documentation/quartz-
1.x/tutorials/crontrigger[http://www.quartz-scheduler.org/documentation/quartz-
1.x/tutorials/crontrigger]
 Field Name Allowed Values Allowed Special Characters
 Seconds 0-59 , - * / Minutes 0-59 , - * / Hours 0-23 , - * /
 Day-of-month1-31, - * ? / L W C Month1-12 or JAN-DEC, - * /
 Day-of-Week1-7 or SUN-SAT, - * ? / L C # Year (Opt)empty, 1970-2099, - * /
 -->

 <requisition-def import-name="NMS"
 import-url-resource="file://opt/opennms/etc/imports/NMS.xml">
 <cron-schedule>0 0 0 * * ? *</cron-schedule> <!-- daily, at midnight -->
 </requisition-def>
</provisiond-configuration>

Configuration Reload

Like many of the daemon configurations in the 1.7 branch, Provisiond’s configuration is re-loadable
without having to restart OpenNMS. Use the reloadDaemonConfig uei:

/opt/opennms/bin/send-event.pl uei.opennms.org/internal/reloadDaemonConfig --parm
'daemonName Provisiond'

This means that you don’t have to restart OpenNMS Meridian every time you update the
configuration!

Provisioning Asset Data

The Provisioning Groups Web-UI had been updated to expose the ability to add Node Asset data in
an import requisition. Click the Add Node Asset link and you can select from a drop down list all the
possible node asset attributes that can be defined.

221

After an import, you can navigate to the Node Page and click the Asset Info link and see the asset
data that was just provided in the requisition.

222

External Requisition Sources

Because Provisiond takes a URL as the location service for import requisitions, OpenNMS Meridian
can be easily extended to support sources in addition to the native URL handling provided by Java:
file://, http://, and https://. When you configure Provisiond to import requisitions on a schedule you
specify using a URL Resource. For requisitions created by the Provisioning Groups WebUI, you can
specify a file based URL.

 <need further documentation>

Provisioning Nodes from DNS

The new Provisioning service in OpenNMS Meridian is continuously improving and adapting to the
needs of the community. One of the most recent enhancements to the system is built upon the very
flexible and extensible API of referencing an import requisition’s location via a URL. Most
commmonly, these URLs are files on the file system (i.e. file:/opt/opennms/etc/imports/<my-
provisioning-group.xml>) as requisitions created by the Provisioning Groups UI. However, these
same requistions for adding, updating, and deleting nodes (based on the original model importer)
can also come from URLs specifying the HTTP protocol: http://myinventory.server.org/nodes.cgi)

Now, using Java’s extensible protocol handling specification, a new protocol handler was created so

223

http://myinventory.server.org/nodes.cgi

that a URL can be specified for requesting a Zone Transfer (AXFR) request from a DNS server. The A
records are recorded and used to build an import requisition. This is handy for organizations that
use DNS (possibly coupled with an IP management tool) as the data base of record for nodes in the
network. So, rather than ping sweeping the network or entering the nodes manually into OpenNMS
Meridian Provisioning UI, nodes can be managed via 1 or more DNS servers. The format of the URL
for this new protocol handler is:

dns://<host>[:port]/<zone>[/<foreign-source>/][?expression=<regex>]

Simple Example

dns://my-dns-server/myzone.com

This will import all A records from the host my-dns-server on port 53 (default port) from zone
myzone.com and since the foreign source (a.k.a. the provisioning group) is not specified it will
default to the specified zone.

Using a Regular Expression Filter

You can also specify a subset of the A records from the zone transfer using a regular expression:

dns://my-dns-server/myzone.com/portland/?expression=^por-.*

This will import all nodes from the same server and zone but will only manage the nodes in the
zone matching the regular expression ^port-.* and will and they will be assigned a unique foreign
source (provisioning group) for managing these nodes as a subset of nodes from within the
specified zone.

URL Encoding

If your expression requires URL encoding (for example you need to use a ? in the expression) it
must be properly encoded.

dns://my-dns-server/myzone.com/portland/?expression=^por[0-9]%3F

DNS Setup

Currently, the DNS server requires to be setup to allow a zone transfer from the OpenNMS Meridian
server. It is recommended that a secondary DNS server is running on OpenNMS Meridian and that
the OpenNMS Meridian server be allowed to request a zone transfer. A quick way to test if zone
transfers are working is:

dig -t AXFR @<dn5Server> <zone>

224

9.6. Adapters
The OpenNMS Meridian Provisiond API also supports Provisioning Adapters (plugins) for
integration with external systems during the provisioning Import phase. When node entities are
added, updated, deleted, or receive a configuration management change event, OpenNMS Meridian
will call the adapter for the provisioning activities with integrated systems.

Currently, OpenNMS Meridian supports the following adapters:

9.6.1. DDNS Adapter

The Opposite end of Provisiond integration from the DNS Requisition Import, is the DDNS adapter.
This adapter uses the dynamic DNS protocol to update a DNS system as nodes are provisioned into
OpenNMS Meridian. To configure this adapter, edit the opennms.properties file and set the
importer.adapter.dns.server property:

importer.adapter.dns.server=192.168.1.1

9.6.2. RANCID Adapter

Integration has been integrated with RANCID though this new API.

 <More documentation needed>

 Maps (soon to be moved to Mapd) <documentation required>

 WiMax-Link (soon to be moved to Linkd) <documentation required>

9.7. Integrating with Provisiond
The ReST API should be used for integration from other provisioning systems with OpenNMS
Meridian. The ReST API provides an interface for defining foreign sources and requisitions.

9.7.1. Provisioning Groups of Nodes

Just as with the WebUI, groups of nodes can be managed via the ReST API from an external system.
The steps are:

1. Create a Foreign Source (if not using the default) for the group

2. Update the SNMP configuration for each node in the group

3. Create/Update the group of nodes

9.7.2. Example

225

Step 1 - Create a Foreign Source

If policies for this group of nodes are going to be specified differently than the default policy, then a
foreign source should be created for the group. Using the ReST API, a foreign source can be
provided. Here is an example:


The XML can be imbedded in the curl command option -d or be referenced from
a file if the @ prefix is used with the file name as in this case.

The XML file: customer-a.foreign-source.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<foreign-source date-stamp="2009-10-12T17:26:11.616-04:00" name="customer-a" xmlns=
"http://xmlns.opennms.org/xsd/config/foreign-source">
 <scan-interval>1d</scan-interval>
 <detectors>
 <detector class="org.opennms.netmgt.provision.detector.icmp.IcmpDetector"
name="ICMP"/>
 <detector class="org.opennms.netmgt.provision.detector.snmp.SnmpDetector"
name="SNMP"/>
 </detectors>
 <policies>
 <policy class=
"org.opennms.netmgt.provision.persist.policies.MatchingIpInterfacePolicy" name="no-
192-168">
 <parameter value="UNMANAGE" key="action"/>
 <parameter value="ALL_PARAMETERS" key="matchBehavior"/>
 <parameter value="~^192\.168\..*" key="ipAddress"/>
 </policy>
 </policies>
</foreign-source>

Here is an example curl command used to create the foreign source with the above foreign source
specification above:

curl -v -u admin:admin -X POST -H 'Content-type: application/xml' -d '@customer-
a.foreign-source.xml' http://localhost:8980/opennms/rest/foreignSources

Now that you’ve created the foreign source, it needs to be deployed by Provisiond. Here an the
example using the curl command to deploy the foreign source:

curl -v -u admin:admin
http://localhost:8980/opennms/rest/foreignSources/pending/customer-a/deploy -X PUT


The current API doesn’t strictly follow the ReST design guidelines and will be
updated in a later release.

226

Step 2 - Update the SNMP configuration

The implementation only supports a PUT request because it is an implied "Update" of the
configuration since it requires an IP address and all IPs have a default configuration. This request is
is passed to the SNMP configuration factory in OpenNMS Meridian for optimization of the
configuration store snmp-config.xml. This example changes the community string for the IP address
10.1.1.1 to yRuSonoZ.

 Community string is the only required element

curl -v -X PUT -H "Content-Type: application/xml" -H "Accept: application/xml" -d
<snmp-
info><community>yRuSonoZ</community><port>161</port><retries>1</retries><timeout>2000<
/timeout><version>v2c</version></snmp-info>" -u admin:admin
http://localhost:8980/opennms/rest/snmpConfig/10.1.1.1

Step 3 - Create/Update the Requisition

This example adds 2 nodes to the Provisioning Group, customer-a. Note that the foreign-source
attribute typically has a 1 to 1 relationship to the name of the Provisioning Group requisition. There
is a direct relationship between the foreign- source attribute in the requisition and the foreign
source policy specification. Also, typically, the name of the provisioning group will also be the same.
In the following example, the ReST API will automatically create a provisioning group based on the
value foreign-source attribute specified in the XML requisition.

curl -X POST -H "Content-Type: application/xml" -d "<?xml version="1.0" encoding="UTF-
8"?><model-import xmlns="http://xmlns.opennms.org/xsd/config/model-import" date-
stamp="2009-03-07T17:56:53.123-05:00" last-import="2009-03-07T17:56:53.117-05:00"
foreign-source="customer-a"><node node-label="p-brane" foreign-id="1" ><interface ip-
addr="10.0.1.3" descr="en1" status="1" snmp-primary="P"><monitored-service service-
name="ICMP"/><monitored-service service-name="SNMP"/></interface><category
name="Production"/><category name="Routers"/></node><node node-label="m-brane"
foreign-id="1" ><interface ip-addr="10.0.1.4" descr="en1" status="1" snmp-
primary="P"><monitored-service service-name="ICMP"/><monitored-service service-
name="SNMP"/></interface><category name="Production"/><category
name="Routers"/></node></model-import>" -u admin:admin
http://localhost:8980/opennms/rest/requisitions

A provisioning group file called etc/imports/customer-a.xml will be found on the OpenNMS
Meridian system following the successful completion of this curl command and will also be visible
via the WebUI.


Add, Update, Delete operations are handled via the ReST API in the same manner
as described in detailed specification.

227

9.8. Provisioning Single Nodes (Quick Add Node)
Adding a Node to a Current Requisition

Often, it is requested that a single node add/update be completed for an already defined
provisioning group. There is a ReST API for the Add Node implementation found in the OpenNMS
Meridian Web-UI. For this to work, the provisioning group must already exist in the system even if
there are no nodes defined in the group.

1. Create a foreign source (if required)

2. Specify SNMP configuration

3. Provide a single node with the following specification

9.9. Fine Grained Provisioning Using provision.pl
provision.pl provides an example command-line interface to the provisioning-related OpenNMS
Meridian REST API endpoints.

The script has many options but the first 3 optional parameters are described here:

 You can use --help to the script to see all the available options.

--username (default: admin)
--password (default: admin)
--url (default: http://localhost:8980/opennms/rest)

9.9.1. Create a new requisition

provision.pl provides easy access to the requisition REST service using the requisition option:

${OPENNMS_HOME}/bin/provision.pl requisition customer1

This command will create a new, empty (containing no nodes) requisition in OpenNMS Meridian.

The new requisition starts life in the pending state. This allows you to iteratively build the
requisition and then later actually import the nodes in the requisition into OpenNMS Meridian.
This handles all adds/changes/deletes at once. So, you could be making changes all day and then at
night either have a schedule in OpenNMS Meridian that imports the group automatically or you can
send a command through the REST service from an outside system to have the pending requisition
imported/reimported.

You can get a list of all existing requisitions with the list option of the provision.pl script:

${OPENNMS_HOME}/bin/provision.pl list

228

Create a new Node

${OPENNMS_HOME}/bin/provision.pl node add customer1 1 node-a

This command creates a node element in the requisition customer1 called node-a using the script’s
node option. The node’s foreign-ID is 1 but it can be any alphanumeric value as long as it is unique
within the requisition. Note the node has no interfaces or services yet.

Add an Interface Element to that Node

${OPENNMS_HOME}/bin/provision.pl interface add customer1 1 127.0.0.1

This command adds an interface element to the node element using the interface option to the
provision.pl command and it can now be seen in the pending requisition by running provision.pl
requisition list customer1.

Add a Couple of Services to that Interface

${OPENNMS_HOME}/bin/provision.pl service add customer1 1 127.0.0.1 ICMP
${OPENNMS_HOME}/bin/provision.pl service add customer1 1 127.0.0.1 SNMP

This adds the 2 services to the specified 127.0.0.1 interface and is now in the pending requisition.

Set the Primary SNMP Interface

${OPENNMS_HOME}/bin/provision.pl interface set customer1 1 127.0.0.1 snmp-primary P

This sets the 127.0.0.1 interface to be the node’s Primary SNMP interface.

Add a couple of Node Categories

${OPENNMS_HOME}/bin/provision.pl category add customer1 1 Routers
${OPENNMS_HOME}/bin/provision.pl category add customer1 1 Production

This adds the two categories to the node and is now in the pending requisition.

These categories are case-sensitive but do not have to be already defined in OpenNMS Meridian.
They will be created on the fly during the import if they do not already exist.

Setting Asset Fields on a Node

${OPENNMS_HOME}/bin/provision.pl asset add customer1 1 serialnumber 9999

This will add value of 9999 to the asset field: serialnumber.

229

Deploy the Import Requisition (Creating the Group)

${OPENNMS_HOME}/bin/provision.pl requisition import customer1

This will cause OpenNMS Meridian Provisiond to import the pending customer1 requisition. The
formerly pending requisition will move into the deployed state inside OpenNMS Meridian.

Deleting a Node from a Requisition

Very much the same as the add, except that a single delete command and a re-import is required.
What happens is that the audit phase is run by Provisiond and it will be determined that a node has
been removed from the requisition and the node will be deleted from the DB and all services will
stop activities related to it.

${OPENNMS_HOME}/bin/provision.pl node delete customer1 1 node-a
${OPENNMS_HOME}/bin/provision.pl requisition import customer1

This completes the life cycle of managing a node element, iteratively, in a import requisition.

9.10. Yet Other API Examples
List the Nodes in a Provisioning Group

The provision.pl script doesn’t supply this feature but you can get it via the REST API. Here is an
example using curl:

#!/bin/bash
REQ=$1
curl -X GET -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/requisitions/$REQ 2>/dev/null | xmllint --format -

9.11. Service Detectors

9.11.1. SNMP Detector

This detector is used to find and assigns services based on SNMP. The detector binds a service with
a given Service Name when a particular SNMP OID as scalar or table matches a given criteria.

Detector facts

Implementation org.opennms.netmgt.provision.detector.snmp.SnmpDetector

Configuration and Usage

Table 80. Parameters for the SNMP detector

230

Param
eter

Description Requi
red

Default
value

oid SNMP OID for scalar or table to detect the service. requir
ed

.1.3.6.1.2.1

.1.2.0

retry Number of retries to detect the service. option
al

agent config

timeout Timeout in milliseconds to wait for a response from the SNMP
agent.

option
al

agent config

vbvalue expected return value to detect the service; if not specified the
service is detected if the SNMP OID returned any kind of
valid value. The vbvalue is evaluated as Java
Regular Expression.

option
al

-

hex Set true if the data is from type HEX-String. option
al

false

isTable Set true if detector should evaluate SNMP tables. option
al

false

matchTy
pe

Set match type to evaluate the expected value in the SNMP table.
EXIST: the expected vbalue is ignored, service detected if the given
table under OID exist
ALL: all values in the table must match against expected vbalue to
detect service
ANY: at least one value in the table must match against expected
vbalue to detect service
NONE: None of the values should match against expected value to
detect service

option
al

EXIST

Example for SNMP scalar value

We have Dell server farm and want to monitor the global server status provided by the
OpenManage Server Administrator. Global status is provided by a scalar OID
.1.3.6.1.4.1.674.10892.1.200.10.1.2.1. The service should be automatically detected if the server
supports this OID.

For provisioning we have a requisition named Server which contains all server of our data center.
A Detector with the name Dell-OMSA-Global-State for this requisition is created with the following
parameter:

Table 81. Parameters for the SNMP detector

Paramete
r

Value

Name Dell-OMSA-Global-State

oid .1.3.6.1.4.1.674.10892.1.200.10.1.2.1

When the requisition Server is synchronized the service Dell-OMSA-Global-State will be detected in
case they support the given SNMP OID.

231

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Example using SNMP tables

We have a HP server farm and want to monitor the status of logical drives over SNMP provided
from HP Insight Manager. The status for logical drives is provided in a SNMP Table under
.1.3.6.1.4.1.232.3.2.3.1.1.4. The service should be automatically assigned to all servers exposing
the given SNMP OID.

For provisioning we have a requisition named Server which contains all server of our data center.
A Detector with the name HP-Insight-Drive-Logical for this requisition is created with the following
parameter:

Table 82. Parameters for the SNMP detector

Paramete
r

Value

Name HP-Insight-Drive-Logical

oid .1.3.6.1.4.1.232.3.2.3.1.1.4

isTable true

When the requisition Server is synchronized the service HP-Insight-Drive-Logical will be detected in
case they support the given SNMP OID table.

232

Chapter 10. Business Service Monitoring
This section describes how to model and configure Business Services (BS) and orchestrate them in a
hierarchy. The concepts and usage of the section Business Service Monitoring from the User Guide is
presumed.

Business Service Monitoring (BSM) includes the following components:

• Business Service Monitoring Daemon (BSMD): Maintains and drives the state of all BS

• Business Service Editor: Web application which allows you to create, update or delete BS

• Topology View for Business Services: Visual representation of the Business Service Hierarchy as a
component of the Topology User Interface.

• BSM ReST API: ReST based API to create, read, update or delete BS

10.1. Business Service Definition
The status of Service Monitors and any kind of Alarm can be used to drive the Operational Status of
a BS. A BS is defined with the following components:

• Business Service Name: A unique name used to identify the BS

• Edges: A set of elements on which this BS relies which can include other BS, or Reduction Keys.

• Reduce Function: Function used to aggregate the Operational Status from all the Edges. Specific
functions may take additional parameters.

• Attributes: Optional key/value pairs that can be used to tag or enrich the Busines Service with
additional information.

Each Business Service can contain a list of optional key/value attributes. These can be used to
identify or tag the BS, and may be reference in other workflows. These attributes do not affect the
dependencies or the status calculation of the BS.

 Attributes can be used to filter BS in Ops Board dashlets.

The Business Service Editor is used to manage and model the Business Services and their hierarchy.
It is required to have administrative permissions and is available in "Login Name → Configure
OpenNMS → Manage Business Services" in the Service Monitoring section.

Managing Business Services with the Business Service Editor

233

① Create a new Business Service definition

② Collapse tree view for all Business Services in the view

③ Expand tree view for all Business Services in the view

④ Reload all Business Services in the view with current Business Services from the system

⑤ Reload the Business Service Monitoring Daemon to use the Business Service definition as
configured

⑥ Business Service dependency hierarchy as tree view

⑦ Show the current Business Service with dependencies in the Topology UI

⑧ Edit and delete existing Business Service defintions

As shown in figure Managing Business Services with the Business Service Editor the Business
Services can be created or changed. The hierarchy is created by assigning an existing Business
Service as Child Service.

10.2. Edges
Edges map the Alarm status monitoring with OpenNMS

The following types can be used:

• Child Service: A reference to an existing Business Service on which to depend

• IP Service: A convenient way to refer to the alarms that can be generated by a monitored IP
Service. This will automatically provided edges for the nodeLostService, interfaceDown and
nodeDown reductions keys of the specified service.

• Reduction Key: A resolved Reduction Key used to refer to a specific Alarm, e.g. generated by a
SNMP Trap or Threshold violation


If you need help determining the reduction key used by alarm, trigger the alarm
in question and pull the reduction key from the Alarm details page.

All edge types have the following parameters:

• Map Function: The associated Map Function for this Edge

• Weight: The relative Weight of this edge. Used by certain Reduce Functions.

Both IP Service and Reduction Key type edges also support a Friendly Name parameter which gives
the user control on how the edge is labeled in the Topology User Interface. The editor changing the
Edge attributes is shown in figure Editor to add Business Service Edges.

Editor to add Business Service Edges

234

10.2.1. Child Services

To create a hierarchy of Business Services they need to be created first. The hierarchy is build by
selecting the Business Service as_Child Service_ as dependency.

10.2.2. IP Services

The IP Service is a predefined set of Reduction Keys which allows easily to assign a specific
Monitored Service to the given BS. As an example you have multiple Servers with a Monitored
Service SMTP and you want to model a BS named Mail Communication. If just the Reduction Key for
a nodeLostService is assgined, the BS would not be affected in case the IP Interface or the whole
Node goes down. OpenNMS generates Alarms with different UEI which needs to be assigned to the
BS as well. To make it easier to model this use case the IP Service generates the following Reduction
Keys automatically:

• uei.opennms.org/nodes/nodeLostService:%nodeId%:%ipAddress%:%serviceName%: Matches Alarms
when the given Monitored Service goes down

• uei.opennms.org/nodes/interfaceDown:%nodeId%:%ipAddress%: Matches Alarms when the given IP
Interface of the Monitored Service goes down

• uei.opennms.org/nodes/nodeDown:%nodeId%: Matches Alarms when the given Node of the
Monitored Service goes down

10.2.3. Custom Reduction Key

The Reduction Key edge is used to refer to specific instance of alarms. When an alarm with the
given Reduction Key is present, the alarms' severity will be used to calculate the Operational Status
of the BS. To give a better explanation a Friendly Name can be set and is used in the Business Service
View. The format of the Reduction Key is build by a set of attributes as a key separated by : and
enclosed in %, i.e (%attribute%:%attribute%).

Example of a Reduction Key for a specific nodeLostService

%uei.opennms.org/nodes/nodeLostService%:%nodeId%:%ipAddress%:%serviceName%

235

10.3. Map Functions
The Map Functions define how the Severity of the edge will be used in the Reduce Function of the
parent when calculating the Operational Status.

The available Map Functions are:

Table 83. Calculation of the Operational Status with Map Functions

Name Description

Identity Use the same Severity as Operational Status of the BS

Increase Increase the Severity by one level and use it as Operational Status of the BS

Decrease Decrease the Severity by one level and use it as Operational Status of the BS

SetTo Set the Operational Status to a constant Severity value

Ignore The input of the Edge is ignored for Operational Status calculation

10.4. Reduce Functions
A Reduce Function is used to aggregate the Operational Status for the BS. The Alarm Severity from
the Edges are used as input for the Reduce Function. For this operation the following Reduce
Functions are available:

Table 84. Status calculation Reduce Functions

Name Description

Highest Severity Uses the value of the highest severity, Weight is ignored.

Threshold Uses the highest severity found more often than the given threshold, e.g. 0.26
can also be seen as 26%, which means at least 2 of 4 Alarms need to be raised
to change the BS.

Highest Severity
Above

Uses the highest severity greater than the given threshold severity.

236

Name Description

Exponential
Propagation

This reduce function computes the sum of the given child severities based on
a base number. For this computation the severities are mapped to
numbers: WARNING=0, MINOR=1, MAJOR=2, CRITICAL=3
All other severities are ignored. For the aggregation the
following formula will be used to compute the resulting Business Service
severity from its n child entities based on the base number b:
severity = |__log_{b}(sum_(i=1)^n b^(ch\ildSeverity_{i}))__|
In summary the base value defines how many items of a severity x will result
in a severity x+1. Results lower as 0 are treated as NORMAL
and results higher than 3 are treated as CRITICAL. If all input
values are of severity INDETERMINATE, the result is INDETERMINATE.
For example if the Business Service depends on four child entities with the
severities WARNING, WARNING, NORMAL and NORMAL and the base defined
by the number 2 the following computation will be made:
severity = |__log_{2}(2^{0} + 2^{0} + 0 + 0)__| = |__log_{2}(1 + 1 + 0 + 0)__| =
|__log_{2}(2)__| = |__1__| = 1 which corresponds to the
severity MINOR. The same computation with the base value of 3 results in:
severity = |__log_{3}(3^{0} + 3^{0} + 0 + 0)__| = |__log_{3}(1 + 1 + 0 + 0)__| =
|__log_{3}(2)__| = |__0.63__| = 0 which means WARNING.

The following table shows the status calculation with Edges assigned to an IP Service. The IP-Service
is driven by the monitoring of the ICMP service for three Web Server. In the table below you find a
configuration where Web Server 3 is weighted 3 times higher than the other and a threshold of 0.33
(33%) is configured.

Table 85. Example for status calculation using the Threshold function

Name Weig
ht

Weight
Factor

Input
Severity

Operational
Status

Critic
al

Majo
r

Mino
r

Warni
ng

Norm
al

Web-
ICMP-1

1 0.2 Critical Critical 0.2 0.2 0.2 0.2 0.2

Web-
ICMP-2

1 0.2 Normal Normal 0 0 0 0 0.2

Web-
ICMP-3

3 0.6 Warning Warning 0 0 0 0.6 0.6

Total 1.0 0.2 0.2 0.2 0.8 1

Percentag
e

100% 20% 20% 20% 80% 100%

The Operational Status Severity is evaluated from left to right, the first value higher then the
configured Threshold is used. In this case the Operational Status is set to Warning because the first
threshold which exceeds 33% is Warning with 80%.

10.5. Business Service Daemon
The calculation of the Operational Status of the BS is driven by the Business Service Monitoring

237

Daemon (bsmd). The daemon is responsible for tracking the operational status of all BS and for
sending events in case of operational status changes.

In order to calculate the Operational Status the reduction key associated with a Business Service is
used. The reduction key is obtained from an alarm generated by OpenNMS Meridian. This means
that the alarm’s reduction key of a defined Business Service must not change afterwards. Otherwise
bsmd is not able to calculate the Operational Status correctly. This also applies for removing the
alarm data from events associated to Business Services In addition the child type "IP Service" from
the Business Service Configuration Page requires the following events with the default reduction
keys being defined: * uei.opennms.org/nodes/nodeLostService *
uei.opennms.org/nodes/nodeDown * uei.opennms.org/nodes/interfaceDown

Every time the configuration of a Business Service is changed a reload of the daemon’s
configuration is required. This includes changes like the name of the Business Service or its
attributes as well as changes regarding the Reduction Keys, contained Business Services or IP
Services. The bsmd configuration can be reloaded with the following mechanisms:

• Click the Reload Daemon button in the Business Service Editor

• Send the reloadDaemonConfig event using send-event.pl or use the WebUI in Manually Send an
Event with parameter daemonName bsmd

• Use the ReST API to perform a POST request to /opennms/api/v2/business-services/daemon/reload

If the reload of the configuration is done an event of type
uei.opennms.org/internal/reloadDaemonConfigSuccessful is fired.

Example reloading bsmd configuration from CLI

$OPENNMS_HOME/bin/send-event.pl -p 'daemonName bsmd'
uei.opennms.org/internal/reloadDaemonConfig

Example reloading bsmd configuration through ReST POST

curl -X POST -u admin:admin -v http://localhost:8980/opennms/api/v2/business-
services/daemon/reload

238

Chapter 11. Topology Map
This section describes how to configure the Topology Map.

11.1. Properties
The Topology Map supports the following properties, which can be influenced by changing the file
etc/org.opennms.features.topology.app.cfg:

Property Type Default Description

showHeader Boole
an

true Defines if the OpenNMS Meridian header is shown.

autoRefresh.e
nabled

Boole
an

false If enabled, auto refresh is enabled by default.

autoRefresh.i
nterval

Integ
er

60 Defines the auto refresh interval in seconds.

hiddenCategor
yPrefix

Strin
g

empty
String

A String which allows hiding categories. For example a value of
server will hide all categories starting with server.
Be aware, that this setting is case-sensistive, so Servers will be
shown. The
resolution is only enabled if no longitude/latitude information is
available.

11.2. Icons
Each Vertex on the Topology Map is represented by an icon. The default icon is configured in the
icon mapping file: ${OPENNMS_HOME}/etc/org.opennms.features.topology.app.icons.<topology-

namespace>.cfg. If an icon mapping file does not exist for a Topology Provider, the provider does not
support customization.

List of available icon mapping files (may not be complete)

org.opennms.features.topology.app.icons.default.cfg ①
org.opennms.features.topology.app.icons.application.cfg ②
org.opennms.features.topology.app.icons.bsm.cfg ③
org.opennms.features.topology.app.icons.linkd.cfg ④
org.opennms.features.topology.app.icons.vmware.cfg ⑤

① Default icon mapping

② Icon mapping for the Application Topology Provider

③ Icon mapping for the Business Services Topology Provider

④ Icon mapping for the Linkd Topology Provider

⑤ Icon mapping for the Vmware Topology Provider

Each File contains a mapping in form of <icon key> = <icon id>.

239

Icon key

A Topology Provider dependent string which maps to an icon id. An icon key consists of one to
multiple segments. Each segment must contain only numbers or characters. If multiple segments
exist they must be separated by ., e.g. my.custom.key. Any existing default icon keys are not
configurable and should not be changed.

Icon id

The icon id is a unique icon identifier to reference an icon within one of the available SVG icons
located in ${OPENNMS_HOME}/jetty-webapps/opennms/svg. For more details see Add new icons.

Icon key and icon id specification using BNF

icon key ::= segment["."segment]*
segment ::= text+ [("-" | "_" | ":") text]*
text ::== (char | number)+
char ::== A | B | ... | Z | a | b | ... | z
number ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
icon id ::= segment

Example icon mapping file

Business Service Topology
bsm.business-service = business_service ①
bsm.ip-service = IP_service ②
bsm.reduction-key = reduction_key ③

① Icon definition for Business Services

② Icon definition for IP Services

③ Icon definition for Reduction Keys

11.2.1. Icon resolution

The icon of a vertex is resolved as follows:

• If a vertex id to icon id mapping is defined, the icon referenced by the icon id is used

• If a mapping for the icon key determined by the Topology Provider for the vertex is defined, the
icon referenced by the icon id is used

• If no mapping exists and the icon key has more than one segments, reduce the icon key by
the last segment and try resolving that icon key

• If no mapping is defined, the fallback icon key default is used.

The following example icon mapping is defined for the Linkd Topology Provider to illustrate this
behaviour.

240

linkd.system.snmp.1.3.6.1.4.1.9.1.485 = server1
linkd.system.snmp.1.3.6 = server2

If the Enterprise OID of a node is 1.3.6.1.4.1.9.1.485 the icon with id server1 is used. If the
Enterprise OID of a node is 1.3.6 the icon with id server2 is used. However, if the Enterprise OID of
a node is 1.3.6.1.4.1.9.1.13 the icon with id server2 is used.

Linkd Topology Provider

The Linkd Topology Provider uses the Enterprise OID from each node to determine the icon of a
vertex.

11.2.2. Change existing icon mappings

The easiest way to change an icon representation of an existing Vertex is to use the Icon Selection
Dialog from the Vertex' context menu in the Topology Map. This will create a custom icon key to
icon id mapping in the Topology Provider specific icon mapping file. As icon key the Vertex id is
used. This allows each Vertex to have it’s own icon.

If a more generic approach is preferred the icon mapping file can be modified manually.


Do NOT remove the default mappings and do NOT change the icon keys in the
default mappings.

11.2.3. Add new icons

All available icons are stored in SVG files located in ${OPENNMS_HOME}/jetty-webapps/opennms/svg. To
add new icons, either add definitions to an existing SVG file or create a new SVG file in that
directory.

Whatever way new icons are added to OpenNMS it is important that each new icon id describes a
set of icons, rather than a single icon. The following example illustrates this.

241

Example SVG file with a custom icon with id my-custom

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg id="icons" xmlns="http://www.w3.org/2000/svg">
 <g id="my-custom_icon"> ①
 <g id="my-custom_active"> ②
 <!-- rect, path, circle, etc elements, supported by SVG -->
 </g>
 <g id="my-custom_rollover"> ③
 <!-- rect, path, circle, etc elements, supported by SVG -->
 </g>
 <g id="my-custom"> ④
 <!-- rect, path, circle, etc elements, supported by SVG -->
 </g>
 </g>
 <!-- Additional groups ... -->
</svg>

① Each icon must be in a SVG group with the id <icon id>_icon. Each SVG <icon id>_icon group
must contain three sub groups with the ids: <icon id>_active, <icon id>_rollover and <icon id>.

② The icon to use when the Vertex is selected.

③ The icon to use when the Vertex is moused over.

④ The icon to use when the Vertex is not selected or not moused over (just visible).


It is important that each icon id is unique overall SVG files. This means there
cannot be another my-custom icon id in any other SVG file.

If the new icons should be selectable from the Topology Map’s Icon Selection Dialog an entry with
the new icon id must be added to the file
${OPENNMS_HOME}/etc/org.opennms.features.topology.app.icons.properties.

Snippet of org.opennms.features.topology.app.icons.list

access_gateway ①
accesspoint
cloud
fileserver
linux_file_server
opennms_server
printer
router
workgroup_switch
my-custom ②

① Already existing icon ids

② New icon id

242


The order of the entries in org.opennms.features.topology.app.icons.list

determine the order in the Icon Selection Dialog in the Topology Map.

243

Chapter 12. Asset Topology Provider

12.1. Overview
OpenNMS Meridian has introduced the ability for users to define arbitrarily complex layered
topologies using GraphML (see http://graphml.graphdrawing.org/). The details of how OpenNMS
Meridian interprets GraphML are given in the GraphML section of the OpenNMS Meridian
developers guide. The ability to display complex layered topologies is a great feature but creating a
usable GraphML topology for a large network can be a complex task for a user.

The Asset Topology Provider avoids the need for users to work directly with GraphML by directly
generating a layered GraphML topology based upon node parameters and the contents of the Node
Asset table. The Asset Topology Provider greatly simplifies the task for many use cases by allowing
users to define fields in the Node Asset table which will enable nodes to be positioned correctly in
a complex topology. This allows a physical and logical ordering of nodes which makes it easier for
users to represent and navigate their infrastructure.

The structure of the generated topology is determined by the assetLayers configuration constant
which can be set by a user. To illustrate how this works, we will consider the following
configuration:

assetLayers=asset-region,asset-building

The OpenNMS Meridian Asset table is parsed to generate nested layers in the order of the comma
separated keys in the assetLayers property. Each layer is a graph which is named after the key.
Graph nodes in each layer reference related Graph nodes in the underlying layer. The lowest layer
contains Graph nodes which are directly linked to monitored OpenNMS Meridian nodes which have
entries in the Asset table.

The following diagram shows the structure of a topology generated by the above assetLayers
property

244

http://graphml.graphdrawing.org/

245

In this example the region asset fields for node 1,2,3,4 are set to north. All of these nodes are in the
same north region. The building asset fields for Node 1 and Node 2 are set to 21 (both nodes are in
building 21) while the building asset fields for Node 3 and Node 4 are set to 22 (both nodes are in
building 22).

The Asset Topology Provider generates four linked graphs for this configuration. The layer 0 graph
is called asset-region, the layer 1 graph is called asset-building and the layer 2 graph is called
nodes.

246

Conceptually we can see that the topology is rendered as concentric sets. The Asset Topology
Provider first searches all of the nodes with regions defined and creates a new level 0 graph node
representing each region found. The Asset Topology Provider then searches within each region to
find the building entries and creates a corresponding level 1 graph node for each building name
found. Finally the Asset Topology Provider creates layer 2 nodes corresponding to each OpenNMS
Meridian monitored node and places each in the correct building.

If however OpenNMS Meridian monitored nodes are found which have either the region or building
asset fields empty they cannot be placed correctly in this topology. These nodes as shown in the
diagram as unallocated nodes. Finally, only building and region nodes are generated which can be
linked to OpenNMS Meridian nodes in the topology. The Asset Topology Provider does not generate
spurious graph nodes in upper layers which are not directly and completely referenced by
OpenNMS Meridian nodes in the lowest layer.

Example screenshots of a topology containing regions, buildings, racks and nodes are shown below

247

12.2. Asset layers
The entries for assetLayers can be any node or asset entry from the following list (defined in class
NodeParamLabels). Keys beginning with node- come from the node table. Keys beginning with
parent- come from the node table entry of the designated parent node (If defined). Keys beginning
with asset- come from the corresponding asset table entry for the given node (If defined).

node-nodelabel node-nodeid node-foreignsource node-foreignid node-
nodesysname

node-
nodesyslocation

node-
operatingsystem

node-categories

parent-nodelabel parent-nodeid parent-
foreignsource

parent-foreignid

asset-address1 asset-address2 asset-city asset-zip asset-state

asset-latitude asset-longitude asset-region asset-division asset-
department

asset-building asset-floor asset-room asset-rack asset-slot

asset-port asset-circuitid asset-category asset-displaycategory asset-
notifycategory

asset-
pollercategory

asset-
thresholdcategory

asset-
managedobjecttype

asset-
managedobjectinstanc
e

asset-
manufacturer

asset-vendor asset-
modelnumber

asset-description asset-operatingsystem asset-country

This allows arbitrary topologies to be generated including physical fields (room, rack etc.) and
logical fields such as asset node categories. Please note you should not put any spaces in the comma
separated assetLayers list. If the assetLayers property is defined as empty then a single graph layer
will be generated containing all opennms nodes.

12.3. Node filtering
In many cases it is desirable to control which nodes are included or excluded from a topology. For
instance it is useful to be able to generate customised topologies for specific customers which
include only regions/buildings etc relevant to their filtered node set. To this end it is possible to
define a node filter which chooses which nodes are included in a generated topology.

Filters are defined using the same asset table keys which are available for the assetLayers field.

Operatio
n

Definition Example

OR key1=value1,value2 alternatively
key1=value1;key1=value2

asset-region=north,south

248

Operatio
n

Definition Example

AND key1=val1;key2=val2 asset-region=north;asset-
building=23

NOT key1=!val1 asset-building=!23

Thus the following configuration means include only nodes with region north or south but exclude
all nodes with building 23.

filter=asset-region=north,south;asset-building=!23

The filters are designed to treat all selected text key entries as comma separated values (csv). This
allows OpenNMS node-categories which are many to many entries to be dealt with as a comma
separated list of values; routers,servers,web etc. Thus we can select based on multiple separate
node categories. The following configuration means show routers and servers on all buildings
except building 23.

filter=node-categories=routers,servers;asset-building=!23

The filters treat all asset table entries as comma separated variables (csv). This also means that, for
instance asset-displaycategory could also contain several values separated by commas. e.g.
customer1,customer2,customer3 etc.


You should make sure asset addresses and other free format asset text fields do
not contain commas if you want an exact match on the whole field

Regular expressions are also allowed. Regular expressions start with the ~ character. You can also
negate a regular expression by preceding it with !~.

The following example will match against regions 'Stuttgart' and 'Isengard' and any building name
which ends in 4

filter=asset-region=~.*gar(t|d);asset-building=~.*4

12.4. Configuration
The Asset Topology Provider persists both the asset topology graph definitions and the generated
GraphML graphs. The persisted definitions mean that is is possible to regenerate graphs if the asset
table is changed without reentering the configuration.

The Asset Topology Provider persists GraphML graphs along side any other GraphML graphs in the
directory;

249

<opennms home>/etc/graphml

Please note that if you are using ReST or any other means to generate other GraphML graphs, you
should ensure that the providerIds and labels are distinct from those used by the Asset Topology
Provider

The asset graph definitions for the Asset Topology Provider are persisted to the following xml
configuration file:

<opennms home>/etc/org.opennms.features.topology.plugins.topo.asset.xml

Normally you should not edit this file directly but use the karaf consol or events to define new
graphs.

The config file will contain each of the graph definitions as properties in the form

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configs>
 <config>
 <label>Asset Topology Provider</label>
 <breadcrumb-strategy>SHORTEST_PATH_TO_ROOT</breadcrumb-strategy>
 <provider-id>asset</provider-id>
 <preferred-layout>Grid Layout</preferred-layout>
 <filters>
 <filter>asset-region=South</filter>
 </filters>
 <layers>
 <layer>asset-region</layer>
 <layer>asset-building</layer>
 <layer>asset-rack</layer>
 </layers>
 </config>
</configs>

The individual definition parameters are described in the following table

Parameter Description

providerId The unique name of the provider - used as handle to install and remove the
topology

label The name which shows up on the topology menu (must be unique)

assetLayers List of asset layers (in order). See separate description.

filters List of filters to be applied. Filters determine which nodes are included in graph.
See separate description.

preferredLayout Preferred layout of the nodes in generated graphs.

250

Parameter Description

breadcrumbStrat
egy

Breadcrumb strategy used to display breadcrumbs above each graph

12.5. Creating Asset Based Topologies From Karaf
Consol
The OpenNMS Meridian Karaf Consol can be used to control topology generation. To login use
admin password.

ssh admin@localhost -p 8101

The following commands are available

Command Description Options

asset-
topology:cre
ate

Creates Asset Topology. (The default settings are used if a
particular setting is not included in the
command) -l, --label : Asset Topology label
(shows in topology menu) (Default: asset)
-i, --providerId : Unique providerId of
asset topology (Default: 'Asset Topology
Provider') -f, --filter : Optional node filter
(Default: empty filter i.e. allow all nodes)
-a, --assetLayers : Comma separated list of
asset layers (Default: asset-region,asset-
building,asset-rack) -p, --preferredLayout
: Preferred Layout (Default: 'Grid Layout')
-b, --breadcrumbStrategy : Bread Crumb
Strategy (Default:
SHORTEST_PATH_TO_ROOT) If you simply
type asset-topology:create a default
topology with providerId asset will be
created.

asset-
topology:re
move

Removes Asset Topology. -i, --providerId : Unique providerId of
asset topology (Default: asset)

asset-
topology:list

Lists all Asset Topologies installed. all : display detailed view including
--uriParams string

asset-
topology:reg
enerate

Regenerates the graphs for the given
Asset Topology definition.

-i, --providerId : Unique providerId of
asset topology to regenerate (Default:
asset)

asset-
topology:reg
enerateall

Best Effort regeneration of all asset
topologies. (If one graph fails, the
command will try to complete the rest of
the definitions definition)

251

12.6. Creating Asset Based Topologies Using OpenNMS
Meridian events
The Asset Topology Provider listens for events which trigger the generation and installation or
removal of topologies. The Asset Topology Provider events are defined in the file

<opennms home>/etc/events/GraphMLAssetPluginEvents.xml

These events will use the default parameters if parameters are not supplied

To create a new topology from the current OpenNMS inventory use

(for default topology)
sudo ./send-event.pl uei.opennms.plugins/assettopology/create localhost

(or with parameters)
sudo ./send-event.pl uei.opennms.plugins/assettopology/create localhost -p
'providerId test' -p 'label test' -p 'assetLayers asset-country,asset-city,asset-
building'-->

other example possible parameters are
-p 'filters asset-displaycategory=!testDisplayCategory'
-p 'preferredLayout Grid Layout'
-p 'breadcrumbStrategy SHORTEST_PATH_TO_ROOT'

To uninstall an asset topology use

(for default topology providerId)
sudo ./send-event.pl uei.opennms.plugins/assettopology/remove localhost

(or with specific providerId)
sudo ./send-event.pl uei.opennms.plugins/assettopology/remove localhost -p
'providerId test'

To regenerate an existing asset topology use

(for default topology providerId)
sudo ./send-event.pl uei.opennms.plugins/assettopology/regenerate localhost

(or with specific providerId)
sudo ./send-event.pl uei.opennms.plugins/assettopology/regenerate localhost-p
'providerId test'

To regenerate all existing asset topologies use

252

sudo ./send-event.pl uei.opennms.plugins/assettopology/regenerateall localhost

12.7. Viewing the topology
If all goes well, having installed the topology, upon refreshing your screen, you should see a new
topology display option in the OpenNMS Meridian topology page. The displayed name of this
topology is given by the label field

The label field need not be the same as the providerId which is used by the ReST api for the
installation or removal of a topology. However the label field must be unique across all installed
topologies.

It is possible to have several topologies installed which have been generated using different
configurations. You simply need to ensure that the providerId and label field used for each
installation command is different.

12.8. additional notes
Please note you MUST first uninstall an OpenNMS Meridian graphml topology before installing a
new one. You will also have to log out and log back into the UI in order to see the new topology file.
If you uninstall a topology while viewing it, the UI will throw an error and you will also have to log
out and back in to see the remaining topologies.

253

Chapter 13. Database Reports
Reporting on information from the OpenNMS Meridian monitoring system is important for
strategical or operational decisions. Database Reports give access to the embedded JasperReports
engine and allows to create and customize report templates. These reports can be executed on
demand or on a pre-defined schedule within OpenNMS Meridian.


Originally Database Reports were introduced to create reports working on data
stored in the OpenNMS Meridian database only. This is no longer mandatory,
also performance data can be used. Theoretically the reports do not
necessarily need to be OpenNMS Meridian related.


The OpenNMS Meridian Report Engine allows the creation of various kinds of
reports and also supports distributed report repositories. At the moment
these features are not covered by this documentation. Only reports using
JasperReports are described here.

13.1. Overview
The OpenNMS Meridian Report Engine uses the JasperReport library to create reports in various
output formats. Each report template must be a *.jrxml file. The OpenNMS Meridian Report Engine
passes a JDBC Connection to the OpenNMS Meridian Database to each report on execution.

Table 86. feature overview

Supported Output Formats PDF, CSV

JasperReport Version 6.3.0

For more details on how JasperReports works, please have a look at the official documentation of
Jaspersoft Studio.

13.2. Modify existing reports
All default reports of OpenNMS Meridian are located in $OPENNMS_HOME/etc/report-templates. Each
.jrxml file located there can be modified and the changes are applied the next time a report is
created by OpenNMS Meridian.

When a subreport has been modified OpenNMS Meridian will detect a change based on the report’s
lastModified time and will recompile the report. A compiled version of the report is represented by
a .jasper file with the same name as the .jrxml file. Subreports are located in
$OPENNMS_HOME/etc/report-templates/subreports.


If unsure, simply delete all .jasper files and OpenNMS Meridian will
automatically compile the subreports if needed.

254

http://community.jaspersoft.com/documentation/tibco-jaspersoft-studio-user-guide/v610/getting-started-jaspersoft-studio

13.3. Add a custom report
To add a new JasperReport report to the Local OpenNMS Meridian Report Repository, the following
steps are required.

At first a new entry in the file $OPENNMS_HOME/etc/database-reports.xml must be created.

<report
 id="MyReport" ①
 display-name="My Report" ②
 online="true" ③
 report-service="jasperReportService" ④
 description="This is an example description. It shows up in the web ui when creating
an online report" ⑤
/>

① A unique identifier.

② The name of the report. Is shown when using the web ui.

③ Defines if this report can be executed on demand, otherwise only scheduling is possible.

④ The report service implementation to use. In most cases this is jasperReportService.

⑤ A description of the report. Is shown when using the web ui.

In addition a new entry in the file $OPENNMS_HOME/etc/jasper-reports.xml must be created.

<report
 id="MyReport" ①
 template="My-Report.jrxml" ②
 engine="jdbc" ③
/>

① The identifier defined in the previous step. This identifier must exist in
$OPENNMS_HOME/etc/database-reports.xml.

② The name of the template. The template must be located in $OPENNMS_HOME/etc/report-templates.

③ The engine to use. It is either jdbc or null.

13.4. Usage of Jaspersoft Studio
When developing new reports it is recommended to use the Jaspersoft Studio application. It can be
downloaded here.


We recommend always to use the same Jaspersoft Studio version as the
JasperReport library OpenNMS Meridian uses. Currently OpenNMS Meridian
uses version 6.3.0.

255

http://community.jaspersoft.com/project/jaspersoft-studio

13.4.1. Connect to the OpenNMS Meridian Database

In order to actually create SQL statements against the OpenNMS Meridian database a database Data
Adapter must be created. The official Jaspersoft Studio documentation and wiki covers this aspect.

13.4.2. Use Measurements Datasource and Helpers

To use the Measurements API it is required to add the Measurements Datasource library to the build
path of JasperStudio. This is achieved with right click in the Project Explorer and select Configure
Buildpath.

1. Switch to the Libraries tab.

2. Click Add External JARs and select the opennms-jasperstudio-extension-2017.1.24-jar-with-
dependencies.jar file located in $OPENNMS_HOME/contrib/jasperstudio-extension.

3. Close the file selection dialog.

1. Close the dialog.

2. The Measurements Datasource and Helpers should now be available.

256

3. Go to the Dataset and Query Dialog in Jaspersoft Studio and select a language called measurement.



Even if there is no Read Fields functionality available, the Data preview can be
used. It is required the the access to the Measurements API is possible using
the connection parameters MEASUREMENT_URL, MEASUREMENT_USERNAME and
MEASUREMENT_PASSWORD. The Supported Fields section gives more details. In
addition you have

13.5. Accessing Performance Data


Before OpenNMS Horizon 17 and OpenNMS Meridian 2016 it was possible to
access the performance data stored in .rrd or .jrobin files directly by using the
jrobin language extension provided by the RrdDataSource. This is no longer
possible and the Measurements Datasource has to be used.

To access performance data within reports we created a custom Measurement Datasource which
allows to query the Measurements API and process the returned data in your reports. Please refer
to the official Measurements API documentation on how to use the _Measurements API_.


When using the Measurements Datasource within a report a HTTP connection to
the Measurements API is only established if the report is NOT running within
OpenNMS Meridian, e.g. when used with Jaspersoft Studio.

To receive data from the Measurements API simply create a query as follows:

257

http://docs.opennms.org/opennms/releases/2017.1.24/guide-development/guide-development.html#_measurements_api

Sample queryString to receive data from the Measurements API

<query-request step="300000" start="$P{startDateTime}" end="$P{endDateTime}" maxrows=
"2000"> ①
 <source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets" transient
="false" resourceId="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
 <source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets"
transient="false" resourceId="node[$P{nodeid}].interfaceSnmp[$P{interface}]"/>
</query-request>

① The query language. In our case measurement, but JasperReports supports a lot out of the box,
such as sql, xpath, etc.

13.5.1. Fields

Each datasource should return a number of fields, which then can be used in the report. The
Measurement Datasource supports the following fields:

Field name Field type Field description

<label> java.lang.Double Each Source defined as
transient=false can be used as
a field.
The name of the field is the
label, e.g. IfInOctets

timestamp java.util.Date The timestamp of the sample.

step java.lang.Long The Step size of the Response.
Returns the same value for all
rows.

start java.lang.Long The Start timestamp in
milliseconds of the Resopnse.
Returns the same value for all
rows.

end java.lang.Long The End timestamp in
milliseconds of the Response.
Returns the same value for all
rows.

For more details about the Response, please refer to the official Measurement API documentation.

13.5.2. Parameters

In addition to the queryString the following JasperReports parameters are supported.

258

http://docs.opennms.org/opennms/releases/2017.1.24/guide-development/guide-development.html#_measurements_api

Parameter name Required Description

MEASUREMENT_URL yes The URL of the Measurements
API, e.g.
http://localhost:8980/opennms/
rest/measurements

MEASUREMENT_USERNAME no If authentication is required,
specify the username, e.g. admin

MEASUREMENT_PASSWORD no If authentication is required,
specify the password, e.g. admin

13.6. Helper methods
There are a couple of helper methods to help creating reports in OpenNMS Meridian.

These helpers come along with the Measurement Datasource.

Table 87. supported helper methods

Helper class Helper Method Description

org.opennms.netmgt.jasper.help
er.MeasurementsHelper

getNodeOrNodeSourceDescriptor(
nodeId, foreignSource,
foreignId)

Generates a node source
descriptor according to the
input paramters. Either
node[nodeId] or
nodeSource[foreignSource:forei
gnId] is returned.
nodeSource[foreignSource:forei
gnId] is only returned if
foreignSource and foreignId is
not empty and not null.
Otherwise always node[nodeId]
is returned.

nodeId : String, the id of the
node
foreignSource: String, the
foreign source of the node, may
be null
foreignId: String, the foreign id
of the node, may be null.

For more details checkout
Usage of the node source
descriptor.

259

http://localhost:8980/opennms/rest/measurements
http://localhost:8980/opennms/rest/measurements

Helper class Helper Method Description

org.opennms.netmgt.jasper.help
er.MeasurementsHelper

getInterfaceDescriptor(snmpifn
ame, snmpifdescr, snmphysaddr)

Returns the interface
descriptor of a given interface,
e.g. en0-005e607e9e00.
The input paramaters are
prioritized. If a snmpifdescr is
specified, it is used instead of
the snmpifname.
It a snmpifdescr is defined, it
will be appended to snmpifname
/snmpifdescr.

snmpifname: String, the interface
name of the interface, e.g. en0.
May be null.
snmpifdescr: String, the
description of the interface, e.g.
en0. May be null.
snmphyaddr: String, the mac
address of the interface, e.g.
005e607e9e00. May be null.
As each input parameter may
be null, not all of them can be
null at the same time. At least
one input parameter has to be
defined.

For more details checkout
Usage of the interface
descriptor.

13.6.1. Usage of the interface descriptor

An interfaceSnmp is addressed with the exact interface descriptor. To allow easy access to the
interface descriptor a helper tool is provided. The following example shows the usage of that
helper.

260

jrxml report snippet to visualize the use of the interface descriptor

<parameter name="interface" class="java.lang.String" isForPrompting="false">
 <parameterDescription><![CDATA[]]></parameterDescription>
 <defaultValueExpression>
<![CDATA[org.opennms.netmgt.jasper.helper.MeasurementsHelper.getInterfaceDescriptor($P
{snmpifname}, $P{snmpifdescr}, $P{snmpphysaddr})]]></defaultValueExpression>
</parameter>
<queryString language="Measurement">
 <![CDATA[<query-request step="300000" start="$P{startDateTime}"
end="$P{endDateTime}" maxrows="2000">
<source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets"
transient="false" resourceId="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
<source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets"
transient="false" resourceId="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
</query-request>]]>

13.6.2. Usage of the node source descriptor

A node is addressed by a node source descriptor. The node source descriptor references the node
either via the foreign source and foreign id or by the node id.

If store by foreign source is enabled only addressing the node via foreign source and foreign id is
possible.

In order to make report creation easier, there is a helper method to create the node source

descriptor.


For more information about store by foreign source, please have a look at our
Wiki.

The following example shows the usage of that helper.

261

http://www.opennms.org/wiki/ForeignSource/foreignId_Data_Storage_How-To
http://www.opennms.org/wiki/ForeignSource/foreignId_Data_Storage_How-To

jrxml report snippet to visualize the use of the node source descriptor.

<parameter name="nodeResourceDescriptor" class="java.lang.String" isForPrompting=
"false">
 <defaultValueExpression>
<![CDATA[org.opennms.netmgt.jasper.helper.MeasurementsHelper.getNodeOrNodeSourceDescri
ptor(String.valueOf($P{nodeid}), $P{foreignsource}, $P{foreignid})
]]></defaultValueExpression>
</parameter>
<queryString language="Measurement">
 <![CDATA[<query-request step="300000" start="$P{startDateTime}"
end="$P{endDateTime}" maxrows="2000">
<source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets"
transient="false" resourceId="$P{nodeResourceDescriptor}.interfaceSnmp[en0-
005e607e9e00]"/>
<source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets"
transient="false" resourceId="$P{nodeResourceDescriptor}.interfaceSnmp[en0-
005e607e9e00]"/>
</query-request>]]>

Depending on the input parameters you either get a node resource descriptor or a foreign
source/foreign id resource descriptor.

13.6.3. Usage of the interface descriptor

An interfaceSnmp is addressed with the exact interface descriptor. To allow easy access to the
interface descriptor a helper tool is provided. The following example shows the usage of that
helper.

jrxml report snippet to visualize the use of the interface descriptor

<parameter name="interface" class="java.lang.String" isForPrompting="false">
 <parameterDescription><![CDATA[]]></parameterDescription>
 <defaultValueExpression>
<![CDATA[org.opennms.netmgt.jasper.helper.MeasurementsHelper.getInterfaceDescriptor($P
{snmpifname}, $P{snmpifdescr}, $P{snmpphysaddr})]]></defaultValueExpression>
</parameter>
<queryString language="Measurement">
 <![CDATA[<query-request step="300000" start="$P{startDateTime}"
end="$P{endDateTime}" maxrows="2000">
<source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets"
transient="false" resourceId="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
<source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets"
transient="false" resourceId="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
</query-request>]]>

To get the appropriate interface descriptor depends on the input parameter.

262

13.6.4. Use HTTPS

To establish a secure connection to the Measurements API the public certificate of the running
OpenNMS Meridian must be imported to the Java Trust Store. In Addition OpenNMS Meridian must
be configured to use that Java Trust Store. Please follow the instructions in this chapter to setup the
Java Trust Store correctly.

In addition please also set the property org.opennms.netmgt.jasper.measurement.ssl.enable in
$OPENNMS_HOME\etc\opennms.properties to true to ensure that only secure connections are
established.


If org.opennms.netmgt.jasper.measurement.ssl.enable is set to false an
accidentally insecure connection can be established to the Measurements API
location. A SSL secured connection can be established even if
org.opennms.netmgt.jasper.measurement.ssl.enable is set to false.

13.7. Limitations
• Only a JDBC Datasource to the OpenNMS Meridian Database connection can be passed to a

report, or no datasource at all. One does not have to use the datasource, though.

263

Chapter 14. Enhanced Linkd
Enhanced Linkd (Enlinkd) has been designed to discover connections between nodes using data
generated by various link discovery protocols and accessible via SNMP. Enlinkd gathers this data on
a regular interval and creates a snapshot of a device’s neighbors from its perspective. The
connections discovered by Enlinkd are called Links. The term Link, within the context of Enlinkd, is
not synonymous with the term "link" when used with respect to the network OSI Layer 2 domain,
whereby a link only indicates a Layer 2 connection. A Link in context of Enlinkd is a more abstract
concept and is used to describe any connection between two OpenNMS Meridian Nodes. These Links
are discovered based on information provided by an agent’s understanding of connections at the
OSI Layer 2, Layer 3, or other OSI layers.

The following sections describe the Enlinkd daemon and its configuration. Additionally, the
supported Link discovery implementations will be described as well as a list of the SNMP MIBs that
the SNMP agents must expose in order for EnLinkd to gather Links between Nodes. FYI: Detailed
information about a node’s connections (discovered Links) and supporting link data can be seen on
the Node detail page within the OpenNMS Meridian Web-UI.

14.1. Enlinkd Daemon
Essentially Enlinkd asks each device the following question: "What is the network topology from
your point of view". From this point of view this will only provide local topology discovery features.
It does not attempt to discover global topology or to do any correlation with the data coming from
other nodes.

For large environments the behavior of Enlinkd can be configured. During the Link discovery
process informational and error output is logged to a global log file.

Table 88. Global log and configuration files for Enlinkd

File Location Description

enlinkd-configuration.xml $OPENNMS_HOME/etc Global configuration for the daemon process

enlinkd.log $OPENNMS_HOME/logs Global Enlinkd log file

log4j2.xml $OPENNMS_HOME/etc Configuration file to set the log level for Enlinkd

264

Configuration file for Enlinkd

<?xml version="1.0" encoding="ISO-8859-1"?>
<enlinkd-configuration threads="5"
 initial_sleep_time="60000"
 rescan_interval="86400000"
 use-cdp-discovery="true"
 use-bridge-discovery="true"
 use-lldp-discovery="true"
 use-ospf-discovery="true"
 use-isis-discovery="true"
 />

Table 89. Descriptione for global configuration parameter

Attribute Type Defau
lt

Description

threads Intege
r

5 Number of parallel threads used to discover the topology.

initial_sleep_
time

Intege
r

60000 Time in milliseconds to wait for discovering the topology after
OpenNMS Meridian is started.

rescan_interva
l

Intege
r

864000
00

Interval to rediscover and update the topology in milliseconds.

use-cdp-
discovery

Boole
an

true Enable or disable topology discovery based on CDP information.

use-bridge-
discovery

Boole
an

true Enable or disable algorithm to discover the topology based on the
Bridge MIB information.

use-lldp-
discovery

Boole
an

true Enable or disable topology discovery based on LLDP information.

use-ospf-
discovery

Boole
an

true Enable or disable topology discovery based on OSPF information.

use-isis-
discovery

Boole
an

true Enable or disable topology discovery based on IS-IS information.


If multiple protocols are enabled, the links will be discovered for each enabled
discovery protocol. The topology WebUI will visualize Links for each discovery
protocol. For example if you start CDP and LLDP discovery, the WebUI will
visualize a CDP Link and an LLDP Link.

14.2. Layer 2 Link Discovery
Enlinkd is able to discover Layer 2 network links based on the following protocols:

• Link Layer Discovery Protocol (LLDP)

265

https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

• Cisco Discovery Protocol (CDP)

• Transparent Bridge Discovery

This information are provided by SNMP Agents with appropriate MIB support. For this reason it is
required to have a working SNMP configuration running. The following section describes the
required SNMP MIB provided by the SNMP agent to allow the Link Discovery.

14.2.1. LLDP Discovery

The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol. It is used by
network devices for advertising their identity, capabilities, and neighbors. LLDP performs functions
similar to several proprietary protocols, such as the Cisco Discovery Protocol (CDP), Extreme
Discovery Protocol, Foundry Discovery Protocol (FDP), Nortel Discovery Protocol (also known as
SONMP), and Microsoft’s Link Layer Topology Discovery (LLTD) [1: Wikipedia LLDP:
https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol].


Only nodes with a running LLDP process can be part of the link discovery. The
data is similar to running a show lldp neighbor command on the device. Linux
and Windows servers don’t have an LLDP process running by default and will not
be part of the link discovery.

The following OIDs are supported to discover and build the LLDP network topology.

Table 90. Supported OIDs from LLDP-MIB

Name OID Description

lldpLocChassisI
dSubtype

.1.0.8802.1.1.2.
1.3.1.0

The type of encoding used to identify the chassis associated
with the local system. Possible values can be:
chassisComponent(1)
interfaceAlias(2)
portComponent(3)
macAddress(4)
networkAddress(5)
interfaceName(6)
local(7)

lldpLocChassisI
d

.1.0.8802.1.1.2.
1.3.2.0

The string value used to identify the chassis component
associated with the local system.

lldpLocSysName .1.0.8802.1.1.2.
1.3.3.0

The string value used to identify the system name of the local
system. If the local agent
supports IETF RFC 3418, lldpLocSysName object should have
the same value of sysName object.

lldpLocPortIdSu
btype

.1.0.8802.1.1.2.
1.3.7.1.2

The type of port identifier encoding used in the associated
lldpLocPortId object.

lldpLocPortId .1.0.8802.1.1.2.
1.3.7.1.3

The string value used to identify the port component
associated with a given port in the local system.

266

https://en.wikipedia.org/wiki/Cisco_Discovery_Protocol
https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol
http://tools.ietf.org/html/rfc3418

Name OID Description

lldpLocPortDesc .1.0.8802.1.1.2.
1.3.7.1.4

The string value used to identify the 802 LAN station’s port
description associated with the local system.
If the local agent supports IETF RFC 2863, lldpLocPortDesc
object should have the same value of ifDescr object.

lldpRemChassisI
dSubtype

.1.0.8802.1.1.2.
1.4.1.1.4

The type of encoding used to identify the chassis associated
with the local system. Possible values can be:
chassisComponent(1)
interfaceAlias(2)
portComponent(3)
macAddress(4)
networkAddress(5)
interfaceName(6)
local(7)

lldpRemChassisI
d

.1.0.8802.1.1.2.
1.4.1.1.5

The string value used to identify the chassis component
associated with the remote system.

267

Name OID Description

lldpRemPortIdS
ubtype

.1.0.8802.1.1.2.
1.4.1.1.6

The type of port identifier encoding used in the associated
lldpRemPortId object.

interfaceAlias(1)
the octet string identifies a particular instance of the ifAlias
object (defined in IETF RFC 2863). If the particular ifAlias
object does not contain any values, another port identifier type
should be used.

portComponent(2)
the octet string identifies a particular instance of the
entPhysicalAlias object (defined in IETF RFC 2737) for a port or
backplane component.

macAddress(3)
this string identifies a particular unicast source address
(encoded in network byte order and IEEE 802.3 canonical bit
order) associated with the port (IEEE Std 802-2001).

networkAddress(4)
this string identifies a network address associated with the
port. The first octet contains
the IANA AddressFamilyNumbers enumeration value for the
specific address type, and octets 2 through N contain the
networkAddress address value in network byte order.

interfaceName(5)
the octet string identifies a particular instance of the ifName
object (defined in IETF RFC 2863).
If the particular ifName object does not contain any values,
another port identifier type should be used.

agentCircuitId(6)
this string identifies a agent-local identifier of the circuit
(defined in RFC 3046)

local(7)
this string identifies a locally assigned port ID.

lldpRemPortId .1.0.8802.1.1.2.
1.4.1.1.7

The string value used to identify the port component
associated with the remote system.

lldpRemPortDes
c

.1.0.8802.1.1.2.
1.4.1.1.8

The string value used to identify the description of the given
port associated with the remote system.

lldpRemSysNam
e

.1.0.8802.1.1.2.
1.4.1.1.9

The string value used to identify the system name of the
remote system.

Generic information about the LLDP process can be found in the LLDP Information box on the Node
Detail Page of the device. Information gathered from these OIDs will be stored in the following
database table:

268

Figure 21. Database tables related to LLDP discovery

14.2.2. CDP Discovery

The Cisco Discovery Protocol (CDP) is a proprietary link layer protocol from Cisco. It is used by
network devices to advertise identity, capabilities and neighbors. CDP performs functions similar to
several proprietary protocols, such as the Link Layer Discovery Protocol (LLDP), Extreme Discovery
Protocol, Foundry Discovery Protocol (FDP), Nortel Discovery Protocol (also known as SONMP), and
Microsoft’s Link Layer Topology Discovery (LLTD). The CDP discovery uses information provided by
the CISCO-CDP-MIB and CISCO-VTP-MIB.


Only nodes with a running CDP process can be part of the link discovery. The
data is similar to running a show cdp neighbor command on the IOS CLI of the
device. Linux and Windows servers don’t have a CDP process running by
default and will not be part of the link discovery.

The following OIDs are supported to discover and build the CDP network topology.

Table 91. Supported OIDS from the IF-MIB

Nam
e

OID Description

ifDes
cr

.1.3.6.1.2.1.2.
2.1.2

A textual string containing information about the interface.
This string should include the name of the manufacturer, the product
name and the version of the interface hardware/software.

Table 92. Supported OIDS from the CISCO-CDP-MIB to discover links

Name OID Description

cdpInterfaceNa
me

.1.3.6.1.4.1.9.9.2
3.1.1.1.1.6

The name of the local interface as advertised by CDP in the
Port-ID TLV.

269

http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2&mibName=CISCO-CDP-MIB
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2&mibName=CISCO-VTP-MIB

Name OID Description

cdpCacheEntry .1.3.6.1.4.1.9.9.2
3.1.2.1.1

An entry (conceptual row) in the cdpCacheTable, containing
the information received via CDP on one interface from one
device. Entries appear
when a CDP advertisement is received from a neighbor
device. Entries disappear
when CDP is disabled on the interface, or globally.

cdpCacheAddres
sType

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.3

An indication of the type of address contained in the
corresponding instance of cdpCacheAddress.

cdpCacheAddres
s

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.4

The (first) network-layer address of the device’s SNMP-agent
as reported in the Address TLV of the most recently received
CDP message. For
example, if the corresponding instance of cacheAddressType
had the value ip(1), then this object would be an IP-address.

cdpCacheVersio
n

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.5

The Version string as reported in the most recent CDP
message. The zero-length
string indicates no Version field (TLV) was reported in the
most recent CDP message.

cdpCacheDevice
Id

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.6

The Device-ID string as reported in the most recent CDP
message. The zero-length
string indicates no Device-ID field (TLV) was reported in the
most recent CDP message.

cdpCacheDevice
Port

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.7

The Port-ID string as reported in the most recent CDP
message. This will
typically be the value of the ifName object (e.g., Ethernet0).
The zero-length string indicates no Port-ID field (TLV) was
reported in the most recent CDP message.

cdpCachePlatfor
m

.1.3.6.1.4.1.9.9.2
3.1.2.1.1.8

The Device’s Hardware Platform as reported in the most
recent CDP message. The
zero-length string indicates that no Platform field (TLV) was
reported in the most recent CDP message.

cdpGlobalRun .1.3.6.1.4.1.9.9.2
3.1.3.1.0

An indication of whether the Cisco Discovery Protocol is
currently running.
Entries in cdpCacheTable are deleted when CDP is disabled.

cdpGlobalDevice
Id

.1.3.6.1.4.1.9.9.2
3.1.3.4.0

The device ID advertised by this device.
The format of this device id is characterized by the value of
cdpGlobalDeviceIdFormat object.

270

Name OID Description

cdpGlobalDevice
IdFormat

.1.3.6.1.4.1.9.9.2
3.1.3.7.0

An indication of the format of Device-Id contained in the
corresponding instance of cdpGlobalDeviceId.
User can only specify the formats that the device is capable
of as denoted in cdpGlobalDeviceIdFormatCpb object.
serialNumber(1): indicates that the value of
cdpGlobalDeviceId object is in the form of an ASCII string
contain the device serial number.
macAddress(2): indicates that the value of
cdpGlobalDeviceId object is in the form of Layer 2 MAC
address.
other(3): indicates that the value of cdpGlobalDeviceId
object is in the form of a platform specific ASCII string
contain info that identifies the device.
For example: ASCII string contains serialNumber
appended/prepened with system name.

Table 93. Supported OIDS from the CISCO-VTP-MIB.

vtpVersion .1.3.6.1.4.1.9.9.46
.1.1.1.0

The version of VTP in use on the local system.
A device will report its version capability and not any
particular version in use on the device.
If the device does not support VTP, the version is none(3).

ciscoVtpVla
nState

.1.3.6.1.4.1.9.9.46

.1.3.1.1.2
The state of this VLAN. The
state mtuTooBigForDevice indicates that this device cannot
participate in this VLAN because the VLAN’s MTU is larger than
the device can support.
The state mtuTooBigForTrunk indicates that while this VLAN’s
MTU is supported by this device, it is too large for one or more
of the device’s trunk ports.
operational(1), suspended(2), mtuTooBigForDevice(3),
mtuTooBigForTrunk(4)

ciscoVtpVla
nType

.1.3.6.1.4.1.9.9.46

.1.3.1.1.3
The type of this VLAN.
ethernet(1), fddi(2), tokenRing(3), fddiNet(4), trNet(5),
deprecated(6)

ciscoVtpVla
nName

.1.3.6.1.4.1.9.9.46

.1.3.1.1.4
The name of this VLAN. This
name is used as the ELAN-name for an ATM LAN-Emulation
segment of this VLAN.

Generic information about the CDP process can be found in the CDP Information box on the Node
Detail Page of the device. Information gathered from these OIDs will be stored in the following
database table:

271

Figure 22. Database tables related to CDP discovery

14.2.3. Transparent Bridge Discovery

Discovering Layer 2 network links using the Bridge Forwarding table requires a special algorithm.
To discover Links an algorithm based on a scientific paper with the title Topology Discovery for
Large Ethernet Networks is implemented. The gathered information is used to classify Links in
macLink and bridgeLink. A macLink represents a Link between a workstation or server identified
by a mac address. A bridgeLink is a connection between backbone ports.

Transparent bridging is not loop free so if you have loops you have to enable the spanning tree
protocol that will detect loops and again will put some ports in a blocking state to avoid loops. To get
links it is necessary to perform some calculations that let us define the Links. The following MIBS
must be supported by the SNMP agent to allow Transparent Bridge Discovery.

Table 94. Supported MIBS from the Cisco-VTP MIB

Name OID Description

vtpVers
ion

.1.3.6.1.4.1.9.9.46

.1.1.1.0
The version of VTP in use on the local system.
A device will report its version capability and not any particular
version in use on the device. If
the device does not support VTP, the version is none(3).

Table 95. Supported OIDs from the IP-MIB

Name OID Description

ipNetToMediaIfIn
dex

.1.3.6.1.2.1.4

.22.1.1
The interface on which this entry’s equivalence is effective.
The layer-2 interface identified by a particular value of this
index is the same interface as identified by the same value of
ifIndex.

ipNetToMediaPhy
sAddress

.1.3.6.1.2.1.4

.22.1.2
The media-dependent physical address.

272

http://cs-pub.bu.edu/groups/nrg/readinglist/lowekamp-sigcomm01.pdf
http://cs-pub.bu.edu/groups/nrg/readinglist/lowekamp-sigcomm01.pdf

ipNetToMediaNet
Address

.1.3.6.1.2.1.4

.22.1.3
The IpAddress corresponding to the media-dependent physical
address.

ipNetToMediaTyp
e

.1.3.6.1.2.1.4

.22.1.4
The type of mapping. Setting this object to the value invalid(2)
has the effect of invalidating the corresponding entry in the
ipNetToMediaTable. That
is, it effectively dissasociates the interface identified with said
entry from the mapping identified with said entry.
It is an implementation-specific matter as to whether the agent
removes an invalidated entry from the table.
Accordingly, management stations must be prepared to receive
tabular information from agents that corresponds to entries not
currently in use. Proper
interpretation of such entries requires examination of the
relevant ipNetToMediaType object.

Table 96. Supported OIDS from the BRIDGE-MIB

Name OID Description

dot1dBaseBridgeA
ddress

.1.3.6.1.2.1.17

.1.1.0
The MAC address used by this bridge when it must be
referred to in a unique fashion.
It is recommended that this be the numerically smallest MAC
address of all ports that belong to this bridge.
However it is only required to be unique.
When concatenated with dot1dStpPriority a unique
BridgeIdentifier is formed which is used in the Spanning Tree
Protocol.

dot1dBaseNumPort
s

.1.3.6.1.2.1.17

.1.2.0
The number of ports controlled by this bridging entity.

dot1dBaseType .1.3.6.1.2.1.17
.1.3.0

Indicates what type of bridging this bridge can perform.
If a bridge is actually performing a certain type of bridging
this will be indicated by entries in the port table for the given
type.

dot1dBasePort .1.3.6.1.2.1.17
.1.4.1.1

The port number of the port for which this entry contains
bridge management information.

dot1dPortIfIndex .1.3.6.1.2.1.17
.1.4.1.2

The value of the instance of the ifIndex object, defined in
MIB-II, for the interface corresponding to this port.

dot1dStpProtocolS
pecification

.1.3.6.1.2.1.17

.2.1.0
An indication of what version of the Spanning Tree Protocol
is being run. The value
decLb100(2) indicates the DEC LANbridge 100 Spanning Tree
protocol. IEEE 802.1d
implementations will return ieee8021d(3).
If future versions of the IEEE Spanning Tree Protocol are
released that are incompatible with the current version a
new value will be defined.

273

dot1dStpPriority .1.3.6.1.2.1.17
.2.2

The value of the writeable portion of the Bridge ID, i.e., the
first two octets of the (8 octet long) Bridge ID.
The other (last) 6 octets of the Bridge ID are given by the
value of dot1dBaseBridgeAddress.

dot1dStpDesignate
dRoot

.1.3.6.1.2.1.17

.2.5
The bridge identifier of the root of the spanning tree as
determined by the Spanning Tree Protocol as executed by this
node. This value is used
as the Root Identifier parameter in all configuration Bridge
PDUs originated by this node.

dot1dStpRootCost .1.3.6.1.2.1.17
.2.6

The cost of the path to the root as seen from this bridge.

dot1dStpRootPort .1.3.6.1.2.1.17
.2.7

The port number of the port which offers the lowest cost
path from this bridge to the root bridge.

dot1dStpPort .1.3.6.1.2.1.17
.2.15.1.1

The port number of the port for which this entry contains
Spanning Tree Protocol management information.

dot1dStpPortPriori
ty

.1.3.6.1.2.1.17

.2.15.1.2
The value of the priority field which is contained in the first
(in network byte order) octet of the (2 octet long) Port ID.
The other octet of the Port ID is given by the value of
dot1dStpPort.

dot1dStpPortState .1.3.6.1.2.1.17
.2.15.1.3

The port’s current state as defined by application of the
Spanning Tree Protocol.
This state controls what action a port takes on reception of a
frame. If the bridge has
detected a port that is malfunctioning it will place that port
into the broken(6) state.
For ports which are disabled (see dot1dStpPortEnable), this
object will have a value of disabled(1).

dot1dStpPortEnabl
e

.1.3.6.1.2.1.17

.2.15.1.4
The enabled/disabled status of the port.

dot1dStpPortPathC
ost

.1.3.6.1.2.1.17

.2.15.1.5
The contribution of this port to the path cost of paths
towards the spanning tree root which include this port.
802.1D-1990 recommends that the default value of this
parameter be in inverse proportion to the speed of the
attached LAN.

dot1dStpPortDesig
natedRoot

.1.3.6.1.2.1.17

.2.15.1.6
The unique Bridge Identifier of the Bridge recorded as the
Root in the Configuration BPDUs transmitted by the
Designated Bridge for the segment to which the port is
attached.

dot1dStpPortDesig
natedCost

.1.3.6.1.2.1.17

.2.15.1.7
The path cost of the Designated Port of the segment
connected to this port.
This value is compared to the Root Path Cost field in received
bridge PDUs.

dot1dStpPortDesig
natedBridge

.1.3.6.1.2.1.17

.2.15.1.8
The Bridge Identifier of the bridge which this port considers
to be the Designated Bridge for this port’s segment.

274

dot1dStpPortDesig
natedPort

.1.3.6.1.2.1.17

.2.15.1.9
The Port Identifier of the port on the Designated Bridge for
this port’s segment.

dot1dTpFdbAddres
s

.1.3.6.1.2.1.17

.4.3.1.1
A unicast MAC address for which the bridge has forwarding
and/or filtering information.

dot1dTpFdbPort .1.3.6.1.2.1.17
.4.3.1.2

Either the value '0', or the port number of the port on which
a frame having a source address equal to the value of the
corresponding instance of dot1dTpFdbAddress has been seen.
A value of '0' indicates that the port number has not been
learned but that the bridge does have some
forwarding/filtering information about this address (e.g. in
the dot1dStaticTable).
Implementors are encouraged to assign the port value to this
object whenever it is learned even for addresses for which
the corresponding value of dot1dTpFdbStatus is not
learned(3).

dot1dTpFdbStatus .1.3.6.1.2.1.17
.4.3.1.3

The status of this entry.
The meanings of the values are:
other(1): none of the following.
This would include the case where some other MIB object
(not the corresponding instance of dot1dTpFdbPort, nor an
entry in the dot1dStaticTable) is being used to determine if
and how frames addressed to the value of the corresponding
instance of dot1dTpFdbAddress are being forwarded.
invalid(2): this entry is not longer valid (e.g., it was learned
but has since aged-out), but has not yet been flushed from
the table.
learned(3): the value of the corresponding instance of
dot1dTpFdbPort was learned, and is being used.
self(4): the value of the corresponding instance of
dot1dTpFdbAddress represents one of the bridge’s addresses.
The corresponding instance of dot1dTpFdbPort indicates
which of the bridge’s ports has this address.
mgmt(5): the value of the corresponding instance of
dot1dTpFdbAddress is also the value of an existing instance
of dot1dStaticAddress.

Table 97. Supported OIDS from the Q-BRIDGE-MIB

Name OID Description

dot1qTpFdb
Port

.1.3.6.1.2.1.17.7.
1.2.2.1.2

Either the value 0, or the port number of the port on which a
frame having a source address equal to the value of the
corresponding instance of dot1qTpFdbAddress has been seen.
A value of 0 indicates that the port number has not been learned
but that the device does have some forwarding/filtering
information about this address (e.g., in the
dot1qStaticUnicastTable).
Implementors are encouraged to assign the port value to this
object whenever it is learned, even for addresses for which the
corresponding value of dot1qTpFdbStatus is not learned(3).

275

dot1qTpFdb
Status

.1.3.6.1.2.1.17.7.
1.2.2.1.3

The status of this entry. The
meanings of the values are:
other(1): none of the following.
This may include the case where some other MIB object (not the
corresponding instance of dot1qTpFdbPort, nor an entry in the
dot1qStaticUnicastTable) is being used to determine if and how
frames addressed to the value of the corresponding instance of
dot1qTpFdbAddress are being forwarded.
invalid(2): this entry is no longer valid (e.g., it was learned but
has since aged out), but has not yet been flushed from the table.
learned(3): the value of the corresponding instance of
dot1qTpFdbPort was learned and is being used.
self(4): the value of the corresponding instance of
dot1qTpFdbAddress represents one of the device’s addresses.
The corresponding instance of dot1qTpFdbPort indicates which
of the device’s ports has this address.
mgmt(5): the value of the corresponding instance of
dot1qTpFdbAddress is also the value of an existing instance of
dot1qStaticAddress.

Generic information about the bridge link discovery process can be found in the Bridge Information
box on the Node Detail Page of the device. Information gathered from this OID will be stored in the
following database table:

276

Figure 23. Database tables related to transparent bridge discovery

14.3. Layer 3 Link Discovery
With Enlinkd it is possible to get Links based on network routing applications. The following routing
daemons can be used to provide a discovery of links based Layer 3 information:

• Open Shortest Path First (OSPF)

• Intermediate System to Intermediate System (IS-IS)

This information is provided by SNMP Agents with appropriate MIB support. For this reason it is
required to have a working SNMP configuration running. The link data discovered from Enlinkd is
provided in the Topology User Interface and on the detail page of a node.

277

https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/IS-IS

14.3.1. OSPF Discovery

The relevant MIBs for OSPF topology are OSPF-MIB and OSPF-TRAP-MIB. In these MIBs are defined
the relevant objects used to find OSPF links, specifically:

• The Router ID which, in OSPF, has the same format as an IP address

• But identifies the router independent of its IP address.

Also all the interfaces are identified by their IP addresses. The OSPF links come from the SNMP
ospfNbrTable defined in OSPF-MIB and this table is in practice persisted in the ospfLink table:

Table 98. Supported OIDs from OSPF-MIB

Name OID Description

ospfRouterId .1.3.6.1.2.1.1
4.1.1.0

A 32-bit integer uniquely identifying the router in the
Autonomous System. By
convention, to ensure uniqueness, this should default to the
value of one of the router’s IP interface addresses.
This object is persistent and when written the entity should
save the change to non-volatile storage.

ospfAdminStat .1.3.6.1.2.1.1
4.1.2.0

The administrative status of OSPF in the router.
The value enabled denotes that the OSPF Process is active on at
least one interface; disabled disables it on all interfaces.
This object is persistent and when written the entity should
save the change to non-volatile storage.

ospfVersionNum
ber

.1.3.6.1.2.1.1
4.1.3.0

The current version number of the OSPF protocol is 2.

ospfAreaBdrRtrS
tatus

.1.3.6.1.2.1.1
4.1.4.0

A flag to note whether this router is an Area Border Router.

ospfAreaASBdrR
trStatus

.1.3.6.1.2.1.1
4.1.5.0

A flag to note whether this router is configured as an
Autonomous System Border Router.
This object is persistent and when written the entity should
save the change to non-volatile storage.

ospfIfIpAddress .1.3.6.1.2.1.1
4.7.1.1

The IP address of this OSPF interface.

ospfAddressLessI
f

.1.3.6.1.2.1.1
4.7.1.2

For the purpose of easing the instancing of addressed and
addressless interfaces; this variable takes the value 0 on
interfaces with IP addresses and the corresponding value of
ifIndex for interfaces having no IP address.

ospfNbrIpAddr .1.3.6.1.2.1.1
4.10.1.1

The IP address this neighbor is using in its IP source address.
Note that, on addressless links, this will not be 0.0.0.0 but the
address of another of the neighbor’s interfaces.

ospfNbrAddressL
essIndex

.1.3.6.1.2.1.1
4.10.1.2

On an interface having an IP address, zero.
On addressless interfaces, the corresponding value of ifIndex in
the Internet Standard MIB. On
row creation, this can be derived from the instance.

278

Name OID Description

ospfNbrRtrId .1.3.6.1.2.1.1
4.10.1.3

A 32-bit integer (represented as a type IpAddress) uniquely
identifying the neighboring router in the Autonomous System.

Table 99. Supported OIDs from IP-MIB

Name OID Description

ipAdEntIfIn
dex

.1.3.6.1.2.1.4.
20.1.2

The index value which uniquely identifies the interface to which
this entry is applicable. The interface
identified by a particular value of this index is the same interface as
identified by the same value of the IF-MIB’s ifIndex.

ipAdEntNet
Mask

.1.3.6.1.2.1.4.
20.1.3

The subnet mask associated with the IPv4 address of this entry.
The value of the mask is an IPv4 address with all the network bits
set to 1 and all the hosts bits set to 0.

Generic information about the OSPF link discovery process can be found in the OSPF Information
box on the Node Detail Page of the device. Information gathered from these OIDs will be stored in
the following database table:

Figure 24. Database tables related to OSPF discovery

14.3.2. IS-IS Discovery

IS-IS Links are found in the isisISAdjTable that is defined in ISIS-MIB (mib-rfc4444.txt). In this table
is found the information needed to find the Adjacency Intermediate System. The information about
IS-IS is stored into two tables: isisElement and isisLink. isisElement contains the ISISSysID, a unique
identifier of the "Intermediate System" (the name for the Router in ISO protocols). Each entry in this
SNMP MIB table represents a unidirectional link from the Intermediate System that is queried to the
Adjacent Intermediate Systems running IS-IS and "peering" with the source router. If two routers IS-
A and IS-B support ISIS-MIB, then EnLinkd will create two link entries in OpenNMS Meridian: one
from IS-A to IS-B (from the adjtable of IS-A) the complementary link back from IS-B to IS-A (from the

279

adjTable of _IS-B). IS-IS links are represented in the ISIS-MIB as follows:

Table 100. Supported OIDs from ISIS-MIB

Name OID Description

isisSysID .1.3.6.1.2.1.138
.1.1.1.3.0

The ID for this Intermediate System.
This value is appended to each of the area addresses to form
the Network Entity Titles.
The derivation of a value for this object is implementation
specific. Some
implementations may automatically assign values and not
permit an SNMP write, while others may require the value to
be set manually.
Configured values must survive an agent reboot.

isisSysAdminStat
e

.1.3.6.1.2.1.138

.1.1.1.8.0
The administrative state of this Intermediate System.
Setting this object to the value on when its current value is
off enables the Intermediate System.
Configured values must survive an agent reboot.

isisSysObject .1.3.6.1.2.1.138
.1.1.1

isisSysObject

isisCircIfIndex .1.3.6.1.2.1.138
.1.3.2.1.2

The value of ifIndex for the interface to which this circuit
corresponds. This object
cannot be modified after creation.

isisCircAdminStat
e

.1.3.6.1.2.1.138

.1.3.2.1.3
The administrative state of the circuit.

isisISAdjState .1.3.6.1.2.1.138
.1.6.1.1.2

The state of the adjacency.

isisISAdjNeighSN
PAAddress

.1.3.6.1.2.1.138

.1.6.1.1.4
The SNPA address of the neighboring system.

isisISAdjNeighSys
Type

.1.3.6.1.2.1.138

.1.6.1.1.5
The type of the neighboring system.

isisISAdjNeighSys
ID

.1.3.6.1.2.1.138

.1.6.1.1.6
The system ID of the neighboring Intermediate System.

isisISAdjNbrExte
ndedCircID

.1.3.6.1.2.1.138

.1.6.1.1.7
The 4-byte Extended Circuit ID learned from the Neighbor
during 3-way handshake, or 0.

Generic information about the IS-IS link discovery process can be found in the IS-IS Information
box on the Node Detail Page of the device. Information gathered from this OIDs will be stored in the
following database table:

280

Figure 25. Database tables related to IS-IS discovery

281

Chapter 15. Operation

15.1. HTTPS / SSL
This chapter covers the possibilities to configure OpenNMS Meridian to protect web sessions with
HTTPS and also explains how to configure OpenNMS Meridian to establish secure connections.


In order to use HTTPS the Java command line tool keytool is used. It is
automatically shipped with each JRE installation. More details about the
keytool can be found at the official documentation.

15.1.1. Standalone HTTPS with Jetty

To configure OpenNMS Meridian to protect web sessions with HTTPS please refer to the official
OpenNMS Meridian Wiki article Standalone HTTPS with Jetty.

15.1.2. OpenNMS Meridian as HTTPS client

To establish secure HTTPS connections within Java one has to setup a so called Java Trust Store.

The Java Trust Store contains all certificates a Java application should trust when making
connections as a client to a server.

Setup Java Trust Store

To setup the Java Trust Store the following command can be issued.

 If you do not have a Java Trust Store setup yet, it is created automatically.

Import a certificate to the Java Trust Store

keytool \
 -import \ ①
 -v \ ②
 -trustcacerts \ ③
 -alias localhost \ ④
 -file localhost.cert \ ⑤
 -keystore /$OPENNMS_HOME/etc/trust-store.jks ⑥

① Define to import a certificate or a certificate chain

② Use verbose output

③ Define to trust certificates from cacerts

④ The alias for the certificate to import, e.g. the common name

⑤ The certificate to import

⑥ The location of the Java Trust Store

282

https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://www.opennms.org/wiki/Standalone_HTTPS_with_Jetty

If you create a new Java Trust Store you are asked for a password to protect the Java Trust Store. If
you update an already existing Java Trust Store please enter the password you chose when creating
the Java Trust Store initially.

Download existing public certificate

To Download an existing public certificate the following command can be issued.

Download an existing public certificate

openssl \
 s_client \ ①
 -showcerts \ ②
 -connect localhost:443 \ ③
 -servername localhost \ ④
 < /dev/null \ ⑤
 > localhost.cert ⑥

① Use SSL/TLS client functionality of openssl.

② Show all certificates in the chain

③ PORT:HOST to connect to, e.g. localhost:443

④ This is optional, but if you are serving multiple certificates under one single ip address you may
define a server name, otherwise the ip of localhost:PORT certificate is returned which may not
match the requested server name (mail.domain.com, opennms.domain.com, dns.domain.com)

⑤ No input

⑥ Where to store the certificate.

Configure OpenNMS Meridian to use the defined Java Trust Store

To setup OpenNMS Meridian to use the defined Java Trust Store the according
javax.net.ssl.trustStore* properties have to be set. Open $OPENNMS_HOME/etc/opennms.properties
and add the properties javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword as shown
below.

$OPENNMS_HOME/etc/opennms.properties snippet to define a Java Trust Store

javax.net.ssl.trustStore=/$OPENNMS_HOME/etc/trust-store.jks ①
javax.net.ssl.trustStorePassword=change-me ②

① The location of the Java Trust Store

② The password of the Java Trust Store

For more details on the Java build-in SSL System properties have a look at chapter Debugging /
Properties.


Each time you modify the Java Trust Store you have to restart OpenNMS Meridian
to have the changes take effect.

283

15.1.3. Differences between Java Trust Store and Java Key Store

The Java Trust Store is used to determine whether a remote connection should be trusted or not,
e.g. whether a remote party is who it claims to be (client use case).

The Java Key Store is used to decide which authentication credentials should be sent to the remote
host for authentication during SSL handshake (server use case).

For more details, please check the JSSE Reference Guide.

15.1.4. Debugging / Properties

If you encounter issues while using HTTPS it might be useful to enable debugging or use one of the
build-in Java System Properties to configure the proper use of SSL.

Table 101. Java build-in System Properties (Source)

System Property Name Description

javax.net.ssl.keyStore Location of the Java keystore file containing an
application process’s own certificate and private
key. On Windows, the
specified pathname must use forward slashes, /,
in place of backslashes, \.

javax.net.ssl.keyStorePassword Password to access the private key from the
keystore file specified by javax.net.ssl.keyStore.
This password is used twice: to unlock the
keystore file (store password) and to decrypt the
private key stored in the keystore (key
password). In other words,
the JSSE framework requires these passwords to
be identical.

javax.net.ssl.keyStoreType (Optional) For Java keystore file format, this
property has the value jks (or JKS). You do not
normally specify this property, because its
default value is already jks.

javax.net.ssl.trustStore Location of the Java keystore file containing the
collection of CA certificates trusted by this
application process (trust store). On Windows,
the specified pathname must use forward
slashes, /, in place of backslashes, \.
If a trust store location is not specified using this
property, the Sun JSSE implementation searches
for and uses a keystore file in the following
locations (in order):
$JAVA_HOME/lib/security/jssecacerts and
$JAVA_HOME/lib/security/cacerts

javax.net.ssl.trustStorePassword Password to unlock the keystore file (store
password) specified by
javax.net.ssl.trustStore.

284

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#Stores
https://access.redhat.com/documentation/en-US/Fuse_MQ_Enterprise/7.1/html/Security_Guide/files/SSL-SysProps.html

System Property Name Description

javax.net.ssl.trustStoreType (Optional) For Java keystore file format, this
property has the value jks (or JKS). You do not
normally specify this property, because its
default value is already jks.

javax.net.debug To switch on logging for the SSL/TLS layer, set
this property to ssl. More details about possible
values can be found here.

15.2. Geocoder Service
The Geocoder Service is used to resolve geolocation information within OpenNMS Meridian. By
default The Google Map API is used to resolve the geolocation information, if available. In order to
configure the Google Map API the following properties in
etc/org.opennms.features.geocoder.google.cfg are supported:

Proper
ty

Type Default Description

clientI
d

Strin
g

empty
string

The Google Map API Client ID. This is
required if you exceed the free Google Map API usage.
Please refer to the official documentation for more information.

clientK
ey

Strin
g

empty
string

The Google Map API API Key. This is
required if you exceed the free Google Map API usage.
Please refer to the official documentation for more information.

timeout Integ
er

500 The connection timeout in milliseconds the Geocoder tries to resolve a
single geolocation.

15.3. resourcecli: simple resource management tool
Sometimes a user want to list or manually delete collected data (resources) of an OpenNMS
Meridian instance. When using RRDTool- or JRobin-based storage this can easily be achieved by
traversing the share/rrd directory and its subdirectories. The several .rrd or .jrb files can be listed
or deleted for individual nodes. When Newts-based storage is used the data is stored and indexed
remotely on a Cassandra cluster. In this case the cluster must be queried for available resources.
For the deletion of resources the data and all generated indexes must be gathered and removed.
The resourcecli tool simplifies this process and works with Newts-based storage as well as with
RRDTool and JRobin files.

15.3.1. Usage

The utility is installed by default and its wrapper script is located in the ${OPENNMS_HOME}/bin
directory.

285

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#Debug
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

$ cd /path/to/opennms/bin
$./resourcecli

 When invoked without parameters the usage and help information is printed.

The resourcecli tool uses sub-commands for the different tasks. Each of these sub-commands
provide different options and parameters. The command line tool accepts the following sub-
commands.

Sub-
command

Description

list Queries an OpenNMS Meridian server for available resources.

show Displays details for a given resource.

delete Deletes a given resource and all of its child resources.

The following global options are available in each of the sub-commands of the tool:

Option/Argume
nt

Description Default

--help Displays help and exit false

--username VALUE Username for connecting to OpenNMS Meridian admin

--password VALUE Password for connecting to OpenNMS Meridian admin

--url VALUE URL of the OpenNMS Meridian instance to connect
to

http://localhost:8980/openn
ms

15.3.2. Sub-command: list

This sub-command is used to query an OpenNMS Meridian instance for its available resources. The
following example queries the local OpenNMS Meridian instance with the credentials admin/secret.

$./resourcecli --username admin --password secret list
node[72]
 node[72].nodeSnmp[]
 node[72].responseTime[192.168.0.2]
node[70]
 node[70].nodeSnmp[]
 node[70].interfaceSnmp[bridge0]
 node[70].interfaceSnmp[bridge1]
 node[70].interfaceSnmp[vlan0-002500fe1bf3]
 node[70].responseTime[50.16.15.18]
 node[70].responseTime[192.168.0.1]

<output omitted>

286

http://localhost:8980/opennms
http://localhost:8980/opennms

15.3.3. Sub-command: show

This sub-command can be used to show details for a given resource. The following example display
details for the resource identified by resourceId node[70].

$./resourcecli --username admin --password secret show node\[70\]
ID: node[70]
Name: 70
Label: MyRouter
Type: Node
Link: element/node.jsp?node=70
Parent ID: null
Children:
 node[70].nodeSnmp[]
 node[70].interfaceSnmp[bridge0]
 node[70].interfaceSnmp[bridge1]
 node[70].interfaceSnmp[vlan0-002500fe1bf3]
 node[70].responseTime[50.16.15.18]
 node[70].responseTime[192.168.0.1]
Attributes:
 External:
 Graphs:
 Strings:

The following options are available for the show sub-command.

Option/Argume
nt

Description Defaul
t

<resource> The resourceId of the resource to display. -

15.3.4. Sub-command: delete

This sub-command can be used to delete a given resource and its child resources. The following
example deletes the resource identified by resourceId node[70]. When successful, this command
does not generate any output.

$./resourcecli --username admin --password secret delete node\[70\]
$

The following options are available for the delete sub-command.

Option/Argume
nt

Description Defaul
t

<resource> The resourceId of the resource to be deleted. -

287

15.4. newts-repository-converter: Rrd/Jrb to Newts
migration utility
This utility can be used to migrate existing RRDTool- or JRobin-based data to a Newts cluster. This
will be achieved by traversing the share/rrd directory and its subdirectories, reading the data and
properties files and persisting this data to Newts.

15.4.1. Migration

The following suggestions try to minimize the data collection gap that occur when reconfiguring
OpenNMS Meridian for a different storage strategy. First, we determine the parameters needed for
migration of the existing data. After that, we reconfigure OpenNMS Meridian to persists all new
collected data to Newts storage. Finally, the Rrd- or JRobin-based data will be converted and
persisted to Newts using the newts-repository-converter utility.

Prerequisites

• Working OpenNMS Meridian installation with RRDTool- or JRobin-based storage strategy
configured.

• Installed and working Newts cluster reachable by the OpenNMS Meridian instance.

Migration plan

1. Check and write down the values for the following options in your opennms.properties file. You
will need these information later to invoke the newts-repository-converter utility.

a. File etc/opennms.properties:

• Check for the entry org.opennms.rrd.storeByGroup whether storeByGroup is enabled.

• Check for the entry rrd.base.dir for the location where Rrd or Jrb files are stored.

• Check for the entry rrd.binary for the location of the RRDTool binary.

b. File etc/rrd-configuration.properties:

• Check for the entry org.opennms.rrd.strategyClass whether JRobinRrdStrategy (JRobin) or
JniRrdStrategy / MultithreadedJniRrdStrategy (RRDTool) is used.

2. Stop your OpenNMS Meridian instance.

3. Reconfigure OpenNMS Meridian to persist data to Newts - so, when correctly configured all new
samples will be persisted into Newts after OpenNMS Meridian is started. Note, that the converter
assumes storeByForeignSource to be enabled.

4. Start your OpenNMS Meridian instance.

5. Use the newts-repository-converter utility to convert the existing data to Newts by specifying the
options that correspond to the information gathered during step #1.

This procedure will minimize the data collection gap to the time needed to reconfigure OpenNMS
Meridian for Newts storage.

288


The newts_converter utility needs the path to the base directory of your OpenNMS
Meridian instance for reading the configuration files. For instance the utility
needs the datasource configuration during the migration process to query the
database to lookup node data.

15.4.2. Usage

The utility is installed by default and its wrapper script is located in the ${OPENNMS_HOME}/bin
directory.

$ cd /path/to/opennms/bin
$./newts-repository-converter

 When invoked without parameters the usage and help information is printed.

The newts-repository-converter tool provide the following options and parameters:

Short-
option

Long-
option

Description Default

h help Prints help and usage information false

o onms-home OpenNMS Meridian Home Directory /opt/opennms

r rrd-dir The path to the RRD data ONMS-
HOME/share/rrd

t rrd-tool Whether to use rrdtool or JRobin

T rrd-binary The binary path to the rrdtool command (only used
if rrd-tool is set)

/usr/bin/rrdtool

s store-by-
group

Whether store by group was enabled or not

n threads Number of conversion threads defaults to number
of CPUs

15.4.3. Example 1: convert Rrd-based data with storeByGroup enabled

The following example shows how to convert RRDTool-based data that was stored with
storeByGroup enabled. The OpenNMS Meridian home is /opt/opennms, the data directory is
/opt/opennms/share/rrd and the RRDTool binary located at /usr/local/bin/rrdtool. This program
call will use 16 concurrent threads to convert the Rrd files.

$./newts-repository-converter -t true -s true -T /usr/local/bin/rrdtool -n 16
<output omitted>

289

15.4.4. Example 2: convert JRobin-based data with storeByGroup disabled

The following example shows how to convert JRobin-based data located in the directory
/mnt/opennms/rrd that was collected with storeByGroup disabled. This program call will use 8
concurrent threads to convert the Jrb files.

$./newts-repository-converter -t false -s false -r /mnt/opennms/rrd -n 8
<output omitted>

15.5. Newts
This section describes how to configure OpenNMS Meridian to use Newts and how to use OpenNMS
Meridian to monitor your Cassandra cluster.

15.5.1. Configuration

Enabling Newts

OpenNMS Meridian can be configured to use Newts by setting the following property in in
${OPENNMS_HOME}/etc/opennms.properties:

org.opennms.timeseries.strategy=newts

It is also highly recommended that resources stored in Newts are referenced by their foreign source
and foreign ID, as opposed to their database ID. To this end, the following property should also be
set in the same file:

org.opennms.rrd.storeByForeignSource=true

With these set, OpenNMS Meridian will begin persisting metrics using the Newts engine when
restarted.

Additional configuration options are presented in the next section.

Configuration Reference

The following properties, found in ${OPENNMS_HOME}/etc/opennms.properties, can be used to
configure and tune Newts.

General

Name Default Description

org.opennms.newts.config.ke
yspace

newts Name of the keyspace to use.

290

Name Default Description

org.opennms.newts.config.ho
stname

localhost IP address or hostnames of the Cassandra nodes.
Multiple hosts can be separated by a comma.

org.opennms.newts.config.po
rt

9042 CQL port used to connect to the Cassandra nodes.

org.opennms.newts.config.us
ername

cassandra Username to use when connecting to Cassandra via CQL.

org.opennms.newts.config.pa
ssword

cassandra Password to use when connecting to Cassandra via CQL.

org.opennms.newts.config.ss
l

false Enable/disable SSL when connecting to Cassandra.

org.opennms.newts.config.re
ad_consistency

ONE Consistency level used for read operations.
See Configuring data consistency for a list of available
options.

org.opennms.newts.config.wr
ite_consistency

ANY Consistency level used for write operations.
See Configuring data consistency for a list of available
options.

org.opennms.newts.config.ma
x_batch_size

16 Maximum number of records to insert in a single
transaction. Limited by the size of the Cassandra cluster’s
batch_size_fail_threshold_in_kb property.

org.opennms.newts.config.ri
ng_buffer_size

8192 Maximum number of records that can be held in the ring
buffer. Must be a power of two.

org.opennms.newts.config.wr
iter_threads

16 Number of threads used to pull samples from the ring
buffer and insert them into Newts.

org.opennms.newts.config.tt
l

31540000 Number of seconds after which samples will
automatically be deleted. Defaults to one year.

org.opennms.newts.config.re
source_shard

604800 Duration in seconds for which samples will be stored at
the same key. Defaults to 7 days in seconds.

org.opennms.newts.query.min
imum_step

300000 Minimum step size in milliseconds. Used to prevent large
queries.

org.opennms.newts.query.int
erval_divider

2 If no interval is specified in the query, the step will be
divided into this many intervals when aggregating
values.

org.opennms.newts.query.hea
rtbeat

450000 Duration in milliseconds. Used when no heartbeat is
specified. Should generally be 1.5x your largest collection
interval.

org.opennms.newts.query.par
allelism

Number
of cores

Maximum number of threads that can be used to
compute aggregates. Defaults to the number of available
cores.

org.opennms.newts.config.ca
che.strategy

See
bellow

Canonical name of the class used for resource level
caching. See the table bellow for all of the available
options.

291

http://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_config_consistency_c.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_config_consistency_c.html

Name Default Description

org.opennms.newts.config.ca
che.max_entries

8192 Maximum number of records to keep in the cache when
using an in-memory caching strategy.

org.opennms.newts.nan_on_co
unter_wrap

false Disables the processing of counter wraps, replacing these
with NaNs instead.

org.opennms.newts.config.ca
che.priming.enable

false Enables the cache primer, which pre-emptively loads the
cache with indexed resources on start-up.

org.opennms.newts.config.ca
che.priming.block_ms

120000 Block startup for this many milliseconds while waiting
for the cache to be primed.
Set this value to -1 to disable blocking.
Set this value to 0 to block indefinitely waiting for all of
the records to be read.

Available caching strategies include:

Name Class Defaul
t

In-Memory Cache org.opennms.netmgt.newts.support.GuavaSearchableResourceMetadataCac
he

Y

Redis-based
Cache

org.opennms.netmgt.newts.support.RedisResourceMetadataCache N

Redis Cache

When enabled, the following options can be used to configure the Redis-based cache.

Name Default Description

org.opennms.newts.config.cache.redis_hostna
me

localhos
t

IP address of hostname of the Redis
server.

org.opennms.newts.config.cache.redis_port 6379 TCP port used to connect to the Redis
server.

Recommendations

You will likely want to change the values of cache.max_entries and the ring_buffer_size to suit your
installation.

Meta-data related to resources are cached in order to avoid writing redundant records in
Cassandra. If you are collecting data from a large number of resources, you should increase the
cache.max_entries to reflect the number of resources you are collecting from, with a suitable buffer.

The samples gathered by the collectors are temporarily stored in a ring buffer before they are
persisted to Cassandra using Newts. The value of the ring_buffer_size should be increased if you
expect large peaks of collectors returning at once or latency in persisting these to Cassandra.
However, note that the memory used by the ring buffer is reserved, and larger values may require
an increased heap size.

292

Cache priming can be used to help reduce the number of records that need to be indexed after
restarting OpenNMS Meridian. This works by rebuilding the cache using the index data that has
already been persisted in Cassandra. Consider enabling this feature if you notice large spikes of
index related inserts after rebooting.

15.5.2. Cassandra Monitoring

This section describes some of the metrics OpenNMS Meridian collects from a Cassandra cluster.


JMX must be enabled on the Cassandra nodes and made accessible from
_OpenNMS Meridian in order to collect these metrics. See Enabling JMX
authentication for details.


The data collection is bound to the agent IP interface with the service name JMX-
Cassandra. The JMXCollector is used to retrieve the MBean entities from the
Cassandra node.

Client Connections

The number of active client connections from org.apache.cassandra.metrics.Client are collected:

Name Description

connectedNativeClients Metrics for connected native clients

connectedThriftClients Metrics for connected thrift clients

Compaction Bytes

The following compaction manager metrics from org.apache.cassandra.metrics.Compaction are
collected:

Name Description

BytesCompacted Number of bytes compacted since node started

Compaction Tasks

The following compaction manager metrics from org.apache.cassandra.metrics.Compaction are
collected:

Name Description

CompletedTasks Estimated number of completed compaction tasks

PendingTasks Estimated number of pending compaction tasks

Storage Load

The following storage load metrics from org.apache.cassandra.metrics.Storage are collected:

293

https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureJmxAuthentication.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureJmxAuthentication.html

Nam
e

Description

Load Total disk space (in bytes) used by this node

Storage Exceptions

The following storage exception metrics from org.apache.cassandra.metrics.Storage are collected:

Name Description

Exceptions Number of unhandled exceptions since start of this Cassandra instance

Dropped Messages

Measurement of messages that were DROPPABLE. These ran after a given timeout set per message
type so was thrown away. In JMX these are accessible via
org.apache.cassandra.metrics.DroppedMessage. The number of dropped messages in the different
message queues are good indicators whether a cluster can handle its load.

Name Stage Description

Mutation MutationStage If a write message is processed after its timeout
(write_request_timeout_in_ms) it either sent a failure to the client or
it met its requested consistency level and will relay on hinted
handoff and read repairs to do the mutation if it succeeded.

Counter_Mut
ation

MutationStage If a write message is processed after its timeout
(write_request_timeout_in_ms) it either sent a failure to the client or
it met its requested consistency level and will relay on hinted
handoff and read repairs to do the mutation if it succeeded.

Read_Repair MutationStage Times out after write_request_timeout_in_ms.

Read ReadStage Times out after read_request_timeout_in_ms.
No point in servicing reads after that point since it would of
returned error to client.

Range_Slice ReadStage Times out after range_request_timeout_in_ms.

Request_Res
ponse

RequestRespons
eStage

Times out after request_timeout_in_ms.
Response was completed and sent back but not before the timeout

Thread pools

Apache Cassandra is based on a so called Staged Event Driven Architecture (SEDA). This seperates
different operations in stages and these stages are loosely coupled using a messaging service. Each
of these components use queues and thread pools to group and execute their tasks. The
documentation for Cassandra Thread pool monitoring is originated from Pythian Guide to
Cassandra Thread Pools.

Table 102. Collected metrics for Thread Pools

294

http://www.pythian.com/blog/guide-to-cassandra-thread-pools
http://www.pythian.com/blog/guide-to-cassandra-thread-pools

Name Description

ActiveTasks Tasks that are currently running

CompletedTasks Tasks that have been completed

CurrentlyBlockedTasks Tasks that have been blocked due to a full queue

PendingTasks Tasks queued for execution

Memtable FlushWriter

Sort and write memtables to disk from org.apache.cassandra.metrics.ThreadPools. A vast majority of
time this backing up is from over running disk capability. The sorting can cause issues as well
however. In the case of sorting being a problem, it is usually accompanied with high load but a
small amount of actual flushes (seen in cfstats). Can be from huge rows with large column names,
i.e. something inserting many large values into a CQL collection. If overrunning disk capabilities, it
is recommended to add nodes or tune the configuration.

 Alerts: pending > 15 || blocked > 0

Memtable Post Flusher

Operations after flushing the memtable. Discard commit log files that have had all data in them in
sstables. Flushing non-cf backed secondary indexes.

 Alerts: pending > 15 || blocked > 0

Anti Entropy Stage

Repairing consistency. Handle repair messages like merkle tree transfer (from Validation
compaction) and streaming.

 Alerts: pending > 15 || blocked > 0

Gossip Stage

Post 2.0.3 there should no longer be issue with pending tasks. Instead monitor logs for a message:

Gossip stage has {} pending tasks; skipping status check ...

Before that change, in particular older versions of 1.2, with a lot of nodes (100+) while using vnodes
can cause a lot of CPU intensive work that caused the stage to get behind. Been known to of been
caused with out of sync schemas. Check NTP working correctly and attempt nodetool

resetlocalschema or the more drastic deleting of system column family folder.

 Alerts: pending > 15 || blocked > 0

295

Migration Stage

Making schema changes

 Alerts: pending > 15 || blocked > 0

MiscStage

Snapshotting, replicating data after node remove completed.

 Alerts: pending > 15 || blocked > 0

Mutation Stage

Performing a local including:

• insert/updates

• Schema merges

• commit log replays

• hints in progress

Similar to ReadStage, an increase in pending tasks here can be caused by disk issues, over loading a
system, or poor tuning. If messages are backed up in this stage, you can add nodes, tune hardware
and configuration, or update the data model and use case.

 Alerts: pending > 15 || blocked > 0

Read Stage

Performing a local read. Also includes deserializing data from row cache. If there are pending
values this can cause increased read latency. This can spike due to disk problems, poor tuning, or
over loading your cluster. In many cases (not disk failure) this is resolved by adding nodes or
tuning the system.

 Alerts: pending > 15 || blocked > 0

Request Response Stage

When a response to a request is received this is the stage used to execute any callbacks that were
created with the original request.

 Alerts: pending > 15 || blocked > 0

Read Repair Stage

Performing read repairs. Chance of them occurring is configurable per column family with
read_repair_chance. More likely to back up if using CL.ONE (and to lesser possibly other non-CL.ALL
queries) for reads and using multiple data centers. It will then be kicked off asynchronously outside

296

of the queries feedback loop. Note that this is not very likely to be a problem since does not happen
on all queries and is fast providing good connectivity between replicas. The repair being droppable
also means that after write_request_timeout_in_ms it will be thrown away which further mitigates
this. If pending grows attempt to lower the rate for high read CFs.

 Alerts: pending > 15 || blocked > 0

JVM Metrics

Some key metrics from the running Java virtual machine are also collected:

java.lang:type=Memory

The memory system of the Java virtual machine. This includes heap and non-heap memory

java.lang:type=GarbageCollector,name=ConcurrentMarkSweep

Metrics for the garbage collection process of the Java virtual machine


If you use Apache Cassandra for running Newts you can also enable additional
metrics for the Newts keyspace.

15.5.3. Newts Monitoring

This section describes the metrics OpenNMS Meridian collects for monitoring the Newts keyspace
from org.apache.cassandra.metrics.Keyspace on an Cassandra node.


JMX must be enabled on the Cassandra nodes and made accessible from
_OpenNMS Meridian in order to collect these metrics. See Enabling JMX
authentication for details.

The data collection is bound to the agent IP interface with the service name JMX-Cassandra-Newts.
The JMXCollector is used to retrieve the MBean entities from the Cassandra node.

All Memory Table Data Size

Name Description

AllMemtablesLiveData
Size

Total amount of live data stored in the memtables (2i and pending flush
memtables included) that resides off-heap, excluding any data structure
overhead

AllMemtablesOffHeapD
ataSize

Total amount of data stored in the memtables (2i and pending flush
memtables included) that resides off-heap.

AllMemtablesOnHeapDa
taSize

Total amount of data stored in the memtables (2i and pending flush
memtables included) that resides on-heap.

Memtable Switch Count

297

https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureJmxAuthentication.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureJmxAuthentication.html

Name Description

MemtableSwitchCount Number of times flush has resulted in the memtable being switched out.

Memtable Columns Count

Name Description

MemtableColumnsCount Total number of columns present in the memtable.

Memory Table Data Size

Name Description

MemtableLiveDataSi
ze

Total amount of live data stored in the memtable, excluding any data
structure overhead

MemtableOffHeapDat
aSize

Total amount of data stored in the memtable that resides off-heap, including
column related overhead and partitions overwritten.

MemtableOnHeapData
Size

Total amount of data stored in the memtable that resides on-heap, including
column related overhead and partitions overwritten.

Read and Write Latency

Name Description

ReadTotalLatency Local read metrics.

WriteTotalLatency Local write metrics.

Range Latency

Name Description

RangeLatency 99th Percentile Local range slice metrics 99th percentile.

Latency

Name Descriptio
n

CasCommitTotalLatency

CasPrepareTotalLatency

CasProposeTotalLatency

Bloom Filter Disk Space

Name Description

BloomFilterDiskSpaceUsed Disk space used by bloom filter

298

Bloom Filter Off Heap Memory

Name Description

BloomFilterOffHeapMemoryUsed Off heap memory used by bloom filter

Newts Memory Used

Name Description

 CompressionMetadataOffHeapMemoryUsed Off heap memory used by compression meta data

IndexSummaryOffHeapMemoryUsed Off heap memory used by index summary

Pending

Name Description

PendingCompactions Estimate of number of pending compactions for this column family

PendingFlushes Estimated number of tasks pending for this column family

Disk Space

Name Description

TotalDiskSpaceU
sed

Total disk space used by SSTables belonging to this column family including
obsolete ones waiting to be garbage collected.

LiveDiskSpaceUs
ed

Disk space used by SSTables belonging to this column family

15.6. Daemon Configuration Files
Configuration changes require a restart of OpenNMS and some daemons are able to reload
configuration changes triggered by a daemon reload event. This section gives an overview about all
daemons and the related configuration files and which can be reloaded without restarting
OpenNMS.

15.6.1. Eventd

Internal Daemon
Name

Reload Event

Eventd uei.opennms.org/internal/reloadDaemonConfig -p 'daemonName Eventd'

Table 103. Eventd configuration file overview

299

File Restart
Required

Reload
Event

Description

eventd-
configuration.x
ml

yes no Configure generic behavior of Eventd, i.e. TCP and UDP port
numbers with IP addresses to listen for Events and socket
timeouts.

eventconf.xml no yes Main configuration file for Eventd.

events/* no yes Out-of-the-box, all files in this folder are included via
include directives in eventconf.xml.

15.6.2. Notifd

Internal Daemon
Name

Reload Event

Notifd uei.opennms.org/internal/reloadDaemonConfig -p 'daemonName Notifd'

Table 104. Notifd configuration file overview

File Restart
Required

Reload
Event

Description

notifd-
configuration.xml

no yes Describes auto-acknowledge prefix, e.g. prefix
"RESOLVED: " for nodeUp/nodeDown events.

notificationCommands
.xml

no no Configuration for notification media, e.g. scripts,
XMPP or HTTP Post, immediately applied.

notifications.xml no no Event notification definitions and changes are
immediately applied.

destinationPaths.xml no no Contains paths for notification targets, e.g. JavaMail,
XMPP or external scripts.

users.xml no no Contain pager and address information for
notification destination paths.

groups.xml no no Groups can be used as target for notifications.

javamail-
configuration.proper
ties

no no Configuration to send notification mails via specific
mail servers.

15.6.3. Pollerd

Internal Daemon
Name

Reload Event

Pollerd uei.opennms.org/internal/reloadDaemonConfig -p 'daemonName Pollerd'

Table 105. Pollerd configuration file overview

300

File Restart
Required

Reload
Event

Description

poller-
configuration.x
ml

yes yes Restart is required in case new monitors are created or
removed. Reload Event
loads changed configuration parameters of existing
monitors.

response-
graph.propertie
s

no no Graph definition for response time graphs from monitors

poll-
outages.xml

no yes Can be reloaded with
uei.opennms.org/internal/schedOutagesChanged

301

Chapter 16. System Properties
The global behavior of OpenNMS is configured with Property files. Configuration can have also
effect on the Java Virtual Machine underneath OpenNMS. Changes in these property files require a
restart of OpenNMS. The configuration files can be found in ${OPENNMS_HOME}/etc.

The priority for Java system properties is as follows:

1. Those set via the Java command line i.e. in opennms.conf via ADDITIONAL_MANAGER_OPTIONS

2. opennms.properties.d/*.properties

3. opennms.properties

4. libraries.properties

5. rrd-configuration.properties

6. bootstrap.properties

Property files in opennms.properties.d/ are sorted alphabetically.



To avoid conflicts with customized configurations, all custom properties can be
added to one or more files in ${OPENNMS_HOME}/etc/opennms.properties.d/. It is
recommended to avoid modification of OpenNMS properties from the default
installation. Create dedicated files with your customized properties in
opennms.properties.d/.

302

Chapter 17. Ticketing
The ticketing integration allows OpenNMS Meridian to create trouble tickets in external systems.
Tickets can be created and updated in response to new and/or resolved alarms.

To activate the ticketing integration, the following properties in
${OPENNMS_HOME}/etc/opennms.properties must be set accordingly:

Property Default Description

opennms.ticketer.plugin NullTickete
rPlugin

The plugin implementation to use.
Each ticketer integration should define which value to set.
The NullTicketerPlugin does nothing when attempting to
create/update/delete tickets.

opennms.alarmTroubleTick
etEnabled

false Defines if the integration is enabled.
If enabled various links to control the issue state is shown
on the alarm details page.

opennms.alarmTroubleTi
cketLinkTemplate

${id} A template to generate a link to the issue, e.g. ${id}

17.1. JIRA Ticketing Plugin
The JIRA Ticketing Plugin is used to create JIRA Issues in response to OpenNMS Meridian alarms.

17.1.1. Setup

First, you’ll need to install the opennms-plugin-ticketer-jira package for your system. The JIRA
ticketing plugin and its dependencies are not part of the core packages.

Now, in order to enable the plugin start by setting following property in
${OPENNMS_HOME}/etc/opennms.properties:

opennms.ticketer.plugin=org.opennms.netmgt.ticketd.OSGiBasedTicketerPlugin

Configure the plugin options by setting the following properties in
${OPENNMS_HOME}/etc/jira.properties:

Name Description

jira.host JIRA Server Url

jira.username Username

jira.password Password

jira.project The key of the project to use. Use jira:list-projects command to determine
the project key.

303

Name Description

jira.type The Issue Type Id to use when opening new issues. Use jira:list-issue-types
command to determine the issue type id.

jira.resolve Name of the transition to use when resolving issues

jira.reopen Name of the transition to use when re-opening issues

jira.status.open Comma-separated list of JIRA status names for which the ticket should be
considered 'Open'

jira.status.close
d

Comma-separated list of JIRA status names for which the ticket should be
considered 'Closed'

jira.status.cance
lled

Comma-separated list of JIRA status names for which the ticket should be
considered 'Cancelled'

jira.cache.reload
Time

The time in milliseconds it takes to reload the fields cache. This
is required to prevent the plugin to read the issue type’s meta data every time
an issue is created. A value of 0 disables the cache.
Default value is 300000 (5 minutes).


The transition names for resolve and reopen are typically found on buttons when
looking at the ticket in JIRA


Either use jira:list-issue-types OSGI Command or
https://confluence.atlassian.com/display/JIRA050/Finding+the+Id+for+Issue+Types
for determining the appropriate issue type id.

Next, add jira-troubleticketer to the featuresBoot property in the
${OPENNMS_HOME}/etc/org.apache.karaf.features.cfg

Restart OpenNMS Meridian.

When OpenNMS Meridian has started again, login to the Karaf Shell and install the feature:

features:install jira-troubleticketer

The plugin should be ready to use.

17.1.2. Jira Commands

The JIRA Ticketing Plugin provides various OSGI Commands which can be used on the Karaf Shell to
help set up the plugin.

There are OSGI Commands to list all available projects, versions, components, groups, issue types
and even more.

To list all available commands simply type help | grep jira in the Karaf Shell.

Afterwards you can type for example jira:list-projects --help to determine the usage of a

304

https://confluence.atlassian.com/display/JIRA050/Finding+the+Id+for+Issue+Types

command.

17.1.3. Custom fields

The OpenNMS Meridian Ticketer model is limited to the most common fields provided by all
ticketing systems.

Besides the common fields creator, create date, description or subject, ticket system proprietary
fields usually need to be set.

In some cases, even additional - so called - custom fields are defined.

In order to set these fields, the JIRA Ticketing Plugin provides the possibility to define those in the
OpenNMS Ticket attributes which can be overwritten with the Usage of Drools.

To enable the Drools Ticketing integration, the following property in
${OPENNMS_HOME}/etc/opennms.properties must be set:

opennms.ticketer.servicelayer=org.opennms.netmgt.ticketd.DroolsTicketerServiceLayer

In addition the property in ${OPENNMS_HOME/etc/drools-ticketer.properties must point to a drools-
ticketer-rules.drl file:

drools-ticketer.rules-file=${OPENNMS_HOME/etc/drools-ticketer-rules.drl

Finally a Drools Rule file named drools-ticketer-rules.drl must be placed in ${OPENNMS_HOME}/etc.

The following drools example snippet defines attributes to set custom fields:

// Set ticket defaults
rule "TicketDefaults"
salience 100
 when
 $alarm : OnmsAlarm()
 then
 ticket.setSummary($alarm.logMsg);
 ticket.setDetails($alarm.description);
 ticket.addAttribute("customfield_10111", "custom-value");
 ticket.addAttribute("customfield_10112", "my-location");
 ticket.addAttribute("customfield_10113", "some classification");
end

Fields must be referenced by their id. To identify the id of a field, the jira:list-fields command
can be used. By default only custom fields are shown. The -s options allows to show all fields. This
may be necessary if JIRA default values need to be set as well, e.g. the Component, the Reporter, the
Asignee, etc. Even the project key or issue type can be defined differently than originally in the
jira.properties.

305

The OpenNMS Ticketer Attribute model only allows to set a String value. However the JIRA model is
slightly different. Therefore each String value must be converted to a JIRA field type. The following
table describes valid values for an OpenNMS attribute.

Type Description

any Any string.

date Any date in the format of YYYY-MM-DD.

datetime Any datetime in ISO 8601 format: YYYY-MM-DDThh:mm:ss.sTZD.

group The name of the group.

user The name of the user.

project The key of the project (e.g. NMS)

version The name of the version. To list all available versions, use jira:list-versions.

string Any string.

option The name of the option.

issuetype The name of the issuetpye, e.g. Bug. To list all issue types, use jira:list-issue-
types.

priority The name of the priority, e.g. Major. To list all priorites, use jira:list-priorities.

option-with-
child

Either the name of the option, or a comma separated list (e.g. parent,child).

number Any valid number (e.g. 1000)

array If the type is array the value must be of the containing type. E.g. to
set a custom field which defines multiple groups, the value jira-users,jira-
administrators is mapped properly. The same is valid for versions:
18.0.3,19.0.0.

As described above the values are usually identified by their name instead of their id (projects are
identified by their key). This is easier to read, but may break the mapping code, if for example the
name of a component changes in the future. To change the mapping from name (or key) to id an
entry in jira.properties must be made:

jira.attributes.customfield_10113.resolution=id

To learn more about the Jira REST API please consult the following pages:

• https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-
example-create-issue#JIRARESTAPIExample-CreateIssue-MultiSelect

• https://docs.atlassian.com/jira/REST/cloud/

The following jira (custom) fields have been tested with jira version 6.3.15:

• Checkboxes

306

https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-example-create-issue#JIRARESTAPIExample-CreateIssue-MultiSelect
https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-example-create-issue#JIRARESTAPIExample-CreateIssue-MultiSelect
https://docs.atlassian.com/jira/REST/cloud/

• Date Picker

• Date Time Picker

• Group Picker (multiple groups)

• Group Picker (single group)

• Labels

• Number Field

• Project Picker (single project)

• Radio Buttons

• Select List (cascading)

• Select List (multiple choices)

• Select List (single choice)

• Text Field (multi-line)

• Text Field (read only)

• Text Field (single line)

• URL Field

• User Picker (multiple user)

• User Picker (single user)

• Version Picker (multiple versions)

• Version Picker (single version)

 All other field types are mapped as is and therefore may not work.

Examples

The following output is the result of the command jira:list-fields -h http://localhost:8080 -u
admin -p testtest -k DUM -i Bug -s and lists all available fields for project with key DUM and issue
type Bug:

307

http://localhost:8080

Name Id Custom Type
Affects Version/s versions false array
Assignee assignee false user
Attachment attachment false array
Component/s components false array ①
Description description false string
Environment environment false string
Epic Link customfield_10002 true any
Fix Version/s fixVersions false array ②
Issue Type issuetype false issuetype ③
Labels labels false array
Linked Issues issuelinks false array
Priority priority false priority ④
Project project false project ⑤
Reporter reporter false user
Sprint customfield_10001 true array
Summary summary false string
custom checkbox customfield_10100 true array ⑥
custom datepicker customfield_10101 true date

① Defined Components are core, service, web

② Defined versions are 1.0.0 and 1.0.1

③ Defined issue types are Bug and Task

④ Defined priorities are Major and Minor

⑤ Defined projects are NMS and HZN

⑥ Defined options are yes, no and sometimes

The following snipped shows how to set the various custom fields:

ticket.addAttribute("components", "core,web"); ①
ticket.addAttribute("assignee", "ulf"); ②
ticket.addAttribute("fixVersions", "1.0.1"); ③
ticket.addAttribte("issueType", "Task"); ④
ticket.addAttribute("priority", "Minor"); ⑤
ticket.addAttribute("project", "HZN"); ⑥
ticket.addAttribute("summary", "Custom Summary"); ⑦
ticket.addAttribute("customfield_10100", "yes,no"); ⑧
ticket.addAttribute("customfield_10101", "2016-12-06"); ⑨

① Sets the components of the created issue to core and web.

② Sets the Asignee of the issue to the user with login ulf.

③ Sets the fix version of the issue to 1.0.1

④ Sets the issue type to Task, overwriting the value of jira.type.

⑤ Sets the priority of the created issue to Minor.

⑥ Sets the project to HZN, overwriting the value of jira.project.

308

⑦ Sets the summary to Custom Summary, overwriting any previous summary.

⑧ Checks the checkboxes yes and no.

⑨ Sets the value to 2016-12-06.

17.1.4. Troubleshooting

When troubleshooting, consult the following log files:

• ${OPENNMS_HOME}/data/log/karaf.log

• ${OPENNMS_HOME}/logs/trouble-ticketer.log

You can also try the jira:verify OSGI Command to help identifying problems in your configuration.

17.2. Remedy Ticketing Plugin
The Remedy Ticketing Plugin is used to create requests in the BMC Remedy ARS Help Desk Module
in response to OpenNMS Meridian alarms.

17.2.1. Remedy Product Overview

It’s important to be specific when discussing Remedy, because BMC Remedy is a suite of products.
The OpenNMS Meridian Remedy Ticketing Plugin requires the core Remedy ARS and the Help Desk
Module. The Help Desk Module contains a Help Desk Interface Web Service, which serves as the
endpoint for creating, updating, and fetching tickets.

The Help Desk Interface (HDI) Web Service requires extensive configuration for its basic operation,
and may need additional customization to interoperate with the OpenNMS Meridian Remedy
Ticketing Plugin. Contact your Remedy administrator for help with required configuration tasks.

17.2.2. Supported Remedy Product Versions

Currently supported Remedy product versions are listed below:

Product Version

Remedy ARS 7.6.04 Service Pack 2

Help Desk Module 7.6.04 Service Pack 1

HDI Web Service Same as Help Desk Module

17.2.3. Setup

The Remedy Ticketing Plugin and its dependencies are part of the OpenNMS Meridian core
packages.

Start by enabling the plugin and the ticket controls in the OpenNMS Meridian web interface, by
setting the following properties in ${OPENNMS_HOME}/etc/opennms.properties:

309

opennms.ticketer.plugin=org.opennms.netmgt.ticketer.remedy.RemedyTicketerPlugin
opennms.alarmTroubleTicketEnabled = true

In the same file, set the property opennms.alarmTroubleTicketLinkTemplate to a value appropriate for
constructing a link to tickets in the Remedy web interface. A sample value is provided but must be
customized for your site; the token ${id} will be replaced with the Remedy ticket ID when the link
is rendered.

Now configure the plugin itself by setting the following properties in
${OPENNMS_HOME}/etc/remedy.properties:

Name Requi
red

Description

remedy.username requir
ed

Username for authenticating to Remedy

remedy.password requir
ed

Password for authenticating to Remedy

remedy.authentication option
al

Authentication style to use

remedy.locale option
al

Locale for text when creating and updating tickets

remedy.timezone option
al

Timezone for interaction with Remedy

remedy.endpoint requir
ed

The endpoint URL of the HPD web service

remedy.portname requir
ed

The Port name of the HPD web service

remedy.createendpoint requir
ed

The endpoint location of the Create-HPD web service

remedy.createportname requir
ed

The Port name of the Create-HPD web service

remedy.targetgroups option
al

Colon-separated list of Remedy groups to which created
tickets may be assigned ({group} below refers to values from
this list)

remedy.assignedgroup.{grou
p}

option
al

Assigned group for the target group {group}

remedy.assignedsupportcomp
any.{group}

option
al

Assigned support company for the target group {group}

remedy.assignedsupportorga
nization.{group}

option
al

Assigned support organization for the target group {group}

310

Name Requi
red

Description

remedy.assignedgroup requir
ed

Default group to assign the ticket in case the ticket itself lacks
information about a target assigned group

remedy.firstname requir
ed

First name for ticket creation and updating. Must exist in
Remedy.

remedy.lastname requir
ed

Last name for ticket creation and updating. Must exist in
Remedy.

remedy.serviceCI requir
ed

A valid Remedy Service CI for ticket creation

remedy.serviceCIReconID requir
ed

A valid Remedy Service CI Reconciliation ID for ticket creation

remedy.assignedsupportcomp
any

requir
ed

A valid default assigned support company for ticket creation

remedy.assignedsupportorga
nization

requir
ed

A valid default assigned support organization for ticket
creation

remedy.categorizationtier1 requir
ed

A valid categorization tier (primary) for ticket creation

remedy.categorizationtier2 requir
ed

A valid categorization tier (secondary) for ticket creation

remedy.categorizationtier3 requir
ed

A valid categorization tier (tertiary) for ticket creation

remedy.serviceType requir
ed

A valid service type for ticket creation

remedy.reportedSource requir
ed

A valid Reported Source for ticket creation

remedy.impact requir
ed

A valid value for Impact, used in ticket creation

remedy.urgency requir
ed

A valid value for Urgency, used in ticket creation

remedy.reason.reopen requir
ed

The reason code set in Remedy when the ticket is reopened in
OpenNMS Meridian

remedy.resolution requir
ed

The reason code set in Remedy when the ticket is closed in
OpenNMS Meridian

remedy.reason.cancelled requir
ed

The reason code set in Remedy when the ticket is cancelled in
OpenNMS Meridian


The values for many of the required properties are site-specific; contact your
Remedy administrator for assistance.

Restart OpenNMS Meridian.

311

The plugin should be ready to use. When troubleshooting, consult the following log files:

• ${OPENNMS_HOME}/logs/trouble-ticketer.log

17.3. TSRM Ticketing Plugin
The TSRM Ticketing Plugin is used to create TSRM incidents in response to OpenNMS Meridian
alarms.

17.3.1. Setup

In order to enable the plugin start by setting following property in
${OPENNMS_HOME}/etc/opennms.properties:

opennms.ticketer.plugin=org.opennms.netmgt.ticketd.OSGiBasedTicketerPlugin

Configure the plugin options by setting the following properties in
${OPENNMS_HOME}/etc/tsrm.properties:

Name Description

tsrm.url TSRM Endpoint URL

tsrm.ssl.strict Strict SSL Check (true/false)

tsrm.status.open TSRM status for open ticket

tsrm.status.close TSRM status for close ticket

Next, add tsrm-troubleticketer to the featuresBoot property in the
${OPENNMS_HOME}/etc/org.apache.karaf.features.cfg

Restart OpenNMS.

When OpenNMS has started again, login to the Karaf Shell and install the feature:

features:install tsrm-troubleticketer

The plugin should be ready to use. When troubleshooting, consult the following log files:

• ${OPENNMS_HOME}/data/log/karaf.log

• ${OPENNMS_HOME}/logs/trouble-ticketer.log

17.3.2. Mapping OpenNMS Ticket with TSRM Incident

Following tables shows mapping between OpenNMS ticket and TSRM Incident

312

Ticket
Field

TSRM Incident Field

id TICKETID

state STATUS

summary DESCRIPTION

details DESCRIPTIONLONGDESCRIPTION

user REPORTEDBY

Below fields are not part of Ticket, they have to be added as attributes.

Ticket Field TSRM Incident
Field

affectedPerson AFFECTEDPERSON

assetNum ASSETNUM

classId CLASS

classStructureId CLASSSTRUCTUREID

commodity COMMODITY

location LOCATION

ownerGroup OWNERGROUP

shsCallerType SHSCALLERTYPE

shsReasonForOutage SHSREASONFOROUTAGE

shsResolution SHSRESOLUTION

shsRoomNumber SHSROOMNUMBER

siteId SITEID

source source

statusIface STATUSIFACE

313

Chapter 18. Enabling RMI
By default, the RMI port in the OpenNMS Meridian server is disabled, for security reasons. If you
wish to enable it so you can access OpenNMS Meridian through jconsole, remote-manage OpenNMS
Meridian, or use the remote poller over RMI, you will have to add some settings to the default
OpenNMS Meridian install.

18.1. Enabling RMI
To enable the RMI port in OpenNMS Meridian, you will have to add the following to the
${OPENNMS_HOME}/etc/opennms.conf file. If you do not have an opennms.conf file, you can create it.

Configure remote JMX
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.port=18980"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.local.only=false"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.authenticate=true"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.ssl=false"

Listen on all interfaces
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dopennms.poller.server.serverHost=0.0.0.0"
Accept remote RMI connections on this interface
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Djava.rmi.server.hostname=<your-server-ip-address>"

This tells OpenNMS Meridian to listen for RMI on port 18980, and to listen on all interfaces.
(Originally, RMI was only used for the Remote Poller, so despite the porperty name mentioning the
"opennms poller server" it applies to RMI as a whole.) Note that you must include the
-Djava.rmi.server.hostname= option or OpenNMS Meridian will accept connections on the RMI port,
but not be able to complete a valid connection.

Authentication will only be allowed for users that are in the admin role (i.e. ROLE_ADMIN), or the jmx
role (i.e. ROLE_JMX). To make a user an admin, be sure to add only the ROLE_ADMIN role to the user in
users.xml. To add the jmx role to the user, add the ROLE_JMX role to the user in users.xml, and also the
ROLE_USER role if is required to provide access to the WebUI.

Make sure $OPENNMS_HOME/etc/jmxremote.access has the appropriate settings:

admin readwrite
jmx readonly

The possible types of access are:

314

readwrite

Allows retrieving JMX metrics as well as executing MBeans.

readonly

Allows retrieving JMX metrics but does not allow executing MBeans, even if they just return
simple values.

18.2. Enabling SSL
To enable SSL on the RMI port, you will need to have an existing keystore for the OpenNMS
Meridian server. For information on configuring a keystore, please refer to the official OpenNMS
Meridian Wiki article Standalone HTTPS with Jetty.

You will need to change the com.sun.management.jmxremote.ssl option to true, and tell OpenNMS
Meridian where your keystore is.

Configure remote JMX
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.port=18980"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.local.only=false"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.authenticate=true"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dcom.sun.management.jmxremote.ssl=true"

Configure SSL Keystore
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Djavax.net.ssl.keyStore=/opt/opennms/etc/opennms.keystore"
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Djavax.net.ssl.keyStorePassword=changeit"

Listen on all interfaces
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Dopennms.poller.server.serverHost=0.0.0.0"
Accept remote RMI connections on this interface
ADDITIONAL_MANAGER_OPTIONS="$ADDITIONAL_MANAGER_OPTIONS
-Djava.rmi.server.hostname=<your-server-ip-address>"

18.3. Connecting to RMI over SSL
Note that if you are using a self-signed or otherwise untrusted certificate, you will need to configure
a truststore on the client side when you attempt to connect over SSL-enabled RMI. To create a
truststore, follow the example in the HTTPS client instructions in the operator section of the
manual. You may then use the truststore to connect to your OpenNMS Meridian RMI server.

For example, when using jconsole to connect to the OpenNMS Meridian RMI interface to get JVM
statistics, you would run:

315

http://wiki.opennms.org/wiki/Standalone_HTTPS_with_Jetty

jconsole -J-Djavax.net.ssl.trustStore=/path/to/opennms.truststore -J
-Djavax.net.ssl.trustStorePassword=changeit

316

Chapter 19. Plugin Manager
With the introduction of Karaf as an OSGi application container, OpenNMS Meridian now has the
ability to install or upgrade features on top of a running instance of OpenNMS Meridian. In
addition, the new distributed OSGi architecture allows an OpenNMS Meridian system to be
deployed as multiple software modules each running in their own Karaf instance.

The OpenNMS Meridian Plugin Manager_ provides a unified interface for managing the lifecycle of
optional OSGi plugins installed in OpenNMS Meridian or in any Karaf instances which it manages.
This need not be limited to Karaf instances running OpenNMS Meridian but can also be used to
deploy modules to Karaf instances running user applications.

In addition to managing the installation of OSGi features, the Plugin Manager also allows the
installation of licence keys which can be used to enable features for a particular instance of
OpenNMS Meridian. Although the OpenNMS Meridian platform remains open source, this provides a
mechanism for third parties developing features on top of the OpenNMS Meridian platform to
manage access to their software.

The Plugin Manager also provides a mechanism for a separate 'app-store' or Available Plugins
Server to be used to deliver these new features and / or licences into a particular OpenNMS
Meridian instance. It is also possible to deliver software without access to the internet using the
traditional Karaf Kar/RPM deployment model. (Kar files are a form of zip file containing bundles
and features definitions which can be deployed in the Karaf /deploy directory). These can be placed
in the /deploy directory directly or installed there using an RPM). In this case a number of features
can be delivered together in a single software package but each only enabled at run time using the
Plugin Manager.

OpenNMS Meridian plugins are standard Karaf features with additional metadata which describes
the feature and the licence (if any) required. A plugin requiring a licence will not start if a valid
licence string is not also installed.

Note that Karaf's features mechanism has not been modified in any way. The Plugin Manager
simply provides a user front end and additional metadata for features. Plugin features can be
installed from the internal features repository, remote maven repositories or Kar files placed in the
deploy directory depending on how the Karaf configuration is set up. The standard OpenNMS
Meridian configuration has no remote maven access enabled for Karaf and external features must
be locally provisioned as a Kar or an RPM before being enabled with the Plugin Manager.

This guide describes how to deploy and manage plugins using the Plugin Manager. A separate
plugin developer’s guide is provided for those wishing to write their own plugins.

19.1. Plugin Manager UI panel
The Plugin Manager is accessed as an entry in the Additional Tools panel of the OpenNMS Meridian
Admin Gui.

317

The Plugin Manager administration page is split into six main areas as illustrated below.

1. Top Left is the Karaf Instance data panel which lists the Karaf instances known to the Plugin
Manager. When a Karaf instance is selected, the data on the rest of the page refers to the
selected instance.

2. Bottom Left is the Available Plugins Server Panel which is used to set the address and passwords
to access the Available Plugins Server and / or the list of locally available plugins provided by a
Kar or RPM.

3. Top Right, just below the main OpenNMS Meridian menu bar are links to three diagnostic pages
which can help test the ReST interface to remote Karaf Instances.

4. Middle Right is a messages panel which reports the status of any operations. If an operation
fails, the full error message can be viewed by pressing the error message button.

5. Bottom Right is a tabbed panel which reflects the status of the plugins and licences installed in
the Karaf instance selected by the Karaf Instance data panel.

318

19.2. Setting Karaf Instance Data
The Karaf instances known to the Plugin Manager are listed in the Karaf Instance data panel.
Localhost refers to the local OpenNMS Meridian server and is always an option in the panel. The
Karaf instance data is persisted locally and should be refreshed from remote sources using the
reload Karaf instance data button before changes are made.



Please note that the Localhost configuration in the Plugin Manager by default
uses admin for both the username and the password. This will not work in a
production OpenNMS where you have changed the admin user password. You
should edit the Localhost configuration using the edit instance list button to
match your local configuration)

Each Karaf instance must have a unique system id which is used to update its configuration and
also to validate its licences. The system id it must be unique and included a checksum. A new
random system id can be generated for a Karaf instance using a button on the panel.

In most situations the remote Karaf instance can be accessed from the OpenNMS Meridian Plugin

319

Manager. However in many cases, the remote Karaf will be behind a firewall in which case it must
initiate the communications to request its configuration and supply an update on its status.

The Remote is Accessible field tells the Plugin Manager which mode of operation is in use.


Remote request of configuration is not yet fully implemented and will be
completed in a future release.

Table 106. Karaf Instance Fields

Field Name Description

Instance Name host Name of the Karaf instance

Karaf URL URL used to access the Karaf Plugin Manager
ReST API

Current Instance System ID The system ID currently installed in the Karaf
system

Manifest System ID The system ID to be provisioned in the Karaf
system

Remote is Accessible If ticked 'true', the Plugin Manager will try and
contact the remote Karaf instance using the URL.
If not ticked (i.e. false), the remote Karaf
instance must request its configuration.

Allow Status Update from Remote Allow the remote Karaf instance to request an
update to its remote configuration from the
locally held manifest and at the same time to
update its status.

320

19.3. Manually adding a managed Karaf instance
The list of Karaf instances can be modified using the Karaf instance editor illustrated below. The
same fields apply as above.

321

19.4. Installed Plugins
Under plugin settings, the Installed Plugins tab lists which plugins are currently installed in the
Karaf instance selected in the Karaf instance data panel. System Plugins cannot be uninstalled
through the UI. (The Plugin Manager is itself a system plugin). Non-system plugins can be
reinstalled or removed from the system. Each plugin has metadata associated with it which is used
to identify and describe the plugin.

Table 107. Plugin Metadata Fields

Plugin Metadata Description

Product ID The unique key used to identify the name and
version of the feature. (Same as
Karaf Feature Name/Version)

322

Plugin Metadata Description

Licence Key Required If true (ticked), this plugin needs a licence key to
start

Licence Validated If a licence key is required, a green text label
will indicate if the licence has been installed and
validated. Otherwise a red text label will
indicate an invalid licence

System Plugin If true (ticked) this is a system plugin and cannot
be removed.

Packaging Descriptor This describes the packaging mechanism by
which the feature was delivered. This will refer
to a Kar if the feature was manually installed as
a Kar/RPM on the host server.

Feature Repository URL The URL identifying the feature repository
(Same as Karaf Feature Repository URL)

Product Description A textual description of the functionality
provided by the plugin.

Product URL A URL to point to the plugin’s documentation /
web site

licence Type A description of the licence applied to the plugin
(May be GPL if the plugin is not subject to an
ELUA)

Organisation The organisation issuing the plugin and/or
licence.

323



The installed plugins tab shows the data retrieved the last time the Reload Karaf
Instance data button was pressed. (This allow us to maintain a record of offline
Karaf instances). However it also means that the localhost data may not be up to
date with the local Karaf instance. You should always reload to get the accurate
picture of what is currently installed.

19.5. Available Plugins Server
The Plugin Manager obtains a list of available plugins from the Available Plugin’s server.

Available Plugin’s server can be part of an externally hosted plugin shopping cart or it can simply be

324

a url serving the internal list of available plugins as described in the section on Internal Plugins.

In order for externally downloaded plugins to be installed, the Available Plugin’s server must have a
related maven repository from which Karaf can download the feature. By default feature download
is not enabled in OpenNMS Meridian. To enable Karaf external feature download, the address of the
maven repository should be entered in the org.ops4j.pax.url.mvn.cfg file in the OpenNMS Meridian
/etc directory.

Alternatively the Plugin Manager can list the available plugins which have been installed on the
local machine as bundled Plugin Kar’s (using the Karaf Kar deploy mechanism) along with any
internal plugins bundled with OpenNMS Meridian. In this case, the Plugin Server URL should be
pointed at http:\\localhost:8980\opennms.

The admin username and passwords are used to access the Available Plugins Server. If a shopping
cart is provided for obtaining licences, the URL of the shopping cart should be filled in.

19.6. Installing Available Plugins
The Available Plugins panel list the plugins which are available and listed by the Available Plugins
server. These can be directly installed into the selected Karaf instance or can be posted to a
manifest for later installation. If a plugin is installed, the system will try and start it. However if a
corresponding licence is required and not installed, the features will be loaded but not started. You
must restart the feature if you later install a licence key.

325

19.7. Plugins Manifest
The Plugins Manifest for a given Karaf instance lists the target plugins which the Karaf instance
should install when it next contacts the licence manager. If the Plugin Manager can communicate
with the remote server, then a manifest can be selected for installation. A manual manifest entry
can also be created for a feature. This can be used to install features which are not listed in the
Available Features list.

326

19.8. Installed Licences Panel
Each licence has a licence ID which is the Karaf feature ID of the feature to which the licence refers.
Many licences can be installed on a system but only one licence string is allowed per feature ID.

Licence Strings are used to validate that a particular feature can be run on a given Karaf instance.
The Plugin Manager will not allow a feature to run if its licence cannot be validated using a private
key encoded in the feature bundle.

Licences are associated with specific Product ID’s and specific Karaf instances. Several Karaf
instances can be listed in a licence allowing a feature to run on more than one system using the

327

same licence. When a licence is installed, the licence metadata is decoded and displayed.


A licence may be installed before or after its associated feature is installed. If a
licence is installed after the feature the feature must be restarted before the
licence will be read.

19.9. Adding a New Licence
New licences are added using the add licence panel. Licences are obtained from the App Store
where they can be generated by a user for a given set of system id’s.

328

A licence must be copied (cut and paste) from the app store into the add licence panel. The Validate
licence button should be used to check the licence has been installed correctly. Please note that this
just checks the integrity of the licence string. A licence is only authenticated once it is installed and
the corresponding feature bundle checks it on start-up.

19.10. Installing Internal Plugins
OpenNMS Meridian is packaged with an internal repository of plugins which are shipped with the
OpenNMS Meridian distribution. These plugins can be installed in the local OpenNMS Meridian
Karaf instance and activated by a user using the Plugin Manager in the same way it could be used to
download and install external plugins.

329

The internal-plugin-descriptor feature maintains a list of internal plugins which are packaged with
OpenNMS Meridian. This list of internal plugins can be accessed by the Plugin Manager by setting
the Available Plugins Server to point to the local OpenNMS Meridian instance. To do this set Plugin
Server URL to the address of the local OpenNMS Meridian (i.e. http:\\localhost:8980\opennms) and set
the Plugin Server Username and Plugin Server Password to match the OpenNMS Meridian ReST or
admin username and password.

Clicking Reload available plugins will then add the list of available internal plugins to the Available
Plugins Tab where they can be installed and started by the user as described previously.

The internal plugins included with this OpenNMS Meridian release are documented in the next
section.

330

Chapter 20. Internal Plugins

20.1. Internal Plugins supplied with OpenNMS Meridian
OpenNMS Meridian includes a number of plugins which can be installed by the Plugin Manager UI
or directly from the Karaf consol. Plugins are simply Karaf features which have additional
metadata describing the Plugin and possibly defining that the Plugin also needs a licence installed
to run.

Once installed, the plugins will always start when OpenNMS is restarted. If the plugins appear not
to be working properly, you should check the /data/log/karaf.log file for problems.

Each internal plugin supplied with OpenNMS Meridian is described in its own section below.

20.2. Installing Plugins with the Karaf Consol
The easiest way to install a plugin is to use the Plugin Manager UI described in the Plugin Manager
section. However plugins can also be installed using the Karaf consol. To use the Karaf consol, you
need to open the karaf command prompt using

ssh -p 8101 admin@localhost
(or ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no if no host
checking is wanted)

To install or remove a feature in Karaf use

karaf@root> features:install <feature name>
karaf@root> features:uninstall <feature name>

You can see which plugins are installed using

karaf@root> product-reg:list

20.3. Alarm Change Notifier Plugin
The Alarm Change Notifier Plugin generates new OpenNMS events corresponding to changes in
alarms The new events are defined in the <opennms
home>/etc/events/AlarmChangeNotifierEvents.xml file

These events contain a json copy of the database table before changes in %parm[oldalarmvalues]%
and after changes in %parm[newalarmvalues]%. (New Alarm events do not contain
%parm[oldalarmvalues] and Alarm Deleted events do not contain %parm[newalarmvalues]%)

%parm[alarmid]% contains the alarmid of the alarm which has changed

331

The generated event itself references copies of the nodeid, interface and service contained in the
original alarm. This way the alarm change events are associated with the original source of the
alarm.

Alarm change events have a severity of normal since they only reflect changes to the alarm.

Events from the alarm-change-notifier are also used by the opennms-es-rest plugin to send alarm
history to Elasticsearch

The table below lists the parameters included with each type of Alarm Change Event. Parameters
are listed in the %parm[xxx]% format which is used to reference them in
AlarmChangeNotifierEvents.xml

To simplify searching and visualisation, specific parameter values are also added for each alarm
change event type. These additional values are described in the table below.

Alarm
Change
Event Type

UEI Additional Parameters

New Alarm
Created

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/NewAlarmCreated

%parm[alarmid]%
%parm[newalarmvalues]%

Alarm
Severity
Changed

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/AlarmSeverityCha
nged

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%
%parm[severity]% %parm[oldseverity]%

Alarm
Cleared

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/AlarmCleared

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%

Alarm
Deleted

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/AlarmDeleted

%parm[alarmid]% %parm[oldalarmvalues]%

Alarm
Changed

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/AlarmChanged

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%

Alarm
Acknowledg
ed

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/AlarmAcknowledg
ed

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%
%parm[alarmid]% %parm[alarmacktime]%
%parm[alarmackuser]%

Alarm
UnAcknowle
dged

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/AlarmUnAcknowl
edged

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%

Alarm
Suppressed

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/AlarmSuppressed

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%
%parm[suppressedtime]%
%parm[suppresseduntil]%
%parm[suppresseduser]%

Alarm
UnSuppress
ed

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/AlarmUnSuppress
ed

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%

332

Alarm
Change
Event Type

UEI Additional Parameters

TroubleTick
etStateChan
ge

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/TroubleTicketStat
eChange

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%
%parm[tticketid]% %parm[tticketstate]%

Sticky Memo
Added

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/StickyMemoAdded

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%
%parm[stickymemo]%

Sticky Memo
Update

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/StickyMemoUpdat
e

%parm[alarmid]% %parm[oldalarmvalues]%
%parm[newalarmvalues]%
%parm[oldalarmvalues]%
%parm[stickymemo]% %parm[author]%
%parm[body]% %parm[memovalues]%

Journal
Memo
Update

uei.opennms.org/plugin/AlarmChang
eNotificationEvent/JournalMemoUpd
ate

%parm[alarmid]%
%parm[newalarmvalues]%
%parm[oldalarmvalues]% %parm[author]%
%parm[body]% %parm[reductionkey]%
%parm[memovalues]%

20.4. Elasticsearch ReST plugin
The Elasticsearch ReST plugin provides an interface to forward events, alarms and alarm change
events generated by the Alarm Change Notifier Plugin to Elasticsearch
(https://github.com/elastic/elasticsearch). The events and alarms in Elasticsearch can be used for
indexing, long time archival, plotting with Grafana and browsing with Kibana.

This plugin uses the Elasticsearch ReST interface and can interact with cloud-hosted Elasticsearch
instances. The interface has been tested with Elasticsearch 2.4, 5.0, and 5.1.


If you use Kibana, make sure you are using the version that is compatible with
your version of Elasticsearch.

The Elasticsearch ReST plugin uses the Jest library (https://github.com/searchbox-io/Jest) to access
the Elasticsearch ReST interface.

20.4.1. Configuration

Configuration is held in:

/etc/org.opennms.plugin.elasticsearch.rest.forwarder.cfg

With the following properties (defaults shown will be used if file is not present)

333

https://github.com/elastic/elasticsearch
https://github.com/searchbox-io/Jest

Parameter Default
Value

Requi
red

Description

elasticsearchUr
l

http://localh
ost:9200

optio
nal

URL of Elasticsearch ReST interface. This value can also
contain a comma-separated list of URLs that will be used in
round-robin fashion for increased scalability.

esusername optio
nal

Username to access Elasticsearch.

espassword optio
nal

Password to access Elasticsearch.

logEventDescrip
tion

true optio
nal

Whether to forward the event description field to
Elasticsearch. It can be disabled because it contains a long
text field that can be redundant with the rest of the
metadata included in the event.

archiveRawEvent
s

true optio
nal

Archive events.

archiveAlarms true optio
nal

Archive alarms.

archiveAlarmCha
ngeEvents

true optio
nal

Archive alarm change events.

archiveOldAlarm
Values

true optio
nal

For alarm change events, we can choose to archive the
detailed alarm values but this is expensive. Set false in
production.

archiveNewAlarm
Values

true optio
nal

archiveAssetDat
a

true optio
nal

If true The following attributes representing useful node
asset fields from the node asset table are included in
archived events and alarms. These are included only where
the values are not null or empty strings in the table. (asset-
latitude,asset-longitude,asset-region,asset-building,asset-
floor,asset-room,asset-rack,asset-slot,asset-port,asset-
category,asset-displaycategory,asset-notifycategory,asset-
pollercategory,asset-thresholdcategory,asset-
managedobjecttype,asset-managedobjectinstance,asset-
manufacturer,asset-vendor,asset-modelnumber,parent-
nodelabel,parent-nodeid,parent-foreignsource,parent-
foreignid)

logAllEvents false optio
nal

If changed to true, then archive all events even if they have
not been persisted in the OpenNMS Meridian database.

retries 0 optio
nal

The number of times to retry an Elasticsearch operation
that fails completely. You can increase retries to avoid
losing forwarded events and alarms when Elasticsearch is
down or unreachable.

timeout 5000 optio
nal

The interval between subsequent retries when a retries
value greater than 1 is being used.

334

http://localhost:9200
http://localhost:9200

Parameter Default
Value

Requi
red

Description

batchSize 1 optio
nal

Increase this value to enable batch inserts into
Elasticsearch. This is the maximum size of a batch of events
that is sent to Elasticsearch in a single connection.

batchInterval 0 optio
nal

The maximum time interval in milliseconds between batch
events (recommended: 500ms) when a batchSize value
greater than 1 is being used.

Once you are sure everything is correctly configured, you can activate the Elasticsearch forwarder
by logging into the OSGi console and installing the feature.

OSGi login and installation of the Elasticsearch forwarder

ssh admin@localhost -p 8101
features:install opennms-es-rest

20.4.2. Loading Historical Events

It is possible to load historical OpenNMS Meridian events into Elasticsearch from the OpenNMS
Meridian database using a karaf console command. The command uses the OpenNMS Meridian
Events ReST interface to retrieve a set number of historical events and forward them to
Elasticsearch. Because we are using the ReST interface it is also possible to contact a remote
OpenNMS Meridian and download its events into Elasticsearch by using the correct remote URL and
credentials.

open karaf command prompt using
ssh -p 8101 admin@localhost

To send historic events to Elasticsearch use a command of the form:

karaf> elastic-search:send-historic-events limit offset [onms-username onms-password
onms-url use-node-label]

The mandatory parameters are

• limit - Limit of number of events to send

• offset - Offset for starting list of events

(note that the limit parameter works in multiples of 10 and may send more than the limit to round
to 10 events)

The following parameters are optional and will use defaults if not set

• onms-username - ReST password for opennms (default: admin)

335

• onms-password - ReST username for opennms (default: admin)

• onms-url - URL of OpenNMS Meridian ReST interface to retrieve events to send (default:
http://localhost:8980)

• use-node-label - If false local node cache will get nodelabel for nodeid. If true will use remote
nodelabel (default: false)

If you are uploading events from the local machine on which you are running this command, you
should use the local node cache as this supplies a number of node values including the nodelabel. If
you are uploading from a remote machine you should use the remote node label and not the local
node cache. Only the remote nodelabel is provided in this case.

Command examples:

This retrieves 110 alarms from the local machine using the
local node cache for node label
elastic-search:send-historic-events 100 0 admin admin http://localhost:8980 false

This retrieves 110 alarms from the remote machine using the remote node labels
elastic-search:send-historic-events 100 0 demo demo http://demo.opennms.org true

20.4.3. Index Definitions

Three indices are created; one for alarms, one for alarm change events and one for raw events.
Alarms and alarm change events are only saved if the alarm-change-notifier plugin is also installed
to generate alarm change events from the OpenNMS Meridian alarms table. The index names are of
the form:

<name>-<date>/type/id

For example

a) Alarms

opennms-alarms-2017.01/alarmdata/1823

b) Alarm Change Events

opennms-events-alarmchange-2017.01/eventdata/11549

c) Raw OpenNMS Meridian events (not including alarm change events)

opennms-events-raw-2017.01/eventdata/11549

336

http://localhost:8980

20.4.4. Viewing events using Kibana Sense

Kibana Sense is a Kibana app which allows you to run queries directly against Elasticsearch.
(https://www.elastic.co/guide/en/sense/current/installing.html)

If you install Kibana Sense you can use the following commands to view the alarms and events sent
to Elasticsearch You should review the Elasticsearch ReST API documentation to understand how
searches are specified. (See
https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html)

Example searches to use in Kibana Sense (you can copy the whole contents of this panel into Kibana
Sense as a set of examples)

337

https://www.elastic.co/guide/en/sense/current/installing.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html

Search all the alarms indexes

GET /opennms-alarms-*/_search

Get all of the alarms indexes

GET /opennms-alarms-*/

Get a specific alarm id from the 2017.01 index

GET opennms-alarms-2017.01/alarmdata/1823

Delete all alarm indexes

DELETE /opennms-alarms-*/

Search all the events indexes

GET /opennms-events-*/_search

Search all the raw events indexes

GET /opennms-events-raw*/_search

Delete all the events indexes

DELETE /opennms-events-*/

Get all the raw events indexes

GET /opennms-events-raw*/

Get all the alarmchange event indexes

GET /opennms-events-alarmchange-*/

Search all the alarm change event indexes

GET opennms-events-alarmchange-*/_search

Get a specific alarm change event

GET opennms-events-alarmchange-2016.08/eventdata/11549

20.4.5. Mapping of Alarms and Events to Elasticsearch

Overview of index mapping

In OpenNMS Meridian, Alarm and Event table entries contain references to associated node, asset,

338

service and journal message tables. In Elasticsearch, we must flatten these entries into a single
index entry for each insertion. Thus each index entry contains more context information than
would be found in the actual OpenNMS Meridian event or alarm. This context information includes
the associated node and asset table information which was current when (but may have changed
since) the event was archived.

In the Table of Index Mappings below we have example alarm and event JSON entries retrieved
using a sense command. The table helps illustrate how OpenNMS Meridian saves data in
Elasticsearch.

Internal Elasticsearch fields always begin with an underscore character. The internal fields id,
_index and _type are combined to give the unique identifier for an entry as described above
under Index Definitions. All of the fields under _source represent the stored alarm or event

(_Elasticsearch documentation refers to source entries as indexed documents). The ID of each
event is included in the _source id field and also duplicated in the internal _id.

Events in the OpenNMS Meridian events table (i.e. those corresponding to logs or traps) are copied
directly to the opennms-events-raw- indexes. In OpenNMS Meridian alarms and events can contain
parameters which are key-value pairs referencing additional data stored when the event or alarm is
created. In Elasticsearch these parameters are always stored in separate fields in the index with
names beginning with p_

Alarm change events created by the Alarm Change Notifier Plugin have an identical format to raw
events but are only copied to the opennms-events-alarmchange- indexes. These alarm change events
are also used to change the state of alarms in the opennms-alarms- indexes. Thus alarm entries in the
opennms-alarms- indexes reflect the current state of alarms as notified by OpenNMS Meridian
through alarm change events.

The parameters included with each type of Alarm Change Event are listed in the Alarm Change
Notifier Plugin section. Each parameter in the index will have a p_ prefix (ie. %parm[newalarmvalues]%
becomes p_newalarmvalues).

Alarms and Events have severity fields defined as integers (long) and also corresponding
severity_text fields which give the text equivalent (Critical, Major, Minor, Normal, Cleared).

Additional Alarm Fields

The id of each alarm is included in the _source alarmid field and also duplicated in the internal _id
reference for the alarms index. Alarm Change Events reference their associated alarm using the
p_alarmid parameter. To make it easier to search for alarm change events associated with the same
alarm, alarms also have a _source p_alarmid parameter which matches alarmid. Thus we should be
able to search for an alarm in the opennms-alarms index and find its complete lifecycle from alarm
raise to deletion in the opennms-events-alarmchange index.

The alarms index is enriched with additional data to allow the alarm entries to be used in SLA
calculations.

339

Additional Alarm
Fields

description

alarmackduration Calculated time in milliseconds from first event which created the alarm to
the latest alarm acknowledgement.

alarmclearduratio
n

Calculated time in milliseconds from first event which created the alarm to
the latest alarm clear.

initialseverity The final state of any given alarm in an alarm index should be cleared and
deleted. Therefore we also include an initial severity.

initialseverity_text The initial severity as a text field.

Table of Index Mapping

The following table describes the mapping of simple OpenNMS Meridian events to the Raw Events
Index and the mapping of Alarm Change Events to the Alarm Change Events index and to the
Alarms index. Note that fields that begin with an underscore (_) are internal to Elasticsearch.

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

Example Alarm JSON Alarm
Field

Event
Field

Example Event JSON Ty
pe

Description

{ { { {

"_index": "opennms-
alarms-2017.03",

"_index
":

"_inde
x":

"_index": "opennms-
events-alarmchange-
2017.03",

str
in
g

_index is the index in
which this alarm or
event is stored.

"_type": "alarmdata", "_type": "_type
":

"_type": "eventdata", str
in
g

_type either alarmdata or
eventdata

"_id": "31", "_id": "_id": "_id": "1110", str
in
g

_id field matches the
event or alarm ID, if
present.

"_score": 1, "_score
":

"_scor
e":

"_score": 1, lo
ng

Internal Elasticsearch
ranking of the search
result.

"_source": { "_sourc
e":

"_sour
ce":

"_source": { str
in
g

_source contains the data
of the index entry.

"@timestamp": "2017-03-
03T12:44:21.210Z",

"@time
stamp":

"@tim
estam
p":

"@timestamp": "2017-03-
02T15:20:56.861Z",

da
te

For Alarms, @timestamp is
alarm creation time
based on the first event
time. For Events,
@timestamp is event time
from event.getTime().

340

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"dom": "3", "dom": "dom"
:

"dom": "2", lo
ng

Day of month from
@timestamp.

"dow": "6", "dow": "dow": "dow": "5", lo
ng

Day of week from
@timestamp.

"hour": "12", "hour": "hour"
:

"hour": "15", lo
ng

Hour of day from
@timestamp.

"event
descr"
:

"eventdescr": "<p>Alarm
<a
href=\"/opennms/alarm/d
etail.htm?id=30\">30
Cleared<p>…",

str
in
g

Event description.

"event
severi
ty":

"eventseverity": "3", lo
ng

Event severity. Alarm
Change Events: All events
have severity normal.

"event
severi
ty_text
":

"eventseverity_text":
"Normal",

str
in
g

Text representation of
severity value.

"event
source
":

"eventsource":
"AlarmChangeNotifier",

str
in
g

OpenNMS event source.
Alarm Change Events: All
events have the event
source
AlarmChangeNotifier.

"event
uei":

"eventuei":
"uei.opennms.org/plugin/
AlarmChangeNotificatio
nEvent/AlarmCleared",

str
in
g

OpenNMS universal
event identifier (UEI) of
the event.

"id": "id": "1110", str
in
g

Event ID.

"interf
ace":

"interface": "127.0.0.1", str
in
g

IP address of the event.

"ipadd
r":

"ipaddr": "/127.0.0.1", str
in
g

IP address of the event.

"logm
sg":

"logmsg": "<p>Alarm <a
href=\"/opennms/alarm/d
etail.htm?id=30\">30
Cleared<p>",

str
in
g

Log message of the
event. Alarm Change
Events: Log messages
contain a link to the
alarm.

341

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"logm
sgdest
":

"logmsgdest":
"logndisplay",

str
in
g

Log Destination of the
Event.

342

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"p_ne
walar
mvalu
es":

"p_newalarmvalues": "{
\"suppressedtime\":\"201
7-03-02T14:24:59.282Z\",+
\"systemid\":\"00000000-
0000-0000-0000-
000000000000\",+
\"suppresseduntil\":\"201
7-03-02T14:24:59.282Z\",+
\"description\":\"<p>SNM
P data collection on
interface 127.0.0.1\\n
failed.<\\/p>\",
\"mouseovertext\":null,
\"x733probablecause\":0,
\"lasteventid\":1072,
\"lasteventtime\":\"2017-
03-02T14:24:59.282Z\",
\"managedobjectinstance
\":null,
\"alarmacktime\":null,
\"qosalarmstate\":null,
\"ipaddr\":\"127.0.0.1\",
\"alarmackuser\":null,
\"nodeid\":88,
\"firsteventtime\":\"2017-
03-02T14:24:59.282Z\",
\"severity\":2,
\"ifindex\":null,
\"alarmtype\":1,
\"x733alarmtype\":null,
\"logmsg\":\"SNMP data
collection on interface
127.0.0.1 failed with
Unexpected exception
when collecting SNMP
data for interface
127.0.0.1 at location
Default.'.\",
\"tticketid\":null,
\"firstautomationtime\":n
ull,
\"clearkey\":null,
\"managedobjecttype\":n
ull,
\"eventuei\":\"uei.openn
ms.org\\/nodes\\/dataColl
ectionFailed\",
\"counter\":1,
\"applicationdn\":null,
\"operinstruct\":null,
\"ossprimarykey\":null,
\"stickymemo\":null,
\"tticketstate\":null,

str
in
g

Alarm and event
parameters are key-
value pairs which can be
associated with alarms
or events. All parameters
in Alarms or Events are
stored in Elasticsearch in
separate index fields
with names beginning
with p_. Alarm Change
Events: Parameters
p_oldalarmvalues and
p_newalarmvalue contain
a JSON string
representing the alarm
fields before and after
the Alarm change
respectively. The
p_newalarmvalue values
are copied into the alarm
index of the
corresponding alarm
(given by alarmid in
p_newalarmvalue and by
p_alarmid).

343

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"p_old
alarm
values
":

"p_oldalarmvalues": "{ ….
}",

str
in
g

See p_newalarmvalues.

"p_old
severi
ty":

"p_oldseverity": "5", lo
ng

Alarm Change Events:
Contains the old severity
of the alarm before this
alarm change event.

"alarmackduration":
"2132249",

"alarm
ackdur
ation":

lo
ng

Time in milliseconds
from first event which
created the alarm to the
latest alarm
acknowledgement.

"alarmacktime": "2017-
03-03T13:19:53.351Z",

"alarm
acktim
e":

"p_ala
rmack
time":

"p_alarmacktime": "2017-
03-03T13:19:53.351Z",

da
te

AlarmChangeNotification
Event/AlarmAcknowledge
d Events: Time that the
alarm was
acknowledged.

"alarmackuser": "admin", "alarm
ackuser
":

"p_ala
rmack
user"

"p_alarmackuser":
"admin",

AlarmChangeNotification
Event/AlarmAcknowledge
d Events: Name of the
user who acknowledged
the alarm.

"alarmclearduration":
"2175014"

"alarm
cleardu
ration":

lo
ng

Time in milliseconds
from first event which
created the alarm to the
latest alarm clear.

"alarmcleartime": "2017-
03-03T13:20:36.224Z",

"alarm
clearti
me":

"p_ala
rmcle
artime
":

"p_alarmcleartime":
"2017-03-
03T13:20:36.224Z",

da
te

AlarmChangeNotification
Event/AlarmClear Events:
Time that the alarm was
cleared.

"alarmid": "31", "alarmi
d":

"p_ala
rmid":

"p_alarmid": "30", str
in
g

Alarm Change Events:
The alarm ID of the
alarm that has changed.

"alarmtype": "1", "alarmt
ype":

"p_ala
rmtyp
e":

"p_alarmtype": "1", str
in
g

Alarm Change Events:
Corresponds to the
alarm’s type.

"applicationdn": null, "applic
ationdn
":

str
in
g

344

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"asset-category":
"Power",

"asset-
categor
y":

"asset-
catego
ry":

"asset-category":
"Power",

str
in
g

All asset_ entries
correspond to fields in
the Asset Table of the
node referenced in the
event. These fields are
only present if populated
in the asset table.

"asset-building": "55", "asset-
buildin
g":

"asset-
buildi
ng":

"asset-building": "55", str
in
g

"asset-room": "F201", "asset-
room":

"asset-
room"
:

"asset-room": "F201", str
in
g

"asset-floor": "Gnd", "asset-
floor":

"asset-
floor":

"asset-floor": "Gnd", str
in
g

"asset-rack": "2101", "asset-
rack":

"asset-
rack":

"asset-rack": "2101", str
in
g

"categories": "", "catego
ries":

"categ
ories":

"categories": "", str
in
g

categories corresponds
to node categories table.
This is a comma-
separated list of
categories associated
with this node ID. This
field is indexed so
separate values can be
searched.

"clearkey": null, "cleark
ey":

str
in
g

"counter": "1", "counte
r":

str
in
g

"description": "<p>SNMP
data collection on
interface 127.0.0.1\n
failed.</p>",

"descri
ption":

str
in
g

"eventuei":
"uei.opennms.org/nodes/
dataCollectionFailed",

"eventu
ei":

"p_eve
ntuei":

"p_eventuei":
"uei.opennms.org/nodes/
dataCollectionFailed",

str
in
g

Alarm Change Events:
Corresponds to the
alarm’s event UEI.

345

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"firstautomationtime":
null,

"firstau
tomatio
ntime":

da
te

"firsteventtime": "2017-
03-03T12:44:21.210Z",

"firstev
enttime
":

da
te

"foreignid":
"1488375237814",

"foreig
nid":

"forei
gnid":

"foreignid":
"1488375237814",

str
in
g

Foreign ID of the node
associated with the
alarm or event.

"foreignsource":
"LocalTest",

"foreig
nsourc
e":

"forei
gnsou
rce":

"foreignsource":
"LocalTest",

str
in
g

Foreign source of the
node associated with
alarm or event.

"ifindex": null, "ifinde
x":

str
in
g

"ipaddr": "127.0.0.1", "ipaddr
":

str
in
g

"lastautomationtime":
null,

"lastaut
omatio
ntime":

"lasteventid": "1112", "lasteve
ntid":

str
in
g

"lasteventtime": "2017-
03-03T12:44:21.210Z",

"lasteve
nttime"
:

"logmsg": "SNMP data
collection on interface
127.0.0.1 failed with
'Unexpected exception
when collecting SNMP
data for interface
127.0.0.1 at location
Default.'.",

"logms
g":

"p_log
msg":

"p_logmsg": "SNMP data
collection on interface
127.0.0.1 failed with
'Unexpected exception
when collecting SNMP
data for interface
127.0.0.1 at location
Default.'.",

str
in
g

"managedobjectinstance
": null,

"manag
edobjec
tinstan
ce":

str
in
g

"managedobjecttype":
null,

"manag
edobjec
ttype":

str
in
g

346

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"mouseovertext": null, "mouse
overtex
t":

str
in
g

"nodeid": "88", "nodeid
":

"nodei
d":

"nodeid": "88", str
in
g

Node ID of the node
associated with the
alarm or event.

"nodelabel": "localhost", "nodela
bel":

"nodel
abel":

"nodelabel": "localhost", str
in
g

Node label of the node
associated with the
alarm or event.

"nodesyslocation":
"Unknown (edit
/etc/snmp/snmpd.conf)",

"nodes
yslocati
on":

"node
sysloc
ation":

"nodesyslocation":
"Unknown (edit
/etc/snmp/snmpd.conf)",

str
in
g

SNMP syslocation of the
node associated with the
alarm or event.

"nodesysname":
"localhost.localdomain",

"nodes
ysname
":

"node
sysna
me":

"nodesysname":
"localhost.localdomain",

str
in
g

SNMP sysname of the
node associated with the
alarm or event.

"operatingsystem": null, "operat
ingsyst
em":

str
in
g

"operinstruct": null, "operin
struct":

str
in
g

"ossprimarykey": null, "osspri
maryke
y":

str
in
g

"p_alarmid": "31", "p_alar
mid":

str
in
g

The Elasticsearch alarms
index has a field
p_alarmid which
corresponds to the
alarmid of the alarm and
also the p_alarmid field in
Alarm Change Events.
This allows Alarm and
Alarm Change Event
indexes to be easily
searched together for all
Alarm Change Events
corresponding to an
alarm.

347

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"p_reason": "Unexpected
exception when
collecting SNMP data for
interface 127.0.0.1 at
location Default.",

"p_reas
on":

str
in
g

All parameters in Alarms
or Events are stored in
Elasticsearch in separate
index fields with names
beginning with p_.
p_reason is an example
parameter injected by
the
uei.opennms.org/nodes/da
taCollectionFailed event
in OpenNMS.

"qosalarmstate": null, "qosala
rmstate
":

str
in
g

"reductionkey":
"uei.opennms.org/nodes/
dataCollectionFailed::88",

"reduct
ionkey"
:

"p_red
uction
key":

"p_reductionkey":
"uei.opennms.org/nodes/
dataCollectionFailed::88",

str
in
g

Alarm Change Events:
Corresponds to alarm
reductionkey.

"serviceid": "5", "servic
eid":

"p_ser
viceid
":

"p_serviceid": "5" str
in
g

Alarm Change Events:
Corresponds to the
alarm’s service ID.

"severity": "2", "severit
y":

"p_ala
rmsev
erity":

"p_alarmseverity": "2", str
in
g

Alarm Change Events:
Corresponds to the
alarm’s severity.

"severity_text":
"Cleared",

"severit
y_text":

str
in
g

348

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"stickymemo": null, "sticky
memo":

"p_stic
kyme
mo"

"p_stickymemo": null, str
in
g

AlarmChangeNotification
Event/StickyMemoAdded
Events: Content of
current sticky memo for
the alarm.
AlarmChangeNotification
Event/StickyMemoUpdate
Events: These events
have parameters: *
p_author: author of
stickymemo * p_body:
content of sticky memo
AlarmChangeNotification
Event/JournalMemoUpda
te Events: These events
have parameters: *
p_author: user who
authored the memo *
p_body: content of the
memo * p_reductionkey:
reduction key associated
with memo (corresponds
to alarm reduction key)
Note that journal memos
do not have an entry in
the alarm index but are
only referenced by
reduction key.

"suppressedtime": "2017-
03-03T12:44:21.210Z",

"suppre
ssedtim
e":

"p_sup
presse
dtime"
:

"p_suppressedtime":
"2017-03-
02T14:24:59.282Z",

da
te

AlarmChangeNotification
Event/AlarmSuppressed
Events: Corresponds to
the alarm’s suppressed
time.

"suppresseduntil": "2017-
03-03T12:44:21.210Z",

"suppre
ssedunt
il":

"p_sup
presse
duntil
":

"p_suppresseduntil":
"2017-03-
02T14:24:59.282Z",

da
te

AlarmChangeNotification
Event/AlarmSuppressed
Events: Corresponds to
the alarm’s suppressed
until time.

"suppresseduser": null, "suppre
sseduse
r":

"p_sup
presse
duser"
:

"p_suppresseduser": null, str
in
g

AlarmChangeNotification
Event/AlarmSuppressed
Events: Corresponds to
the alarm’s suppressed
user.

"systemid": "00000000-
0000-0000-0000-
000000000000",

"system
id":

"p_sys
temid"
:

"p_systemid": "00000000-
0000-0000-0000-
000000000000",

str
in
g

Alarm Change Events:
Corresponds to the
alarm’s system ID.

349

Alarm Index Fields Event Index Fields (Alarm
change and raw events)

Description

"tticketid": null, "p_ttick
etid":

"p_ttic
ketid":

"p_tticketid": null, str
in
g

AlarmChangeNotification
Event/TroubleTicketState
Change Events:
Corresponds to the
alarm’s trouble ticket ID.

"tticketstate": null, "p_ttick
etstate"
:

"p_ttic
ketstat
e":

"p_tticketstate": null, str
in
g

AlarmChangeNotification
Event/TroubleTicketState
Change Events:
Corresponds to the
alarm’s trouble ticket
state.

"x733alarmtype": null, "x733al
armtyp
e":

str
in
g

"x733probablecause":
"0",

"x733p
robable
cause":

str
in
g

} } } }

350

Chapter 21. Special Cases and Workarounds

21.1. Overriding SNMP Client Behavior
By default, the SNMP subsystem in OpenNMS Meridian does not treat any RFC 3416 error-status as
fatal. Instead, it will attempt to continue the request, if possible. However, only a subset of errors
will cause OpenNMS Meridian’s SNMP client to attempt retries. The default SNMP error-status
handling behavior is as follows:

Table 108. Default SNMP Error Status Behavior

error-status Fatal
?

Retry
?

noError(0) false false

tooBig(1) false true

noSuchName(2) false true

badValue(3) false false

readOnly(4) false false

genErr(5) false true

noAccess(6) false true

wrongType(7) false false

wrongLength(8) false false

wrongEncoding(9) false false

wrongValue(10) false false

noCreation(11) false false

inconsistentValue(12) false false

resourceUnavailable(13) false false

commitFailed(14) false false

undoFailed(15) false false

authorizationError(16) false true

notWritable(17) false false

inconsistentName(18) false false

You can override this behavior by setting a property inside ${OPENNMS_HOME}/etc/opennms.properties
in the form:

org.opennms.netmgt.snmp.errorStatus.[statusCode].[type]

For example, to make authorizationError(16) abort and not retry, you would set:

351

https://tools.ietf.org/html/rfc3416

org.opennms.netmgt.snmp.errorStatus.16.fatal=true
org.opennms.netmgt.snmp.errorStatus.16.retry=false

352

	Administrators Guide
	Table of Contents
	Chapter 1. Data Choices
	Chapter 2. User Management
	2.1. Users
	2.2. Security Roles
	2.3. Web UI Pre-Authentication
	2.3.1. Enabling Pre-Authentication
	2.3.2. Configuring Pre-Authentication

	Chapter 3. Administrative Webinterface
	3.1. Grafana Dashboard Box
	3.2. Operator Board
	3.2.1. Configuration
	3.2.2. Dashlets
	3.2.3. Boosting Dashlet
	3.2.4. Criteria Builder

	3.3. JMX Configuration Generator
	3.3.1. Web based utility
	3.3.2. CLI based utility

	3.4. Heatmap
	3.5. Trend

	Chapter 4. Service Assurance
	4.1. Pollerd Configuration
	4.2. Critical Service
	4.3. Downtime Model
	4.4. Path Outages
	4.5. Poller Packages
	4.5.1. Response Time Configuration
	4.5.2. Overlapping Services
	4.5.3. Test Services on manually

	4.6. Service monitors
	4.6.1. AvailabilityMonitor
	4.6.2. BgpSessionMonitor
	4.6.3. BSFMonitor
	4.6.4. CiscoIpSlaMonitor
	4.6.5. CiscoPingMibMonitor
	4.6.6. CitrixMonitor
	4.6.7. DhcpMonitor
	4.6.8. DiskUsageMonitor
	4.6.9. DnsMonitor
	4.6.10. DNSResolutionMonitor
	4.6.11. FtpMonitor
	4.6.12. HostResourceSwRunMonitor
	4.6.13. HttpMonitor
	4.6.14. HttpPostMonitor
	4.6.15. HttpsMonitor
	4.6.16. IcmpMonitor
	4.6.17. ImapMonitor
	4.6.18. ImapsMonitor
	4.6.19. JCifsMonitor
	4.6.20. JDBCMonitor
	4.6.21. JDBCStoredProcedureMonitor
	4.6.22. JDBCQueryMonitor
	4.6.23. JmxMonitor
	4.6.24. JolokiaBeanMonitor
	4.6.25. LdapMonitor
	4.6.26. LdapsMonitor
	4.6.27. MemcachedMonitor
	4.6.28. NetScalerGroupHealthMonitor
	4.6.29. NrpeMonitor
	4.6.30. NtpMonitor
	4.6.31. OmsaStorageMonitor
	4.6.32. OpenManageChassisMonitor
	4.6.33. PageSequenceMonitor
	4.6.34. PercMonitor
	4.6.35. Pop3Monitor
	4.6.36. PrTableMonitor
	4.6.37. RadiusAuthMonitor
	4.6.38. SmbMonitor
	4.6.39. SmtpMonitor
	4.6.40. SnmpMonitor
	4.6.41. SshMonitor
	4.6.42. SSLCertMonitor
	4.6.43. StrafePingMonitor
	4.6.44. TcpMonitor
	4.6.45. SystemExecuteMonitor
	4.6.46. VmwareCimMonitor
	4.6.47. VmwareMonitor
	4.6.48. Win32ServiceMonitor
	4.6.49. WsManMonitor
	4.6.50. XmpMonitor

	Chapter 5. Performance Management
	5.1. Collectd Configuration
	5.2. Collection Packages
	5.2.1. Service Configurations

	5.3. Collectors
	5.3.1. JmxCollector
	5.3.2. SnmpCollector
	5.3.3. WS-Management

	5.4. Stress Testing
	5.5. Stress Testing
	5.5.1. Interpreting the output

	Chapter 6. Events
	6.1. Anatomy of an Event
	6.2. Sources of Events
	6.2.1. SNMP Traps
	6.2.2. Syslog Messages
	6.2.3. TL1 Autonomous Messages
	6.2.4. XML-TCP
	6.2.5. ReST

	6.3. The Event Bus
	6.3.1. Associate an Event to a given node

	6.4. Event Configuration
	6.4.1. The eventd-configuration.xml file
	6.4.2. The eventconf.xml file and its tributaries
	6.4.3. Reloading the event configuration

	6.5. Debugging

	Chapter 7. Alarms
	7.1. Alarm Sounds
	7.2. Flashing Unacknowledged Alarms
	7.3. Configuring Alarm Sounds and Flashing

	Chapter 8. Notifications
	8.1. Introduction
	8.2. Getting Started
	8.2.1. Enabling Notifications
	8.2.2. Configuring Destination Paths
	8.2.3. Configuring Event Notifications

	8.3. Concepts
	8.3.1. Events and UEIs
	8.3.2. Users, Groups, and On-Call Roles
	8.3.3. Duty Schedules
	8.3.4. Destination Paths
	8.3.5. Notification Commands

	8.4. Bonus Notification Methods
	8.4.1. Mattermost
	8.4.2. Slack Notifications

	Chapter 9. Provisioning
	9.1. Introduction
	9.2. Concepts
	9.2.1. Terminology
	9.2.2. Addressing Scalability

	9.3. Getting Started
	9.3.1. Provisioning the SNMP Configuration
	9.3.2. Automatic Discovery
	9.3.3. Enhanced Directed Discovery

	9.4. Import Handlers
	9.4.1. File Handler
	9.4.2. HTTP Handler
	9.4.3. DNS Handler

	9.5. Provisioning Examples
	9.5.1. Basic Provisioning
	9.5.2. Advanced Provisioning Example

	9.6. Adapters
	9.6.1. DDNS Adapter
	9.6.2. RANCID Adapter

	9.7. Integrating with Provisiond
	9.7.1. Provisioning Groups of Nodes
	9.7.2. Example

	9.8. Provisioning Single Nodes (Quick Add Node)
	9.9. Fine Grained Provisioning Using provision.pl
	9.9.1. Create a new requisition

	9.10. Yet Other API Examples
	9.11. Service Detectors
	9.11.1. SNMP Detector

	Chapter 10. Business Service Monitoring
	10.1. Business Service Definition
	10.2. Edges
	10.2.1. Child Services
	10.2.2. IP Services
	10.2.3. Custom Reduction Key

	10.3. Map Functions
	10.4. Reduce Functions
	10.5. Business Service Daemon

	Chapter 11. Topology Map
	11.1. Properties
	11.2. Icons
	11.2.1. Icon resolution
	11.2.2. Change existing icon mappings
	11.2.3. Add new icons

	Chapter 12. Asset Topology Provider
	12.1. Overview
	12.2. Asset layers
	12.3. Node filtering
	12.4. Configuration
	12.5. Creating Asset Based Topologies From Karaf Consol
	12.6. Creating Asset Based Topologies Using OpenNMS Meridian events
	12.7. Viewing the topology
	12.8. additional notes

	Chapter 13. Database Reports
	13.1. Overview
	13.2. Modify existing reports
	13.3. Add a custom report
	13.4. Usage of Jaspersoft Studio
	13.4.1. Connect to the OpenNMS Meridian Database
	13.4.2. Use Measurements Datasource and Helpers

	13.5. Accessing Performance Data
	13.5.1. Fields
	13.5.2. Parameters

	13.6. Helper methods
	13.6.1. Usage of the interface descriptor
	13.6.2. Usage of the node source descriptor
	13.6.3. Usage of the interface descriptor
	13.6.4. Use HTTPS

	13.7. Limitations

	Chapter 14. Enhanced Linkd
	14.1. Enlinkd Daemon
	14.2. Layer 2 Link Discovery
	14.2.1. LLDP Discovery
	14.2.2. CDP Discovery
	14.2.3. Transparent Bridge Discovery

	14.3. Layer 3 Link Discovery
	14.3.1. OSPF Discovery
	14.3.2. IS-IS Discovery

	Chapter 15. Operation
	15.1. HTTPS / SSL
	15.1.1. Standalone HTTPS with Jetty
	15.1.2. OpenNMS Meridian as HTTPS client
	15.1.3. Differences between Java Trust Store and Java Key Store
	15.1.4. Debugging / Properties

	15.2. Geocoder Service
	15.3. resourcecli: simple resource management tool
	15.3.1. Usage
	15.3.2. Sub-command: list
	15.3.3. Sub-command: show
	15.3.4. Sub-command: delete

	15.4. newts-repository-converter: Rrd/Jrb to Newts migration utility
	15.4.1. Migration
	15.4.2. Usage
	15.4.3. Example 1: convert Rrd-based data with storeByGroup enabled
	15.4.4. Example 2: convert JRobin-based data with storeByGroup disabled

	15.5. Newts
	15.5.1. Configuration
	15.5.2. Cassandra Monitoring
	15.5.3. Newts Monitoring

	15.6. Daemon Configuration Files
	15.6.1. Eventd
	15.6.2. Notifd
	15.6.3. Pollerd

	Chapter 16. System Properties
	Chapter 17. Ticketing
	17.1. JIRA Ticketing Plugin
	17.1.1. Setup
	17.1.2. Jira Commands
	17.1.3. Custom fields
	17.1.4. Troubleshooting

	17.2. Remedy Ticketing Plugin
	17.2.1. Remedy Product Overview
	17.2.2. Supported Remedy Product Versions
	17.2.3. Setup

	17.3. TSRM Ticketing Plugin
	17.3.1. Setup
	17.3.2. Mapping OpenNMS Ticket with TSRM Incident

	Chapter 18. Enabling RMI
	18.1. Enabling RMI
	18.2. Enabling SSL
	18.3. Connecting to RMI over SSL

	Chapter 19. Plugin Manager
	19.1. Plugin Manager UI panel
	19.2. Setting Karaf Instance Data
	19.3. Manually adding a managed Karaf instance
	19.4. Installed Plugins
	19.5. Available Plugins Server
	19.6. Installing Available Plugins
	19.7. Plugins Manifest
	19.8. Installed Licences Panel
	19.9. Adding a New Licence
	19.10. Installing Internal Plugins

	Chapter 20. Internal Plugins
	20.1. Internal Plugins supplied with OpenNMS Meridian
	20.2. Installing Plugins with the Karaf Consol
	20.3. Alarm Change Notifier Plugin
	20.4. Elasticsearch ReST plugin
	20.4.1. Configuration
	20.4.2. Loading Historical Events
	20.4.3. Index Definitions
	20.4.4. Viewing events using Kibana Sense
	20.4.5. Mapping of Alarms and Events to Elasticsearch

	Chapter 21. Special Cases and Workarounds
	21.1. Overriding SNMP Client Behavior

