Administrators Guide

Copyright (c) 2018 The OpenNMS Group, Inc.

OpenNMS v2015.1.9
Last updated 2018-03-15 13:49:36 EDT

Table of Contents

AdMINIStrative WEDINTEITACE ...cuiuitiiiiiiiieie ettt et et sttt ea et et e e ensaratetaenenesseaaataenensestasnenenessensnns 1
IR 0] 010 =1 (o) o 2 Lo TV o E P PP 2
0 4L 0 10 (ot () N 2
R 000) Ui 0 i L o) o B PSPPI 2
(BT D] 11] £ PP PP 4
T BV =) o B D L =1 1 PP 4
RS 0N - ¢4 R 4
RS 0 R 4 - 5
0 2 50 == 5
RS 0 TR TR 5
00 20 R - N 5
RS 0 2 2 5
00 2R T 0 N 6
BRI I D100 4 Uy TN 6
1.3.10. SUPVEIILANICE tuvuiunininiiiiniiiniiii i ettt e b e b st et ea s b et ea s b et st eaensaaeasensaneasens 6
S T I R) o To) o = 2 PP 6
00 00 /T 2 P PN 6
1.4. BOOSHINE DASAICE ...t ettt et ettt et ettt e ettt e e et e et e e e e s et s e en e e s et e an s e aaaenns 7
1.5, Criteria BUILACT .vuivtiniininiiiiiniiiii ettt et st et s bt st e b ta st e b ta s e easeneanenses 7
2. SETVICE ASSUTAIICE tuevtvnirniniinitniniintntntatnttntataeata e eastastaeastaeasenstaetsensaaetsenetststnersesensssssnenssasesesstnsmsenseeasenses 9
2.1, SEIVICE INIOTIITOTS tutueninenin ittt e eeeee e eneneereentneneneesenansnenesaesesnensnsessnsesnensnsesensssnenessesenssnenessensnsnsnsnnens 9
N B BN 1 Y 1 1A (0] 11 L) PP PR TPRPIN 9

P B 7oy s R TR 10 LY () (D L0) PP PRSPPI 9
0 S T 157 =1 (0) 11 () 12
b & 0] 1] EE 1LY () 4D L) PP PRSPPI 18
2.1.5. CiSCOPINGIMIDIMOIITOT «eueueneneneti e ettt et e e e ettt en et et e e eaea e e e e e enra et e enenaa et e an s aanaenenanaanennns 20

0 LS5 8 0L () 40) 26

28 B) 1 Tof)1 (o) 0 L) PP PPN 27
2.1.8. DISKUSAZEMOIUILOTL +.eueuirtiniinininitinit ettt et st et e et tet st e e en st et en st et tneaeesstaeresnsaaensrnsensnsens 31
N B D) T (o) 1 (0] (PP TP 33
2.1.10. DNSRESOIUTIONIMONITOT 11t tuiniuniniinianiniinintiniiintiea ittt en sttt en sttt ea et eastneastastaeastasaneasensaensenees 34
20 0 B O o 001 () 4B L) PP P PPN 37
2.1.12. HOStRESOUTCESW RUNIMOIITOT .1 tutteteneerentetnenenetreneneneneseeeeneneneeaeetnenensnseesesnenensesessnsnenessesessnensnsensnns 38

P O R T 5)1 (o) 11 (o) PP P PPN 40
P20 O 3 5) 20 1 01 (o) 4 L (o) PR PRR 45
0 O ST 5 L0 011 () 4N o) PP PPN 46

b B ST (010101 (o) 1 (o) S TP PP TP PPPPN 47

b O A D e 1001 o) 1 V1 (0) (P PP P PP 48
0 O T (191 (o) 1 (o) PP 49

2 R R TR)= 01 (o) 4B) 51
2.1.20. JDBCStOredPrOCEAUIEIVMONITOT 1 eutvuinienieineeninteetnteea e ee e eee e e een s taetensteretneaenstaerernsaaensrnsansnsens 52
N O B 10) {60 10 Lo 1Y (0] 4N L) PP PPRPRN 54

N BV [0) () e B U2 T=Eo N L (o) 4D L0 PP 56

P B T e =1)1 (o) 0 L) PRSP 57

b 2 s =) 1Y (o) 4 0 PP PRSPPI 58
2.1.25. MeMCACREAIMOIITOT ...eueninte et ettt e e et ettt e et et e e e ea e et e e eaea et e e enae et e en e raaenenanaeneann 59
2.1.26. NetScalerGroupHEaltNIMONITOLcuue ittt et et et e e e e et r e en e e e eeneneaenen 61

N B A\ 1 0] () DL o) PP PPR 62

A BT 0) 1 e R () 2 Tod) 1Y (o) 1 L (o) PPN 62
2.1.29. OpenManageChasSISIMIOIITOT .. .uvueuinteeiin ettt ettt et et e e e e e et enen e ereneneaenes 64
RO o0 11 (o) 4 L (0 PP PP PTPPPRPP 65

0 RS B &0 o k=T o) 31 (0} 4B L0) N 66
0 S /03 0 30 () 40) 67

P B T} 1 01 011 () 4D L0) PP PPN 68

B RS N a1 (0] 4 L {0 PP PP P PTPRPP 76

P RS TS TSN B3 01 (0} 4B L0 N 77
2.1.36. STTAfEPINGIVIONITOT . et ettt ettt ettt ettt et et ee s e eenen s e eeen st eean e eraaa e sntnsansaseasansnseensensenansennes 79
2.1.37. SYStEIMEXECULEMOIITOL Louiuinttiiinin ittt ettt ettt e e ettt e e e e e et enensa e e eneneaenes 81
2.1.38. WIN3 2SI VICEMOIUITOL . etutuiinininiiinien ittt ettt et e e st et e e e et st et en st et en et es st eatnsaensnsansnsens 82
A B 1 B €121)Y (o) 1 Lo) PP PPRR 84

KT A7 AL 0 AN 0 0 T=) N\ PP PPN 86
20 75 1 86
IO BN o 100) 40}) DB 2) L PP PP P PTPP PR 86
31,2, SOUTCES OF EVEIITS . iuuitiiniiiiniiniiiniiii ittt et sttt st et en sttt ettt b e s e eas b eantastasassasaneasansanensanes 86
0 S T U LT 773 4L 2 0 87
3.1.4. EVENTS IN ACHOIL tuvuintiniininiiiiiiiiii ittt et et et e e s bt e et et s b sa s e easaaeaenanees 87

4. OPENINDMS PrOVISIOIUIIE . vuvntniuniniineninteenttn ettt tet et et sttt en st et ta st eataeaeta st eatastaenstnseenstneasenstnetsensanersnnes 88
S T 0 A 53 (0] 411 = PP PPt 88
I S 1§ 0242 o 88
0/ 0} o3 01 88
4.2, GETHINE STATTEM 1utenitnitiniiint it ettt ettt e st et et et e bt eaes st eaea s e easnsanensaneaensenensensen 91
4.2.1. Provisioning the SNMP CONfigUIrationcueuieeiiiii ettt ettt e e e et e e e e e eeaens 91

T/ T b a)10 Wl 5 -V o =) S PR PRPRRE 95
4.3.1. FIle HANAIET .vviviiniiiiiiiiiiiiii i et aas 95
4.3.2. HTTP HANALET «.evtiniieiiieit ettt ettt et st et st s e et st et en st et en st e bt eatas s sansasens 95
0 T0C T D 1\ S0 4T DL 95
4.4, ProVISIONING EXAIMPLES ... cuenenei ittt et ettt e e et e e ea e e et e en e et r e en e et raenen e eaeaens 97
4.4.1. BaSIC PrOVISIONUIIIE «.eueneniniiiinen ettt ettt ettt ettt e et et e en e e e ettt enea et tnenensaneannens 97
4.4.2. Advanced Provisioning EXAMPLEcuiiuiuiiniiiiiiiniiiiiiii ettt 99
e F: ¥ o =) - S TP 104
ST B D) DA RN =1 0 () PPN 104
4.5.2. RANCID AQAPTET «1euinininitiienentet ettt ettt ettt e a e et e e en e ettt enea et it enenensasaannenensasennenenss 104
4.6. Integrating With PTOVISION@cuuiuiuniniiiiiniieii et et e et et st et e st e eneanes 104
4.6.1. Provisioning Groups OF NOGESueueniuenin ittt ettt ettt e ettt e e eare e e e en e eneenenns 104

T S o5 1 111 o) [PPN 104
4.7. Provisioning Single Nodes (QUiCK Add NOGE)cuivniniiniiiiniiniiiiiiniiiii e e 106
4.8. Fine Grained Provisioning USING PrOVISIOT.DL.......cueuiiiuiiniiiiiiiiiiien et ee e en st e en st e eneenes 106
4.8.1. First, Create @ NEW ProviSIONING GIOUD .ueueurueuenteeiiin ettt te ettt eeea e eataeenanrertaraenenaeneaeaanenns 107
4.8.2. Add a Node to an EXisting ProviSIONING GIOUP «ucueueeueneurutneneeteneneetteeenenrerearaenenenrerearaeneneereaeaenenns 107
4.9. Yet Other APT EXAITIPLES ...uuniiininiii ettt ettt e e ettt e e s e et e en e e s e et eneneaseneenenes 110
5. OPENINIMS OPETATIONL 1eutuiuititntnineneneeettn et eareettnenenaeretetaenenetrentasnenesaeatetnsnsnseesesnsnenensestetasnenessessarnsneseensnnns 111
6. JMX CONTIGUIAtION GOIETATOT .eueuen ettt ettt et e e et e et enen e e et e enee et e enaa e et anenaaraneasaenenaerenaannenanaenennns 112
6.1. WED DASEA ULILITY ..uenineiiiii et ettt ettt ettt et et e e e e e et r e en e e e e e eneneeaens 112
6.1.1. CoNfigure JMX COMIMECHION .. eutrtintenenineeen ettt ettt eara e een e seenrteeenreenseneenenseneeaenseaeranneenns 112
6.1.2. Select MBeans and COIMPOSITEuueuiniunintiniiiniiiiiit ettt eee et tea e eet e eaenstnereenstneresnsanss 113
6.1.3. Download and include CONfIgUIationcueuiuieiii ettt ettt e et et e e e e e eenenns 114

(O IO Of : TT T I L0 114

(S 207700 R 50 1) 7 1 = (0 114

LB U T ¥ . N 114
6.2.3. GraPh TOIMPLATES .. eueetiin ettt ettt et ettt e et ett e e e e sttt e e e e enenae 116
7. Special Cases and WOTKATOUIIASueneneneneereti et ettt et et et tenenesaeatetneneareateteenenensestetasneneesensarneneseenensns 117

7.1. Overriding SNMP CLieNt BERAVIOTuuieii ettt ettt e et e e e et e e e e e eaens 117

Administrative Webinterface

Chapter 1. Operator Board

1.1. Introduction

In a network operation center (NOC) the Ops Board can be used to visualize monitoring information. The monitoring
information for various use-cases are arranged in configurable Dashlets. To address different user groups it is possible to

create multiple Ops Boards.
There are two visualisation components to display Dashlets:
* Ops Panel: Shows multiple Dashlets on one screen, e.g. on a NOC operators workstation

* Ops Board: Shows one Dashlet at a time in rotation, e.g. for a screen wall in a NOC

Dashlet Dashlet
Dashlet Dashlet
Ops Panel

Figure 1. Concept of Dashlets displayed in Ops Panel

Dashlet —

Ops Board

Figure 2. Concept to show Dashlets in rotation on the Ops Board

1.2. Configuration

To create and configure Ops Boards administration permissions are required. The configuration section is in admin area of

OpenNMS and named 'Ops Board Config Web Ui'.

Admin

open e o o

Node List Search Outages Path Outages Dashboards Events Alarms Notifications Assets Reports Charts Sur Maps v Add Node Support

Home / Admin

Configure Users, Groups and On-Call Roles Detailed Documentation on al options can be found on the OpenNV wi.
System Information Configure Users,Groupsand On-CallRles: Ad, modlfy or dletc oxiting usrs. roups
Instrumentation Log Reader contain users. Roles are buil from groups and provide a mechanism to mplement

Qi st roarions. (s Role: On Duty

e

Notfaton tatus: Notfcatonswil besent out nly I s seng s swiched 0 On T s 3
oA

Configure Discovery system-wide seting, As long 2 this s OFFOpenNMS il reate o noifcations The curert

Configure SNMP Community Names by 1P o refected in the upy

Conbire S\ Dute Collecton por eeace i bamer eneng s Nowees On o Hodes OF

Manage and Unmanage Interfaces and Services andjor ranges) that you
want OpenNMS o ping periodically in order to detect new nodes.

Nanae thresholds t OpenMS to ping periodically in order to detect new nods

send Evene by IP-Configure the jasedin S oas
Colection and other SNMP operations. OpenNMS i shipped with

Configure Notifications o rov st teret read oty onvou: eveesyoi mos o here 0 e et

Scheduled Outages collect data from these devices.

Manage Events Configuration Configure SNMP Data Collection per Interface: This interface willallow you to configure which

Manage SNMP Collections and Data Collection Groups 1Pand rfaces are us lection.

SNMP MiB Comy

Ops Board Config Web Ut

TMX Confg Generator Web Ul ALPHA o e A i fan oot en

Notication Scatus: O On © OF (Update notfications if it falls. If you want only one, unmanage the service on one of the Interfaces.
| manage Viows y

RS e aTeng Send Event: Allows you to buld a speciic event and send it to the system,

plans, called destination

Add Interface for Scanning o R deskmion pat 3 ss00BE 1 o OpETNS v cn pam i have any arovary
Manage Provisioning Requisitions number of sclationsor arges (usrs,groups, on-call roles) and can sen novicestrough
|mport and Export Asset Information . pagenc et ceers o destmanerspoh o b wigoured oy sny member of GpemAE

events and may further be associated with specific Interfaces or senvices.
Manage Survlllance Categories

e oo Add and edit polling,
Delete Nodt hresholding and the four)

Figure 3. Navigation to the Ops Board configuration

Create or modify Ops Boards is described in the following screenshot.

s Board Config Web Ul

ops
s admin (otices - Log out
open a2, 2014 1843 urC

Nodelist Search Outages PathOutages Dashboards Events Alarms Notifications Assets Reports Chans Surveillince Maps+ AddNode Support
Home / Admin / Ops Board Config Web U1

Overview | NoCMaiisstem x| (@)

Ops Board configuration Help

Tite ochatonen Q) (s sned) (rreven (D)

Dashiet (Alarms z priority [5 @) Boost-priority [0 (&) propertes () g Preview
Jarm bt -0
Tite) ouration [15) Boost-Duration [0 () reroe)@ (=

Opentts C: . Inc. OpenNMS® s a reg of , nc.

Figure 4. Adding a Dashlet to an existing Ops Board
1. Create a new Ops Board to organize and arrange different Dashlets
2. The name to identify the Ops Board
3. Add a Dashlet to show OpenNMS monitoring information
4. Show a preview of the whole Ops Board
5. List of available Dashlets
6. 'Priority’ for this Dashlet in Ops Board rotation, lower priority means it will be displayed more often
7. 'Duration' in seconds for this Dashlet in the Ops Board rotation
8. Change 'Priority’' if the Dashlet is in alert state, this is optional and maybe not available in all Dashlets
9. Change 'Duration' if the Dashlet is in alert state, it is optional and maybe not available in all Dashlets
10. Configuration properties for this Dashlet
11. Remove this Dashlet from the Ops Board
12. Order Dashlets for the rotation on the Ops Board and the tile view in the Ops Panel
13. Show a preview for the whole Ops Board

The configured Ops Board can be used by navigating in the main menu to 'Dashboard Ops Board'.

ocalhost 8980 apenni vasdin-walbosrd S7VMS CoPYISN: © 2002-2014 The Oper Group, Inc. OpenNMS® i aregistered trademark of The OpenNVs Group, I

Figure 5. Navigation to use the Ops Board

1.3. Dashlets

Visualization of information is implemented in Dashlets. The different Dashlets are described in this section with all

available configuration parameter.

To allow filter information the Dashlet can be configured with a generic Criteria Builder.
1.3.1. Alarm Details

This Alarm-Details Dashlet shows a table with alarms and some detailed information.

Table 1. Information of the alarms

Field Description
'Alarm ID' OpenNMS ID for the alarm
'Severity' Alarm severity (Cleared, Indeterminate, Normal, Warning,

Minor, Major, Critical)

'Node label' Node label of the node where the alarm occurred
'Alarm count’ Alarm count based on reduction key for deduplication
'Last Event Time' Last time the alarm occurred

'Log Message' Reason and detailed log message of the alarm

The Alarm Details Dashlet can be configured with the following parameters.

Boost support Boosted Severity
Configuration Criteria Builder
1.3.2. Alarms

This Alarms Dashlet shows a table with a short alarm description.

Table 2. Information of the alarm

Field Description
"Time' Absolute time since the alarm appeared
'Node label' Node label of the node where the alarm occurred

Field

'UET'

Description

OpenNMS Unique Event Identifier for this alarm

The Alarms Dashlet can be configured with the following parameters.

Boost support

Configuration
1.3.3. Charts
This Dashlet displays an existing Chart.

Boost support

Chart
Maximize Width

Maximize Height

1.3.4. Image

This Dashlet displays an image by a given URL.

Boost support
imageUrl
maximizeHeight

maximizeWidth

1.3.5. KSC

This Dashlet shows an existing KSC report. The view is exact the same as the KSC report is build regarding order, columns

and time spans.

Boost support

KSC-Report

1.3.6. Map

This Dashlet displays the geographical map.

Boost support

search

1.3.7. RRD

This Dashlet shows one or multiple RRD graphs. It is possible to arrange and order the RRD graphs in multiple columns and

Boosted Severity

Criteria Builder

false
Name of the existing chart to display
Rescale the image to fill display width

Rescale the image to fill display height

false

URL with the location of the image to show in this Dashlet

Rescale the image to fill display width

Rescale the image to fill display height

false

Name of the KSC report to show in this Dashlet

false

Predefined search for a subset of nodes shown in the

geographical map in this Dashlet

rows. All RRD graphs are normalized with a given width and height.

http://www.opennms.org/wiki/Chart-configuration.xml
http://www.opennms.org/wiki/KSC_Reports
http://www.opennms.org/wiki/Geographical_Maps
http://www.opennms.org/wiki/Geographical_Maps#Searching

Boost support

Columns
Rows

KSC Report

Graph Width
Graph Height
Timeframe value

Timeframe type

1.3.8. RTC

false
Number of columns within the Dashlet
Number of rows with the Dashlet

Import RRD graphs from an existing KSC report and re-
arrange them.

Generic width for all RRD graphs in this Dashlet
Generic height for all RRD graphs in this Dashlet
Number of the given Timeframe type

Minute, Hour, Day, Week, Month and Year for all RRD
graphs

This Dashlet shows the configured SLA categories from the OpenNMS start page.

Boost support

1.3.9. Summary

false

This Dashlet shows a trend of incoming alarms in given time frame.

Boost support

timeslot

1.3.10. Surveillance

This Dashlet shows a given Surveillance View.

Boost support

viewName

1.3.11. Topology

Boosted Severity

Time slot in seconds to evaluate the trend for alarms by
severity and UEL

false

Name of the configured Surveillance View

This Dashlet shows a Topology Map. The Topology Map can be configured with the following parameter.

Boost support

focusNodes
provider

sz1

1.3.12. URL

false
Which node(s) is in focus for the topology
Which topology should be displayed, e.g. Linkd, VMware

Set the zoom level for the topology

This Dashlet shows the content of a web page or other web application, e.g. other monitoring systems by a given URL.

http://www.opennms.org/wiki/Surveillance_View_%28af%29
http://www.opennms.org/wiki/Topology_Maps

Boost support false

password Optional password if a basic authentication is required
url URL to the web application or web page

username Optional username if a basic authentication is required
1.4. Boosting Dashlet

The behavior to boost a Dashlet describes the behavior of a Dashlet showing critical monitoring information. It can raise
the priority in the Ops Board rotation to indicate a problem. This behavior can be configured with the configuration
parameter Boost Priority and Boost Duration. These to configuration parameter effect the behavior on the Ops Board in

rotation.
* Boost Priority: Absolute priority of the Dashlet with critical monitoring information.

* Boost Duration: Absolute duration in seconds of the Dashlet with critical monitoring information.

1.5. Criteria Builder

The Criteria Builder is a generic component to filter information of a Dashlet. Some Dashlets use this component to filter
the shown information on a Dashlet for certain use case. It is possible to combine multiple Criteria to display just a subset

of information in a given Dashlet.

Table 3. Generic Criteria Builder configuration possibilities

Restriction Property Value 1 Value 2 Description

Asc . - - ascending order

Desc - = - descending order
Between database attribute 'String’ 'String' Subset of data between

value 1 and value 2

Contains database attribute 'String' = Select all data which
contains a given text
string in a given
database attribute

Distinct database attribute - - Select a single instance

Eq database attribute 'String’ - Select data where
attribute equals (==) a
given text string

Ge database attribute 'String’ - Select data where
attribute is greater
equals than (>=) a
given text value

at database attribute 'String' - Select data where
attribute is greater
than (>) a given text

value
Ilike database attribute 'String' - "“unknown’
In database attribute 'String’ - 'unknown'

Restriction

Iplike

IsNull

IsNotNull

IsNotNull

Le

Lt

Le

Like

Limit

Ne

Not

OrderBy

Property

database attribute

database attribute

database attribute

database attribute

database attribute

database attribute

database attribute

database attribute

database attribute

database attribute

database attribute

Value 1

'String’

'String’

'String'

'String'

'String’

'Integer’

'String’

'String’

Value 2

Description

Select data where
attribute matches an
given IPLIKE
expression

Select data where
attribute is null

Select data where
attribute is not null

Select data where
attribute is not null

Select data where
attribute is less equals
than () a given text
value

Select data where
attribute is less than (<)
a given text value

Select data where
attribute is less equals
than () a given text
value

Select data where
attribute is like a given
text value similar to
SQL like

Limit the result set by
a given number

Select data where
attribute is not equals
(=) a given text value

'unknown difference
between “Ne’

Order the result set by
a given attribute

Chapter 2. Service Assurance

2.1. Service monitors

2.1.1. AvailabilityMonitor

This monitor tests reachability of a node by using the isReachable method of the InetAddress java class. The service is

considered available if isReachable returns true. See Oracle’s documentation for more details.

IMPORTANT This monitor is deprecated in favour of the IcmpMonitor monitor. You should only use this
monitor on remote pollers running on unusual configurations (See below for more details).

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.AvailabilityMonitor

Remote Enabled true

Configuration and Usage

Table 4. Monitor specific parameters for the AvailabilityMonitor
Parameter Description Required Default value

retry Number of attempts to have optional 3
the isReachable method
return true.

timeout Timeout for the isReachable optional 3000
method, in milliseconds.

Examples

<service name="AVAIL" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="5000"/>

</service>

<monitor service="AVAIL" class-name="org.opennms.netmgt.poller.monitors.AvailabilityMonitor"/>

IcmpMonitor vs AvailabilityMonitor

This monitor has been developped in a time when the IcmpMonitor monitor wasn’t remote enabled, to circumvent this
limitation. Now, with the JNA ICMP implementation, the IcmpMonitor monitor is remote enabled under most
configurations and this monitor shouldn’t be needed -unless you’re running your remote poller on such an unusual
configuration (See also issue NMS-6735 for more information)-.

2.1.2. BgpSessionMonitor

This monitor checks if a BGP-Session to a peering partner (peer-ip) is functional. To monitor the BGP-Session the RFC1269

SNMP MIB is used and test the status of the session using the following OIDs is used:

http://docs.oracle.com/javase/7/docs/api/java/net/InetAddress.html#isReachable%28int%29
http://issues.opennms.org/browse/NMS-6735

BGP_PEER_STATE_0ID = .1.3.6.1.2.1.15.3.1.2.<peer-ip>
BGP_PEER_ADMIN_STATE_O0ID = .1.3.6.1.2.1.15.3.1.3.<peer-ip>

BGP_PEER_REMOTEAS_0ID = .1.3.6.1.2.1.15.3.1.9.<peer-1ip>
BGP_PEER_LAST_ERROR_OID = .1.3.6.1.2.1.15.3.1.74.<peer-ip>
BGP_PEER_FSM_EST_TIME OID = .1.3.6.1.2.1.15.3.1.16.<peer-ip>

The <peer-ip> is the far end IP address of the BGP session end point.

A SNMP get request for BGP_PEER_STATE_0ID returns a result between 1 to 6. The servicestates for OpenNMS are mapped as

follows:

Result State description Monitor state in OpenNMS
1 Idle DOWN

2 Connect DOWN

3 Active DOWN

4 OpenSent DOWN

5 OpenConfirm DOWN

6 Established UP

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.BgpSessionMonitor

Remote Enabled false

To define the mapping I used the description from RFC1771 BGP Finite State Machine.

Configuration and Usage

Parameter Description Required Default value
bgpPeerIp IP address of the far end BGP required -
peer session
retry Amount of attempts to get required -
the BGP peer state with
SNMP
timeout Time to wait for the SNMP required -

agents response before
trying a next attempt.

Examples

To monitor the session state Established it is necessary to add a service to your poller configuration in
'$OPENNMS_HOME/etc/poller-configuration.xml', for example:

10

http://www.freesoft.org/CIE/RFC/1771/31.htm

<!-- Example configuration poller-configuration.xml -->
<service name="BGP-Peer-99.99.99.99-AS65423" interval="300000"
user-defined="false" status="on">

<parameter key="retry" value="2" />

<parameter key="timeout" value="3000" />

<parameter key="port" value="161" />

<parameter key="bgpPeerIp" value="99.99.99.99" />
</service>

<monitor service="BGP-Peer-99.99.99.99-AS65423" class-name=
"org.opennms.netmgt.poller.monitors.BgpSessionMonitor" />
Error code mapping

The BGP_PEER _LAST ERROR OID gives an error in HEX-code. To make it human readable a codemapping table is

implemented:

Error code Error Message

0100 Message Header Error

0101 Message Header Error - Connection Not Synchronized

0102 Message Header Error - Bad Message Length

0103 Message Header Error - Bad Message Type

0200 OPEN Message Error

0201 OPEN Message Error - Unsupported Version Number

0202 OPEN Message Error - Bad Peer AS

0203 OPEN Message Error - Bad BGP Identifier

0204 OPEN Message Error - Unsupported Optional Parameter

0205 OPEN Message Error (deprecated)

0206 OPEN Message Error - Unacceptable Hold Time

0300 UPDATE Message Error

0301 UPDATE Message Error - Malformed Attribute List

0302 UPDATE Message Error - Unrecognized Well-known
Attribute

0303 UPDATE Message Error - Missing Well-known Attribute

0304 UPDATE Message Error - Attribute Flags Error

0305 UPDATE Message Error - Attribute Length Error

0306 UPDATE Message Error - Invalid ORIGIN Attribute

0307 UPDATE Message Error (deprecated)

0308 UPDATE Message Error - Invalid NEXT_HOP Attribute

0309 UPDATE Message Error - Optional Attribute Error

030A UPDATE Message Error - Invalid Network Field

0308 UPDATE Message Error - Malformed AS_PATH

0400 Hold Timer Expired

11

Error code Error Message

0500 Finite State Machine Error

0600 Cease

0601 Cease - Maximum Number of Prefixes Reached
0602 Cease - Administrative Shutdown

0603 Cease - Peer De-configured

0604 Cease - Administrative Reset

0605 Cease - Connection Rejected

0606 Cease - Other Configuration Change

0607 Cease - Connection Collision Resolution

0608 Cease - Out of Resources

Instead of HEX-Code the error message will be displayed in the service down logmessage. To give some additional

informations the logmessage contains also

BGP-Peer Adminstate
BGP-Peer Remote AS
BGP-Peer established time in seconds

Debugging
If you have problems to detect or monitor the BGP Session you can use the following command to figure out where the
problem come from.

snmpwalk -v 2c¢ -c <myCommunity> <myRouter2Monitor> .1.3.6.71.2.1.15.3.1.2.99.99.99.99

Replace 99.99.99.99 with your BGP-Peer IP. The result should be an Integer between 1 and 6.

2.1.3. BSFMonitor

This monitor runs a Bean Scripting Framework BSF compatible script to determine the status of a service. Users can write
scripts to perform highly custom service checks. This monitor is not optimised for scale. It’s intended for a small number of

custom checks or prototyping of monitors.

BSFMonitor vs SystemExecuteMonitor

The BSFMonitor avoids the overhead of fork(2) that is used by the SystemExecuteMonitor. BSFMonitor also grants access to
a selection of OpenNMS internal methods and classes that can be used in the script.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.BSFMonitor

Remote Enabled false

Configuration and Usage

Table 5. Monitor specific parameters for the BSFMonitor

12

http://commons.apache.org/proper/commons-bsf/

Parameter

file-name

bsf-engine

run-type

lang-class

file-extensions

Description Required
Path to the script file. required

The BSF Engine to run the required
script in different languages
like

Bean Shell:
bsh.util.BeanShellBSFEngine

Groovy:
org.codehaus.groovy.bsf.Groo

vyEngine

Jython:
org.apache.bsf.engines.jytho
n.JythonEngine

one of eval or exec optional

The BSF language class, like optional
groovy or beanshell.

comma-separated list optional

Table 6. Beans which can be used in the script

Variable

map

ip_addr

node_id

node_label

svc_name

bsf_monitor

results

times

Type

Map<String, Object>

String

int

String

String

BSFMonitor

HashMap<String, String>

LinkedHashMap<String, Number>

Default value

eval

file-name extension is
interpreted by default

Description

The map contains all various
parameters passed to the monitor
from the service definition it the
'poller-configuration.xml' file.

The IP address that is currently being
polled.

The Node ID of the node the ip_addr
belongs to.

The Node Label of the node the ip_addr
and service belongs to.

The name of the service that is being
polled.

The instance of the BSFMonitor object
calling the script.

Useful for logging via its log(String sev,
String fmt, Object... args) method.

The script is expected to put its results
into this object.

The status indication should be set into
the entry with key status.

If the status is not 0K, a key reason
should contain a description of the
problem.

The script is expected to put one or
more response times into this object.

Additionally every parameter added to the service definition in 'poller-configuration.xml' is available as a String object in

the script. The key attribute of the parameter represents the name of the String object and the value attribute represents

the value of the String object.

13

NOTE Please keep in mind, that these parameters are also accessible via the map bean.

CAUTION Avoid non-character names for parameters to avoid problems in the script languages.

Response Codes

The script has to provide a status code that represents the status of the associated service. The following status codes are
defined:

Table 7. Status codes

Code Description

OK Service is available

UNK Service status unknown
UNR Service is unresponsive
NOK Service is unavailable

Response time tracking

By default the BSFMonitor tracks the whole time the script file consumes as the response time. If the response time should

be persisted the response time add the following parameters:
RRD response time tracking for this service in 'poller-configuration.xml'

<!-- where in the filesystem response times are stored -->
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />

<!-- name of the rrd file -->
<parameter key="rrd-base-name" value="minimalbshbase" />

<!-- name of the data source in the rrd file -->
<!-- by default "response-time" is used as ds-name -->
<parameter key="ds-name" value="myResponseTime" />

It is also possible to return one or many response times directly from the script. To add custom response times or override
the default one, add entries to the times object. The entries are keyed with a String that names the datasource and have as
values a number that represents the response time. To override the default response time datasource add an entry into

times named response-time.

Timeout and Retry

The BSFMonitor does not perform any timeout or retry processing on its own. If retry and or timeout behaviour is

required, it has to be implemented in the script itself.

Requirements for the script (run-types)

Depending on the run-type the script has to provide its results in different ways. For minimal scripts with very simple logic

run-type eval is the simple option. Scripts running in eval mode have to return a String matching one of the status codes.

If your script is more than a one-liner, run-type exec is essentially required. Scripts running in exec mode need not return
anything, but they have to add a status entry with a status code to the results object. Additionally, the results object can
also carry a "reason":"message" entry that is used in non 0K states.

14

Commonly used language settings

The BSF supports many languages, the following table provides the required setup for commonly used languages.

Table 8. BSF language setups

Language lang-class bsf-engine required library
BeanShell beanshell bsh.util.BeanShellBSFEngine supported by default
Groovy groovy Sggag?gghaus-QFOOVY-be-GFOO groovy-all-[version].jar
Jython jython org.apache.bsf.engines.jytho jython-[version].jar

n.JythonEngine

Example Bean Shell

BeanShell example 'poller-configuration.xml’'

<service name="MinimalBeanShell" interval="300000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/MinimalBeanShell.bsh"/>
<parameter key="bsf-engine" value="bsh.util.BeanShellBSFEngine"/>

</service>

<monitor service="MinimalBeanShell" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

BeanShell example 'MinimalBeanShell.bsh' script file

bsf_monitor.log("ERROR", "Starting MinimalBeanShell.bsf", null);
File testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
return "OK";
} else {
results.put("reason", "file does not exist");
return "NOK";
3

Example Groovy

To use the Groovy language an additional library is required. Copy a compatible groovy-all.jar into to 'opennms/lib' folder
and restart OpenNMS. That makes Groovy available for the BSFMonitor.

Groovy example 'poller-configuration.xml' with default run-type set to eval
<service name="MinimalGroovy" interval="300000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
<parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>

</service>

<monitor service="MinimalGroovy" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

15

http://www.beanshell.org
http://groovy.codehaus.org
http://www.jython.org

Groovy example 'MinimalGroovy.groovy' script file for run-type eval

bsf_monitor.log("ERROR", "Starting MinimalGroovy.groovy", null);
File testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
return "0K";
} else {
results.put("reason", "file does not exist");
return "NOK";
3

Groovy example 'poller-configuration.xml' with run-type set to exec

<service name="MinimalGroovy" interval="300000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
<parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>
<parameter key="run-type" value="exec"/>

</service>

<monitor service="MinimalGroovy" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

Groovy example 'MinimalGroovy.groovy' script file for run-type set to exec

bsf_monitor.log("ERROR", "Starting MinimalGroovy", null);
def testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
results.put(“status", "OK")
} else {
results.put("reason", "file does not exist");
results.put(“status", "NOK");
}

Example Jython

To use the Jython (Java implementation of Python) language an additional library is required. Copy a compatible jython-
x.y.z.jar into the 'opennms/lib' folder and restart OpenNMS. That makes Jython available for the BSFMonitor.

Jython example 'poller-configuration.xml' with run-type exec

<service name="Minimallython" interval="300000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/Minimallython.py"/>
<parameter key="bsf-engine" value="org.apache.bsf.engines.jython.JythonEngine"/>
<parameter key="run-type" value="exec"/>

</service>

<monitor service="Minimallython" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

Jython example 'MinimalJython.py' script file for run-type set to exec
from java.io import File

bsf_monitor.log("ERROR", "Starting Minimallython.py", None);
if (File("/tmp/TestFile").exists()):
results.put("status", "OK")
else:
results.put("reason", "file does not exist")
results.put("status", "NOK")

16

NOTE We have to use run-type exec here because Jython chokes on the import keyword in eval mode.

NOTE As profit that this is really Python, notice the substitution of Python’s None value for Java’s null in the log
call.

Advanced examples

The following example references all beans that are exposed to the script, including a custom parameter.

Groovy example 'poller-configuration.xml’

<service name="MinimalGroovy" interval="30000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
<parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>

<!-- custom parameters (passed to the script) -->
<parameter key="myParameter" value="Hello Groovy" />

<!-- optional for response time tracking -->
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
<parameter key="rrd-base-name" value="minimalgroovybase" />
<parameter key="ds-name" value="minimalgroovyds" />
</service>

<monitor service="MinimalGroovy" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

17

Groovy example Bean referencing script file

bsf_monitor.log("ERROR", "Starting MinimalGroovy", null);

//1list of all available objects from the BSFMonitor
Map<String, Object> map = map;
bsf_monitor.log("ERROR", "---- map ----", null);
bsf_monitor.log("ERROR", map.toString(), null);

String ip_addr = ip_addr;
bsf_monitor.log("ERROR", "---- ip_addr ----", null);
bsf_monitor.log("ERROR", ip_addr, null);

int node_id = node_id;
bsf_monitor.log("ERROR", "---- node_id ----", null);
bsf_monitor.log("ERROR", node_id.toString(), null);

String node_label = node_label;
bsf_monitor.log("ERROR", "---- node_label ----", null);
bsf_monitor.log("ERROR", node_label, null);

String svc_name = svc_name;
bsf_monitor.log("ERROR", "---- svc_name ----", null);
bsf_monitor.log("ERROR", svc_name, null);

org.opennms.netmgt.poller.monitors.BSFMonitor bsf_monitor = bsf_monitor;
bsf_monitor.log("ERROR", "---- bsf_monitor ----", null);
bsf_monitor.log("ERROR", bsf_monitor.toString(), null);

HashMap<String, String> results = results;
bsf_monitor.log("ERROR", "---- results ----", null);
bsf_monitor.log("ERROR", results.toString(), null);

LinkedHashMap<String, Number> times = times;
bsf_monitor.log("ERROR", "---- times ----", null);
bsf_monitor.log("ERROR", times.toString(), null);

// reading a parameter from the service definition
String myParameter = myParameter;
bsf_monitor.log("ERROR", "---- myParameter ----", null);
bsf_monitor.log("ERROR", myParameter, null);

// minimal example

def testFile = new File("/tmp/TestFile");

if (testFile.exists()) {
bsf_monitor.log("ERROR", "Done MinimalGroovy ---- OK ----", null);
return "0K";

} else {

results.put(“reason", "file does not exist");
bsf_monitor.log("ERROR", "Done MinimalGroovy ---- NOK ----", null);

return "NOK";
}

2.1.4. CiscolIpSlaMonitor

This monitor can be used to monitor IP SLA configurations on your Cisco devices. This monitor supports the following
SNMP OIDS from CISCO-RTT-MON-MIB:

18

http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en&translate=Translate&objectInput=1.3.6.1.4.1.9.9.42

RTT_ADMIN_TAG_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.3

RTT_OPER_STATE_0ID = .1.3.6.1.4.1.9.9.42.1.2.9.1.10
RTT_LATEST_OPERSENSE_OID = .1.3.6.1.4.1.9.9.42.1.2.10.1.2
RTT_ADMIN_THRESH_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.5
RTT_ADMIN_TYPE_O0ID = .1.3.6.1.4.1.9.9.42.1.2.1.1.4
RTT_LATEST_OID = .1.3.6.1.4.1.9.9.42.1.2.10.1.1

The monitor can be run in two scenarios. The first one tests the RTT LATEST OPERSENSE which is a sense code for the
completion status of the latest RTT operation. If the RTT_LATEST OPERSENSE returns ok(1) the service is marked as up.

The second scenario is to monitor the configured threshold in the IP SLA config. If the RTT_LATEST OPERSENSE returns

with overThreshold(3) the service is marked down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor

Remote Enabled false

Configuration and Usage

Table 9. Monitor-specific parameters for the CiscolpSlaMonitor
Parameter Description Required Default value

retry Number of retries to get the optional from 'snmp-config.xml’'
information from the SNMP
agent before the service is
marked as
down.

timeout Time in milliseconds to wait optional from 'snmp-config.xml'
for the result from the SNMP
agent before making the next
attempt.

admin-tag The tag attribute from your required -
IP SLA configuration you
want to monitor.

ignore-thresh Boolean indicates if just the required
status or configured
threshold should be
monitored.

Example for HTTP and ICMP echo reply

In this example we configure an IP SLA entry to monitor Google’s website with HTTP GET from the Cisco device. We use
8.8.8.8 as our DNS resolver. In our example our SLA says we should reach Google’s website within 200ms. To advise co-
workers that this monitor entry is used for monitoring, I set the owner to OpenNMS. The tag is used to identify the entry

later in the SNMP table for monitoring.

19

Cisco device configuration for IP SLA instance for HTTP GET

ip sla monitor 1

type http operation get url http://www.google.de name-server 8.8.8.8
timeout 3000

threshold 200

owner OpenNMS

tag Google Website

ip sla monitor schedule 3 life forever start-time now

In the second example we configure a IP SLA to test if the IP address from www.opennms.org is reachable with ICMP from

the perspective of the Cisco device. Like the example above we have a threshold and a timeout.
Cisco device configuration for IP SLA instance for ICMP monitoring.

ip sla 1

icmp-echo 64.146.64.212

timeout 3000

threshold 150

owner OpenNMS

tag OpenNMS Host

ip sla schedule 1 life forever start-time now

It s not possible to reconfigure an IP SLA entry. If you want to change parameters, you have to
WARNING delete the whole configuration and reconfigure it with your new parameters. Backup your Cisco

configuration manually or take a look at RANCID.

To monitor both of the entries the configuration in 'poller-configuration.xml' requires two service definition entries:

<service name="IP-SLA-WEB-Google" interval="300000"
user-defined="false" status="on">
<parameter key="retry" value="2" />
<parameter key="timeout" value="3000" />
<parameter key="admin-tag" value="Google Website" />
<parameter key="ignore-thresh" value="false" /><1>
</service>
<service name="IP-SLA-PING-OpenNMS" interval="300000"
user-defined="false" status="on">
<parameter key="retry" value="2" />
<parameter key="timeout" value="3000" />
<parameter key="admin-tag" value="OpenNMS Host" />
<parameter key="ignore-thresh" value="true" /><2>
</service>

<monitor service="IP-SLA-WEB-Google" class-name="org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor" />

<monitor service="IP-SLA-PING-OpenNMS" class-name="org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor"
/>

@ Service is up if the IP SLA state is ok(1)
@ Service is down if the IP SLA state is overThreshold(3)

2.1.5. CiscoPingMibMonitor

This poller monitor’s purpose is to create conceptual rows (entries) in the ciscoPingTable on Cisco IOS devices that support
the CISCO-PING-MIB. These entries direct the remote I0S device to ping an IPv4 or IPv6 address with a configurable set of

parameters. After the IOS device has completed the requested ping operations, the poller monitor queries the IOS device to

20

http://www.shrubbery.net/rancid/
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&mibName=CISCO-PING-MIB

determine the results. If the results indicate success according to the configured parameters in the service configuration,
then the monitored service is reported as available and the results are available for optional time-series (RRD) storage. If
the results indicate failure, the monitored service is reported unavailable with a descriptive reason code. If something goes
wrong during the setup of the entry or the subsequent querying of its status, the monitored service is reported to be in an

unknown state.

Unlike most poller monitors, the CiscoPingMibMonitor does not interpret the timeout and retries
NOTE parameters to determine when a poll attempt has timed out or whether it should be attempted again. The
packet-count and packet-timeout parameters instead service this purpose from the perspective of the

remote IOS device.

Supported MIB OIDs from CISCO_PING_MIB

ciscoPingEntry 1.3.6.1.4.1.9.9.16.1.1.1
ciscoPingSerialNumber 1.3.6.1.4.1.9.9.16.1.1.1.1
ciscoPingProtocol 1.3.6.1.4.1.9.9.16.1.1.1.2
ciscoPingAddress 1.3.6.1.4.1.9.9.16.1.1.1.3
ciscoPingPacketCount 1.3.6.1.4.1.9.9.16.1.1.1.4
ciscoPingPacketSize 1.3.6.1.4.1.9.9.16.1.1.1.5
ciscoPingPacketTimeout 1.3.6.1.4.1.9.9.16.1.1.1.6
ciscoPingDelay 1.3.6.1.4.1.9.9.16.1.1.1.7
ciscoPingTrapOnCompletion 1.3.6.1.4.1.9.9.16.1.1.1.8
ciscoPingSentPackets 1.3.6.1.4.1.9.9.16.1.1.1.9
ciscoPingReceivedPackets 1.3.6.1.4.1.9.9.16.1.1.1.10
ciscoPingMinRtt 1.3.6.1.4.1.9.9.16.1.1.1.11
ciscoPingAvgRtt 1.3.6.1.4.1.9.9.16.1.1.1.12
ciscoPingMaxRtt 1.3.6.1.4.1.9.9.16.1.1.1.13
ciscoPingCompleted 1.3.6.1.4.1.9.9.16.1.1.1.14
ciscoPingEntryOwner 1.3.6.1.4.1.9.9.16.1.1.1.15
ciscoPingEntryStatus 1.3.6.1.4.1.9.9.16.1.1.1.16
ciscoPingVrfName 1.3.6.1.4.1.9.9.16.1.1.1.17
Prerequisites

* One or more Cisco devices running an IOS image of recent vintage; any 12.2 or later image is probably fine. Even very

low-end devices appear to support the CISCO-PING-MIB.

* The IOS devices that will perform the remote pings must be configured with an SNMP write community string whose
source address access-list includes the address of the OpenNMS server and whose MIB view (if any) includes the OID of

the ciscoPingTable.

* The corresponding SNMP write community string must be specified in the write-community attribute of either the top-
level <snmp-config> element of 'snmp-config.xml' or a <definition> child element that applies to the SNMP-primary

interface of the IOS device(s) that will perform the remote pings.

Scalability concerns

This monitor spends a fair amount of time sleeping while it waits for the remote IOS device to complete the requested ping
operations. The monitor is pessimistic in calculating the delay between creation of the ciscoPingTable entry and its first
attempt to retrieve the results of that entry’s ping operations — it will always wait at least (packet-count * (packet-timeout
+ packet-delay)) milliseconds before even checking whether the remote pings have completed. It’s therefore prone to
hogging poller threads if used with large values for the packet-count, packet-timeout, and/or packet-delay parameters. Keep

these values as small as practical to avoid tying up poller threads unnecessarily.

This monitor always uses the current time in whole seconds since the UNIX epoch as the instance identifier of the

21

ciscoPingTable entries that it creates. The object that holds this identifier is a signed 32-bit integer type, precluding a finer
resolution. It’s probably a good idea to mix in the least-significant byte of the millisecond-accurate time as a substitute for
that of the whole-second-accurate value to avoid collisions. IOS seems to clean up entries in this table within a manner of

minutes after their ping operations have completed.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor

Remote Enabled false

Configuration and Usage

Table 10. Monitor specific parameters for the CiscoPingMibMonitor
Parameter Description Required Default value

timeout A timeout, in milliseconds, optional from 'snmp-config.xml'
that should override the
SNMP timeout specified in
'snmp-config.xml'. Do not use
without a very good reason
to do so.

retry Number of retries to attempt optional from 'snmp-config.xml'
if the initial attempt times
out. Overrides the
equivalent value from 'snmp-
config.xml'. Do not use unless
really needed.

version SNMP protocol version (1, 2¢, optional from 'snmp-config.xml'
or 3) to use for operations
performed by this service
monitor. Do not use with out
a very good reason to do so.

packet-count Number of ping packets that optional 5
the remote IOS device should
send.

packet-size Size, in bytes, of each ping optional 100

packet that the remote IOS
device should send.

packet-timeout Timeout, in milliseconds, of optional 2000
each ping packet sent by the
remote IOS device.

packet-delay Delay, in milliseconds, optional 0
between ping packets sent by
the remote I0OS device.

entry-owner String value to set as the optional OpenNMS CiscoPingMibMonitor
value of
ciscoPingEntryOwner of
entries created for this
service.

vrf-name String value to set as the VRF optional empty String
(VLAN) name in whose
context the remote IOS
device
should perform the pings for
this service.

22

Parameter

proxy-node-id

proxy-node-foreign-source

proxy-node-foreign-id

proxy-ip-addr

target-ip-addr

success-percent

23

Description Required

Numeric database identifier optional
of the node whose primary
SNMP interface should be
used

as the proxy for this service.
If specified along with the
related
proxy-node-foreign-source,
proxy-node-foreign-id,
and/or proxy-ip-addr, this
parameter will be the
effective one.

foreign-source name and optional
foreign-ID of the node whose

primary SNMP interface

should be used as the "proxy"

for this service. These two

parameters are corequisites.

If they appear along with the

related proxy-ip-addr, these
parameters will be the

effective ones.

IP address of the interface optional
that should be used as the
proxy for this service.
Effective only if none of
proxy-node-id, proxy-node-
foreign-source, nor
proxy-node-foreign-id
appears alongside this
parameter. A value of
${ipaddr} will

be substituted with the IP
address of the interface on
which the monitored service
appears.

IP address that the remote optional
I0S device should ping. A

value of ${ipaddr} will be

substituted with the IP

address of the interface on

which the monitored service

appears.

A whole-number percentage optional
of pings that must succeed
(from the perspective of the
remote IOS device) in order
for this service to be
considered available. As an
example, if packet-count is
left at its default value of 5
but you wish the

service to be considered
available even if only one of
those five pings is successful,
then set this parameter’s
value to 20.

Default value

100

Parameter Description Required Default value

rrd-repository Base directory of an RRD optional -
repository in which to store
this service monitor’s
response-time samples

ds-name Name of the RRD datasource optional -
(DS) name in which to store
this service monitor’s
response-time samples; rrd-
base-name Base name of the
RRD file (minus the .rrd or
.jrb file extension) within
the specified rrd-repository
path in which this service
monitor’s response-time
samples will be persisted

This is optional just if you can use variables in the configuration

Table 11. Variables which can be used in the configuration

Variable Description

${ipaddr} This value will be substituted with the IP address of the
interface on which the monitored service
appears.

Example: Ping the same non-routable address from all routers of customer Foo

A service provider’s client, Foo Corporation, has network service at multiple locations. At each Foo location, a point-of-sale
system is statically configured at IPv4 address 192.168.255.1. Foo wants to be notified any time a point-of-sale system
becomes unreachable. Using an OpenNMS remote location monitor is not feasible. All of Foo Corporation’s CPE routers

must be Cisco IOS devices in order to achieve full coverage in this scenario.

One approach to this requirement is to configure all of Foo Corporation’s premise routers to be in the surveillance
categories Customer_Foo, CPE, and Routers, and to use a filter to create a poller package that applies only to those routers.
We will use the special value ${ipaddr} for the proxy-ip-addr parameter so that the remote pings will be provisioned on
each Foo CPE router. Since we want each Foo CPE router to ping the same IP address 192.168.255.1, we statically list that
value for the target-ip-addr address.

24

<package name="ciscoping-foo-pos">
<filter>catincCustomer_Foo & catincCPE & catincRouters & nodeSysOID LIKE '.1.3.6.1.4.1.9.%'</filter>
<include-range begin="0.0.0.0" end="254.254.254.254" />
<rrd step="300">
<rra>RRA:AVERAGE:0.5:1:2016</rra>
<rra>RRA:AVERAGE:0.5:12:1488</rra>
<rra>RRA:AVERAGE:0.5:288:366</rra>
<rra>RRA:MAX:0.5:288:366</rra>
<rra>RRA:MIN:@.5:288:366</rra>
</rrd>
<service name="FooP0S" interval="300000" user-defined="false" status="on">
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
<parameter key="rrd-base-name" value="ciscoping" />
<parameter key="ds-name" value="ciscoping" />
<parameter key="proxy-ip-addr" value="${ipaddr}" />
<parameter key="target-ip-addr" value="192.168.255.1" />
</service>
<downtime interval="30000" begin="0" end="300000" /><!-- 30s, 0, 5m -->
<downtime interval="300000" begin="300000" end="43200000" /><!-- 5m, 5m, 12h -->
<downtime interval="600000" begin="43200000" end="432000000" /><!-- 10m, 12h, 5d -->
<downtime begin="432000000" delete="true" /><!-- anything after 5 days delete -->
</package>

<monitor service="FooP0S" class-name="org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor" />

Example: Ping from a single I0S device routable address of each router of customer Bar

A service provider’s client, Bar Limited, has network service at multiple locations. While OpenNMS' world-class service
assurance is generally sufficient, Bar also wants to be notified any time a premise router at one of their locations
unreachable from the perspective of an IOS device in Bar’s main data center. Some or all of the Bar Limited CPE routers

may be non-Cisco devices in this scenario.

To meet this requirement, our approach is to configure Bar Limited’s premise routers to be in the surveillance categories
Customer_Bar, CPE, and Routers, and to use a filter to create a poller package that applies only to those routers. This time,
though, we will use the special value §{ipaddr} not in the proxy-ip-addr parameter but in the target-ip-addr parameter so
that the remote pings will be performed for each Bar CPE router. Since we want the same IOS device 20.11.5.11 to ping the

CPE routers, we statically list that value for the proxy-ip-addr address. Example "poller-configuration.xml' additions

25

<package name="ciscoping-bar-cpe">
<filter>catincCustomer_Bar & catincCPE & catincRouters</filter>
<include-range begin="0.0.0.0" end="254.254.254.254" />
<rrd step="300">
<rra>RRA:AVERAGE:0.5:1:2016</rra>
<rra>RRA:AVERAGE:0.5:12:1488</rra>
<rra>RRA:AVERAGE:0.5:288:366</rra>
<rra>RRA:MAX:0.5:288:366</rra>
<rra>RRA:MIN:@.5:288:366</rra>
</rrd>
<service name="BarCentral" interval="300000" user-defined="false" status="on">
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
<parameter key="rrd-base-name" value="ciscoping" />
<parameter key="ds-name" value="ciscoping" />
<parameter key="proxy-ip-addr" value="20.11.5.11" />
<parameter key="target-ip-addr" value="${ipaddr}" />
</service>
<downtime interval="30000" begin="0" end="300000" /><!-- 30s, 0, 5m -->
<downtime interval="300000" begin="300000" end="43200000" /><!-- 5m, 5m, 12h -->
<downtime interval="600000" begin="43200000" end="432000000" /><!-- 10m, 12h, 5d -->
<downtime begin="432000000" delete="true" /><!-- anything after 5 days delete -->
</package>

<monitor service="BarCentral" class-name="org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor" />

2.1.6. CitrixMonitor

This monitor is used to test if a Citrix® Server or XenApp Server® is providing the ICA protocol on TCP 1494. The monitor

opens a TCP socket and tests the greeting banner returns with ICA, otherwise the service is unavailable.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CitrixMonitor

Remote Enabled true

Configuration and Usage

Table 12. Monitor specific parameters for the CitrixMonitor
Parameter Description Required Default value

retry Amount of attempts opening optional 0
a connection and try to get
the greeting banner before
the service goes down

timeout Time to wait retrieving the ~ optional 3000 ms
greeting banner ICA from
TCP connectiona before
trying a next attempt.

port TCP port where ICA is optional 1494

listening.

If you have configure the Metaframe Presentation Server Client using Session Reliability, the TCP port
WARNING is 2598 instead of 1494. You can find additional information on CTX104147. It is not verified if the
monitor works in this case.

26

http://support.citrix.com/article/CTX104147

Examples

The following example configures OpenNMS to monitor the ICA protocol on TCP 1494 with 2 retries and waiting 5 seconds

for each retry.

<service name="Citrix-TCP-ICA" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2" />
<parameter key="timeout" value="5000" />

</service>

<monitor service="Citrix-TCP-ICA" class-name="org.opennms.netmgt.poller.monitors.CitrixMonitor" />

2.1.7. DhcpMonitor

This monitor is used to monitor the availability and functionality of DHCP servers. This monitor has two parts, the first one
is the monitor class DhcpMonitor executed by Pollerd and the second part is a background daemon Dhcpd running inside
the OpenNMS JVM and listening for DHCP responses. A DHCP server is tested by sending a DISCOVER message. If the DHCP
server responds with an OFFER the service is marked as up. The Dhcpd background daemon is disabled by default and has
to be activated in 'service-configuration.xml' in OpenNMS by setting service enabled="true". The behavior for testing the

DHCP server can be modified in the 'dhcp-configuration.xml' configuration file.
IMPORTANT It is required to install the opennms-plugin-protocol-dhcp before you can use this feature.
Installing the opennms-plugin-protocol-dhcp package

{apt-get,yum} install opennms-plugin-protocol-dhcp

If you try to start OpenNMS without the opennms-plugin-protocol-dhcp you will see the following error message in

'output.log":

An error occurred while attempting to start the "OpenNMS:Name=Dhcpd" service (class
org.opennms.netmgt.dhepd. jmx.Dhepd). Shutting down and exiting.
java.lang.(ClassNotFoundException: org.opennms.netmgt.dhcpd.jmx.Dhcpd

Make sure no DHCP client is running on the OpenNMS server and using port UDP/68. If UDP/68 is
CAUTION already in use, you will find an error message in the manager.log. You can test if a process is

listening on udp/68 with sudo ss -1lnpu sport = :68.

Monitor facts

Class Name org.opennms.protocols.dhcp.monitor.DhcpMonitor

Remote Enabled false

Table 13. Service monitor parameters configured in ‘poller-configuration.xml'
Parameter Description Required Default value

retry Number of retries before the optional 0
service is marked as down

timeout Time in milliseconds to wait optional 3000
for the DHCP response from
the server

27

http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

Parameter

rrd-repository

rrd-base-name

ds-name

Dhcpd configuration

Description Required

The location to write RRD optional
data. Generally, you will not

want to change this from

default

The name of the RRD file to optional
write (minus the extension,
.rrd or .jrb)

This is the name as reference optional
for this particular data
source in the RRD file

Table 14. Dhcpd parameters in 'dhcp-configuration.xml'.

Parameter

port

macAddress

myIpAddress

Description Required

Defines the port your dhcp required
server is using

The MAC address which required
OpenNMS uses for a dhcp
request

This parameter will usually required
be set to the IP address of the
OpenNMS server,

which puts the DHCP poller
in relay mode as opposed to
broadcast mode.

In relay mode, the DHCP
server being polled will
unicast its responses directly
back to the IP address
specified by myIpAddress
rather than broadcasting its
responses. This allows DHCP
servers to be polled even
though they are not on the
same subnet as the OpenNMS
server, and without the aid
of an external relay.

Usage:

myIpAddress="10.11.12.13" or
myIpAddress="broadcast"

Default value

$OPENNMS_HOME/share/rrd/resp
onse

dhep

dhep

Default value

5818

00:06:0D:BE:9C:B2

broadcast

28

extendedMode When extendedMode is false, required false
the DHCP poller will send a
DISCOVER and expect an
OFFER in return. When
extendedMode is true, the
DHCP poller will first send a
DISCOVER. If no valid
response is received it will
send an INFORM. If no valid
response is received it will
then send a REQUEST.
OFFER, ACK, and NAK are all
considered valid responses
in extendedMode.
Usage: extendedMode="true"
or extendedMode="false"

requestIpAddress This parameter only applies required false
to REQUEST queries sent to
the DHCP server when
extendedMode is true. If an
IP address is specified, that
IP address will be
requested in the query. If
targetHost is specified, the
DHCP server’s own IP
address will be requested.
Since a well-managed server
will probably not respond
to a request for its own IP,
this parameter can also be
set to targetSubnet.
This is similar to targetHost
except the DHCP server’s IP
address is
incremented or decremented
by 1 to obtain an ip address
that is on the same
subnet.
(The resulting address will
not be on the same subnet if
the DHCP server’s
subnet is a /32 or /31.
Otherwise, the algorithm
used should be reliable.)
Usage:
requestIpAddress="10.77.88.9
9" or
requestIpAddress="targetHost

or
requestIpAddress="targetSubn
etll

OpenNMS

Broadcast
255.255.255.255

—— Offer (broadcast mode)

172.23.42.128

Discover >
) Service Up

Figure 6. Visualization of DHCP message flow in broadcast mode

29

OpenNMSs
172.23.42.128

(L— Discover————»

Service Up o Ea e
extended—false -« Offer (relay mode)
If no Offer responds

DHCP Discover———»

Service Down DHCP Discover——»

extended=false | ——— DHCP Inform———»

DHCP inform——»

DHCP inform——»

Request———— @

Reguest————

Service Down Request————»

extended=true ?

Figure 7. Visualization of DHCP message flow in relay mode

Example testing DHCP server in the same subnet

Example configuration how to configure the monitor in the 'poller-configuration.xml'. The monitor will try to send in

maximum 3 DISCOVER messages and waits 3 seconds for the DHCP server OFFER message.

Step 1: Configure a DHCP service in 'poller-configuration.xml’

<service name="DHCP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2" />

<parameter key="timeout" value="3000" />

<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
<parameter key="rrd-base-name" value="dhcp" />

<parameter key="ds-name" value="dhcp" />

</service>

<monitor service="DHCP" class-name="org.opennms.protocols.dhcp.monitor.DhcpMonitor"/>

Step 2: Enable the OpenNMS Dhcpd daemon in 'service-configuration.xml'

<service enabled="true">
<name>0penNMS :Name=Dhcpd</name>
<class-name>org.opennms.netmgt.dhcpd. jmx.Dhcpd</class-name>
<invoke method="start" pass="1" at="start"/>
<invoke method="status" pass="0" at="status"/>
<invoke method="stop" pass="0" at="stop"/>

</service>

Step 3: Configure Dhcpd to test a DHCP server in the same subnet as the OpenNMS server.

<DhcpdConfiguration
port="5818"
macAddress="00:06:0D:BE:9C:B2"
myIpAddress="broadcast
extendedMode="false"
requestIpAddress="127.0.0.1">
</DhcpdConfiguration>

30

Example testing DHCP server in a different subnet in extended mode

You can use the same monitor in 'poller-configuration.xml' as in the example above.

Configure Dhcpd to test DHCP server in a different subnet. The OFFER from the DHCP server is sent to myIpAddress.

<DhcpdConfiguration
port="5818"
macAddress="00:06:0D:BE:9C:B2"
myIpAddress="10.4.1.234"
extendedMode="true"
requestIpAddress="targetSubnet">
</DhcpdConfiguration>

NOTE If in extendedMode, the time required to complete the poll for an unresponsive node is increased by a
factor of 3. Thus it is a good idea to limit the number of retries to a small number.

2.1.8. DiskUsageMonitor

The DiskUsageMonitor monitor can be used to test the amount of free space available on certain storages of a node.

The monitor gets information about the available free storage spaces available by inspecting the hrStorageTable of the
HOST-RESOURCES-MIB.

A storage’s description (as found in the corresponding hrStorageDescr object) must match the criteria specified by the disk

and match-type parameters to be monitored.
A storage’s available free space is calculated using the corresponding hrStorageSize and hrStorageUsed objects.

This monitor uses SNMP to accomplish its work. Therefore systems against which it is to be used must have an SNMP agent
supporting the HOST-RESOURCES-MIB installed and configured. Most modern SNMP agents, including most distributions of
the Net-SNMP agent and the SNMP service that ships with Microsoft Windows, support this MIB. Out-of-box support for
HOST-RESOURCES-MIB among commercial Unix operating systems may be somewhat spotty.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DiskUsageMonitor

Remote Enabled false, relies on SNMP configuration.

Configuration and Usage

Table 15. Monitor specific parameters for the DiskUsageMonitor
Parameter Description Required Default value

disk A pattern that a storage’s required -
description (hrStorageDescr)
must match to be taken into
account.

free The minimum amount of optional 15
free space that storages
matching the criteria must
have available.
This parameter is evaluated
as a percent of the storage’s
reported maximum capacity.

31

http://tools.ietf.org/html/rfc1514

Parameter

match-type

port

retries

retry

timeout

Examples

Description

The way how the pattern
specified by the disk
parameter must be
compared to storages'
description

Must be one of the following
symbolic operators:

endswith :The disk
parameter’s value is
evaluated as a string that
storages' description
must end with;

exact :Thedisk’
parameter’s value is
evaluated as a string that
storages" description
must exactly match;

regex :Thedisk
parameter’s value is
evaluated as a regular
expression that storages'
description must match;

startswith: The disk
parameter’s value is
evaluated as a string that
storages' description
must start with.

Note: Comparisons are case-
sensitive

Destination port where the
SNMP requests shall be sent.

Deprecated.

Same as retry.

Parameter retry takes
precedence when both are
set.

Number of polls to attempt.

Timeout in milliseconds for
retrieving the values.

Required

optional

optional

optional

optional

optional

Default value

exact

*from snmp-config.xml'

from snmp-config.xml

from snmp-config.xml

from snmp-config.xml

<!-- Make sure there's at least 5% of free space available on storages ending with "/home" -->
<service name="DiskUsage-home" interval="300000" user-defined="false" status="on">

<parameter
<parameter
<parameter
<parameter
<parameter
</service>

key="timeout" value="3000" />
key="retry" value="2" />

key="disk" value="/home" />
key="match-type" value="endsWith" />
key="free" value="5" />

<monitor service="DiskUsage-home" class-name="org.opennms.netmgt.poller.monitors.DiskUsageMonitor" />

32

DiskUsageMonitor vs thresholds

Storages' available free space can also be monitored using thresholds if you are already collecting these data.

2.1.9. DnsMonitor

This monitor is build to test the availability of the DNS service on remote IP interfaces. The monitor tests the service

availability by sending a DNS query for A resource record types against the DNS server to test.

The monitor is marked as up if the DNS Server is able to send a valid response to the monitor. For multiple records it is

possible to test if the number of responses are within a given boundary.

The monitor can be simulated with the command line tool host:

~ % host -v -t a www.google.com 8.8.8.8
Trying "www.google.com"

Using domain server:

Name: 8.8.8.8

Address: 8.8.8.8#53

Aliases:

;7 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9324
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: @, ADDITIONAL: 0

;7 QUESTION SECTION:
;www.google.com.INA

;+ ANSWER SECTION:

www.google.com.283INA74.125.232.17
www.google.com.283INA74.125.232.20
www.google.com.283INA74.125.232.19
www.google.com.283INA74.125.232.16
www.google.com.283INA74.125.232.18

Received 112 bytes from 8.8.8.8#53 in 41 ms

TIP: This monitor is intended for testing the availability of a DNS service. If you want to monitor the DNS resolution of

some of your nodes from a client’s perspective, please use the DNSResolutionMonitor.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DnsMonitor

Remote Enabled true

Configuration and Usage

Table 16. Monitor specific parameters for the DnsMonitor
Parameter Description Required Default value

retry Number of retries before the optional 0
service is marked as down

timeout Time in milliseconds to wait optional 5000
for the A Record response
from the server

port UDP Port for the DNS server optional 53

33

Parameter Description Required Default value
Lookup DNS A Record for lookup test optional localhost

fatal-response-codes A comma-separated list of ~ optional 2
numeric DNS response codes
that will be considered fatal
if
present in the server’s
response. Default value is 2
corresponds to Server Failed.
A
list of codes and their
meanings is found in RFC
2929

min-answers Minmal number of records optional -
in the DNS server respone
for the given lookup

max-answers Maximal number of records optional -
in the DNS server respone
for the given lookup

Examples

The given examples shows how to monitor if the IP interface from a given DNS server resolves a DNS request. This service
should be bound to a DNS server which should be able to give a valid DNS respone for DNS request www.google.com. The

service is up if the DNS server gives between 1 and 10 A record responses.

Example configuration monitoring DNS request for a given server for www.google.com

<service name="DNS-www.google.com" interval="300000" user-defined="false" status="on">
<parameter key="lookup" value="www.google.com" />
<parameter key="fatal-response-code" value="2" />
<parameter key="min-answers" value="1" />
<parameter key="max-answers" value="10" />
</service>

<monitor service="DNS-www.google.com" class-name="org.opennms.netmgt.poller.monitors.DnsMonitor" />

2.1.10. DNSResolutionMonitor

The DNS resolution monitor, tests if the node label of an OpenNMS node can be resolved. This monitor uses the name
resolver configuration from the operating system where OpenNMS is running on. It can be used to test a client behavior for
a given host name. For example: Create a node with the node label www.google.com and an IP interface. Assigning the DNS
resolution monitor on the IP interface will test if www.google.com can be resolved using the DNS configuration of the
underlying operating system. The response from the A record lookup can be any address, it is not verified with the IP

address on the OpenNMS IP interface where the monitor is assigned to.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DNSResolutionMonitor

Remote Enabled true

Configuration and Usage

Table 17. Monitor specific parameters for the DNSResolutionMonitor

34

http://tools.ietf.org/html/rfc2929
http://tools.ietf.org/html/rfc2929

Parameter

resolution-type

retry

timeout

Examples

Description Required

Type of record for the node optional
label test.

Allowed values
v4 for A records,
v6 for AAAA record,

both A and AAAA record
must be available,

either A or AAAA record
must be available.

Amount of attempts to required
resolve the node label before
the service goes down

Time to wait for a A and/or required
AAAA record from the

system configured DNS

server before trying a next

attempt.

Default value

either

The following example shows the possibilities monitoring IPv4 and/or IPv6 for the service configuration:

35

<!-- Assigned service test if the node label is resolved for an A record -->

<service name="DNS-Resolution-v4" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="resolution-type" value="v4"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="dns-res-v4"/>
<parameter key="ds-name" value="dns-res-v4"/>

</service>

<!-- Assigned service test if the node label is resolved for an AAAA record -->
<service name="DNS-Resolution-v6" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="resolution-type" value="v6"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="dns-res-v6"/>
<parameter key="ds-name" value="dns-res-v6"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record AND A record -->
<service name="DNS-Resolution-v4-and-v6" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="resolution-type" value="both"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="dns-res-both"/>
<parameter key="ds-name" value="dns-res-both"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record OR A record -->
<service name="DNS-Resolution-v4-or-v6" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="resolution-type" value="either"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="dns-res-either"/>
<parameter key="ds-name" value="dns-res-either"/>
</service>

<monitor service="DNS-Resolution-v4" class-name="org.opennms.netmgt.poller.monitors.DNSResolutionMonitor"
/>

<monitor service="DNS-Resolution-v6" class-name="org.opennms.netmgt.poller.monitors.DNSResolutionMonitor"
/>

<monitor service="DNS-Resolution-v4-and-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />

<monitor service="DNS-Resolution-v4-or-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />

To have response time graphs for the name resolution you have to configure RRD graphs for the given ds-names (dns-res-
vd, dns-res-v6, dns-res-both, dns-res-either) in 'SOPENNMS_HOME/etc/response-graph.properties'.

DNSResolutionMonitor vs DnsMonitor

The DNSResolutionMonitor is used to measure the availability and record outages of a name resolution from client
perspective. The service is mainly used for websites or similar public available resources. It can be used in combination
with the Page Sequence Monitor to give a hint if a website isn’t available for DNS reasons.

The DnsMonitor on the other hand is a test against a specific DNS server. In OpenNMS the DNS server is the node and the

36

DnsMonitor will send a lookup request for a given A record to the DNS server IP address. The service goes down if the DNS

server doesn’t have a valid A record in his zone database or as some other issues resolving A records.

2.1.11. FtpMonitor

The FtpMonitor is able to validate ftp connection dial-up processes. The monitor can test ftp server on multiple ports and

specific login data.

The service using the FtpMonitor is up if the FTP server responds with return codes between 200 and 299. For special cases

the service is also marked as up for 425 and 530.

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

org.opennms.netmgt.poller.monitors.FtpMonitor

true

Table 18. Monitor specific parameters for the FtpMonitor.

Parameter

retry

timeout

port

password

userid

Examples

Some example configuration how to configure the monitor in the 'poller-configuration.xml'

37

Description Required

Number of attempts to geta optional
valid FTP response/response-
text

Timeout in milliseconds for optional
TCP connection
establishment.

Alist of TCP ports to which ~ optional
connection shall be tried.

This parameter is meantto optional
be used together with the
user parameter to perform
basic

authentication. This
parameter specify to
password to be used. The
user and password
parameters are ignored
when the basic-
authentication parameter is
defined.

This parameter is meantto optional
be used together with the
password parameter to
perform

basic authentication. This
parameter specify to user ID
to be used. The userid and
password parameters are
ignored when the basic-
authentication parameter is
defined.

Default value

0

3000

20,21

empty string

<service name="FTP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>

<parameter key="timeout" value="3000"/>

<parameter key="port" value="21"/>

<parameter key="userid" value=""/>

<parameter key="password" value=""/>

</service>

<service name="FTP-Customer" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>

<parameter key="timeout" value="3000"/>

<parameter key="port" value="21"/>

<parameter key="userid" value="Customer"/>

<parameter key="password" value="MySecretPassword"/>

</service>

<monitor service="FTP" class-name="org.opennms.netmgt.poller.monitors.FtpMonitor"/>
<monitor service="FTP-Customer" class-name="org.opennms.netmgt.poller.monitors.FtpMonitor"/>
Hint
Comment from FtpMonitor source

Also want to accept the following ERROR message generated by some FTP servers following a QUIT command without a

previous successful login: "530 QUIT : User not logged in. Please login with USER and PASS first."

Also want to accept the following ERROR message generated by some FTP servers following a QUIT command without a

previously successful login: "425 Session is disconnected.”

See also: http://tools.ietf.org/html/rfc959

2.1.12. HostResourceSwRunMonitor

This monitor test the running state of one or more processes. It does this via SNMP by inspecting the hrSwRunTable of the
HOST-RESOURCES-MIB. The test is done by matching a given process as hrSwRunName against the numeric value of the
hrSwRunState.

This monitor uses SNMP to accomplish its work. Therefore systems against which it is to be used must have an SNMP agent
installed and configured. Furthermore, the SNMP agent on the system must support the HOST-RESOURCES-MIB. Most
modern SNMP agents, including most distributions of the Net-SNMP agent and the SNMP service that ships with Microsoft
Windows, support this MIB. Out-of-box support for HOST-RESOURCES-MIB among commercial Unix operating systems may

be somewhat spotty.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HostResourceSwRunMonit
or
Remote Enabled false

Configuration and Usage

Table 19. Monitor specific parameters for the HostResourceSwRunMonitor

38

http://tools.ietf.org/html/rfc959
http://www.ietf.org/rfc/rfc2790

Parameter

port

retry

timeout

service-name

match-all

run-level

service-name-oid

39

Description Required

The port of the SNMP agent optional
of the server to test.

Number of attempts to geta optional
valid response before
marking the service as down.

Timeout in milliseonds optional
wating for the SNMP

response for the process run

state from the

agent.

The name of the processto required
be monitored. This

parameter’s value is case-

sensitive and is

evaluated as an exact match.

If the process name appears optional
multiple times in the

hrSwRunTable, and this

parameter is set to

true, then all instances of the

named process must match

the value specified for

run-level.

The maximum allowable optional
value of hrSWRunStatus
among

running(1),

runnable(2) = waiting for
resource

notRunnable(3) = loaded but
waiting for event

invalid(4) = not loaded

The numeric object identifier optional
(OID) from which process
names are queried. Defaults
to

hrSwRunName and should
never be changed under
normal

circumstances. That said,
changing it to
hrSwRunParameters
(.1.3.6.1.2.1.25.4.2.1.5) is
often helpful when dealing
with processes running
under Java Virtual Machines
which all have

the same process name java.

Default value

from snmp-config.xml

from snmp-config.xml

from snmp-config.xml

false

.1.3.6.1.2.1.25.4.2.1.2

Parameter Description Required Default value

service-status-oid The numeric Object identifier Optional .1.3.6.1.2.1.25.4.2.1.7
(OID) from which run status
is queried. Defaults to
hrSwRunStatus and should
never be changed under
normal circumstances.

Examples

The following example shows how to monitor the process called httpd running on a server using this monitor. The

configuration in 'poller-configuration.xml' has to be defined as the following:

<service name="Process-httpd" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>
<parameter key="timeout" value="3000"/>
<parameter key="service-name" value="httpd"/><1>
<parameter key="run-level" value="3"/><2>
<parameter key="match-all" value="true"/><3>
</service>

<monitor service="Process-httpd" class-name="org.opennms.netmgt.poller.monitors.HostResourceSwRunMonitor
"/>

@ Name of the process on the system
@ Test the state if the process is in a valid state, i.e. have a run-level no higher than notRunnable(3)

® If the httpd process runs multiple times the test is done for each instance of the process.

2.1.13. HttpMonitor

The HTTP monitor tests the response of an HTTP server on a specific HTTP 'GET' command. During the poll, an attempt is
made to connect on the specified port(s). The monitor can test web server on multiple ports. By default the a test is made
against port 80, 8080 and 8888. If the connection request is successful, an HTTP 'GET' command is sent to the interface. The

response is parsed and a return code extracted and verified.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpMonitor

Remote Enabled true

Configuration and Usage

Table 20. Monitor specific parameters for the HttpMonitor

40

Parameter

basic-authentication

header[0-9]+

host-name

nodelabel-host-name

41

Description Required

Authentication credentials to optional
perform basic
authentication.

Credentials should comply to
RFC1945 section 11.1,
without the Base64 encoding
part.

That’s: be a string made of
the concatenation of:

1- the user ID;
2- a colon;
3- the password.

basic-authentication takes
precedence over the user and
password parameters.

Additional headers to be sent optional
along with the request.

Example of valid parameter’s
names are

header®, header1 and
header180. header is not a
valid parameter name.

Specify the Host header’s optional
value.

If the host-name parameter optional
isn’t set and the resolve-ip
parameter is set to false,

then OpenNMS will use the
node’s label to set the Host
header’s value if this
parameter

is set to true. Otherwise,
OpenNMS will fall back using
the node interface’s IP
address

as Host header value.

Default value

false

http://www.rfc-editor.org/rfc/rfc1945.txt

Parameter

password

port

retry

resolve-ip

response

Description Required

This parameter is meantto optional
be used together with the

user parameter to perform

basic

authentication. This
parameter specify to
password to be used. The
user and password

parameters are ignored
when the basic-
authentication parameter is
defined.

Alist of TCP ports to which ~ optional
connection shall be tried.

Number of attempts to geta optional
valid HTTP
response/response-text

If the host-name parameter optional
isn’t set and this parameter is
set to true, OpenNMS will

use DNS to resolve the node
interface’s IP address, and
use the result to set the Host

header’s value. When set to
false and the host-name
parameter isn’t set,
OpenNMS will

try to use the nodelabel-host-
name parameter to set the
Host header’s value.

A comma-separated list of optional
acceptable HTTP response

code ranges.

Example: 200-202,299

Default value

empty string

80,8080,8888

false

If the url parameter is set to
/, the default

value for this parameter is
100-499, otherwise it’s 100-
399.

42

Parameter

response-text

timeout

url

user

user-agent

verbose

Examples

43

Description Required

Text to look for in the optional
response body. This will be

matched against every line,

and it

will be considered a success
at the first match. If thereis a
~ at the beginning of

the parameter, the rest of the
string will be used as a
regular expression pattern
match,

otherwise the match will be a
substring match. The regular
expression match is
anchored

at the beginning and end of
the line, so you will likely
need to put a .* on both sides

of your pattern unless you
are going to be matching on
the entire line.

Timeout in milliseconds for optional
TCP connection
establishment.

URL to be retrieved via the optional
HTTP 'GET' command

This parameter is meantto optional
be used together with the

password parameter to

perform

basic authentication. This
parameter specify to user ID
to be used. The user and

password parameters are
ignored when the basic-
authentication parameter is
defined.

Allows you to set the User- optional
Agent HTTP header (see also
RFC2616 section 14.43).

When set to true, full optional
communication between

client and the webserver will

be logged

(with a log level of DEBUG).

Default value

3000

OpenNMS HttpMonitor

http://www.rfc-editor.org/rfc/rfc2616.txt

<!-- Test HTTP service on port 80 only -->
<service name="HTTP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="80"/>
<parameter key="url" value="/"/>
</service>

<!-- Test for virtual host opennms.com running -->
<service name="OpenNMSdotCom" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="80"/>
<parameter key="host-name" value="opennms.com"/>
<parameter key="url" value="/solutions"/>
<parameter key="response" value="200-202,299"/>
<parameter key="response-text" value="~.*[Cc]onsulting.*"/>
</service>

<!-- Test for instance of OpenNMS 1.2.9 running -->
<service name="OpenNMS-129" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="8080"/>
<parameter key="url" value="/opennms/event/list"/>
<parameter key="basic-authentication" value="admin:admin"/>
<parameter key="response" value="200"/>
</service>

<monitor service="HTTP" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor" />
<monitor service="OpenNMSdotCom" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor" />
<monitor service="0penNMS-129" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor" />

Testing filtering proxies with HttpMonitor

If you have a filtering proxy server that is supposed to allow retrieval of some URLs but deny others, you can use the

HttpMonitor to verify this behavior.

Let’s say that our proxy server is running on TCP port 3128, and that we should always be able to retrieve
http://www.opennms.org/ but never http://www.myspace.com/ (hey, this is a workplace after all!). To test this behaviour,

one could create the following service monitors:

http://www.opennms.org/
http://www.myspace.com/

<service name="HTTP-Allow-opennms.org" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="3128"/>
<parameter key="url" value="http://www.opennms.org/"/>
<parameter key="response" value="200-399"/>
</service>

<service name="HTTP-Block-myspace.com" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="3128"/>
<parameter key="url" value="http://www.myspace.com/"/>
<parameter key="response" value="400-599"/>
</service>

<monitor service="HTTP-Allow-opennms.org" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor"/>
<monitor service="HTTP-Block-myspace.com" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor"/>
2.1.14. HttpPostMonitor

If it is required to HTTP POST any arbitrary content to a remote URI, the HttpPostMonitor can be used. A use case is to
HTTP POST to a SOAP endpoint.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpPostMonitor

Remote Enabled false

Configuration and Usage

Table 21. Monitor specific parameters for the HttpPostMonitor

Parameter Description Required Default value

payload The body of the POST, for required -
example properly escaped
XML.

auth-password The password to use for optional -
HTTP BASIC auth.

auth-username The username to use for optional -
HTTP BASIC auth.

banner A string that is matched optional -
against the response of the
HTTP POST.

If the output contains the
banner, the service is
determined as up.

Specify a regex by starting

with ~.

charset Set the character set for the optional UTF-8
POST.

mimetype Set the mimetype for the optional text/xml
POST.

45

Parameter Description
port The port for the web server
where the POST is send to.
scheme The connection scheme to
use.
usesslfilter Enables or disables the SSL
ceritificate validation. true -
false
uri The uri to use during the
POST.
Examples

The following example would create a POST that contains the payload Word.

<service name="MyServlet" interval="300000" user-defined="false" status="on">

<parameter key="banner" value="Hello"/>

<parameter key="port" value="8080"/>

<parameter key="uri" value="/MyServlet">

<parameter key="payload" value="World"/>

<parameter key="retry" value="1"/>

<parameter key="timeout" value="30000"/>
</service>

Required

optional

optional

optional

optional

Default value

80

http

false

<monitor service="MyServlet" class-name="org.opennms.netmgt.poller.monitors.HttpPostMonitor"/>

The resulting POST looks like this:

POST /MyServlet HTTP/1.1
Content-Type: text/xml; charset=utf-8
Host: <ip_addr_of_interface>:8080
Connection: Keep-Alive

World

2.1.15. HttpsMonitor

The HTTPS monitor tests the response of an SSL-enabled HTTP server. The HTTPS monitor is an SSL-enabled extension of

the HTTP monitor with a default TCP port value of 443. All HttpMonitor parameters apply, so please refer to HttpMonitor’s

documentation for more information.

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

Table 22. Monitor specific parameters for the HttpsMonitor
Parameter Description

port A list of TCP ports to which
connection shall be tried.

org.opennms.netmgt.poller.monitors.HttpsMonitor

true

Required

optional

Default value

443

46

Examples

<!-- Test HTTPS service on port 8443 -->
<service name="HTTPS" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="8443"/>
<parameter key="url" value="/"/>
</service>

<monitor service="HTTPS" class-name="org.opennms.netmgt.poller.monitors.HttpsMonitor" />

2.1.16. IcmpMonitor

The ICMP monitor tests for ICMP service availability by sending echo request ICMP messages. The service is considered
available when the node sends back an echo reply ICMP message within the specified amount of time.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.IcmpMonitor

Remote Enabled true with some restrictions (see helow)

Configuration and Usage

Table 23. Monitor specific parameters for the IcmpMonitor

Parameter Description Required Default value
packet-size Number of bytes of the ICMP optional 64
packet to send.
retry Number of attempts to geta optional 2
response.
timeout Time in milliseconds to wait optional 800

for a response.

Examples

<service name="ICMP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="icmp"/>
<parameter key="ds-name" value="icmp"/>
</service>
<monitor service="ICMP" class-name="org.opennms.netmgt.poller.monitors.IcmpMonitor"/>

Note on Remote Poller

The IcmpMonitor needs the JNA ICMP implementation to function on remote poller. Though, corner cases exist where the
IcmpMonitor monitor won’t work on remote poller. Examples of such corner cases are: Windows when the remote poller
isn’t running has administrator, and Linux on ARM / Rasperry Pi. JNA is the default ICMP implementation used in the

remote poller.

47

2.1.17. ImapMonitor

This monitor checks if an IMAP server is functional. The test is done by initializing a very simple IMAP conversation. The

ImapMonitor establishes a TCP connection, sends a logout command and test the IMAP server responses.

The behavior can be simulated with telnet:

telnet mail.myserver.de 143

Trying 62.108.41.197...

Connected to mail.myserver.de.

Escape character is 'A]'.

* 0K [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE IDLE STARTTLS LOGINDISABLED] Dovecot

ready.

ONMSPOLLER LOGOUT

* BYE Logging out

ONMSPOLLER OK Logout completed.

Connection closed by foreign host.
@ Test IMAP server banner, it has to start * 0K to be up
@ Sending a ONMSPOLLER LOGOUT

® Test server responds with, it has to start with * BYE to be up

If one of the tests in the sample above fails the service is marked down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.ImapMonitor

Remote Enabled false

Configuration and Usage

Table 24. Monitor specific parameters for the ImapMonitor

Parameter Description Required Default value
retry Number of attempts to geta optional 0

valid IMAP response
timeout Time in milliseconds to wait optional 3000

retrieving the banner from
TCP connection before trying
a next attempt.

port The port of the IMAP server. optional 143

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml

48

<!-- Test IMAP service on port 143 only -->

<service name="IMAP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="port" value="143"/>
<parameter key="timeout" value="3000"/>

</service>

<monitor service="IMAP" class-name="org.opennms.netmgt.poller.monitors.ImapMonitor" />

2.1.18. JCifsMonitor

This monitor allows to test a file sharing service based on the CIFS/SMB protocol.

This monitor is not installed by default. You have to install opennmms-plugin-protocol-cifs from your
WARNING , , .
OpenNMS installation repository.

With the JCIFS monitor you have different possibilities to test the availability of the JCIFS service:
With the JCifsMonitor it is possible to run tests for the following use cases:
 share is available in the network
* agiven file exists in the share
» a given folder exists in the share
* agiven folder should contain at least one (1) file
 agiven folder folder should contain no (0) files
* by testing on files and folders, you can use a regular expression to ignore specific file and folder names from the test

A network resource in SMB like a file or folder is addressed as a UNC Path.

\\server\share\folder\file.txt

The Java implementation jCIFS, which implements the CIFS/SMB network protocol, uses SMB URLs to access the network
resource. The same resource as in our example would look like this as an SMB URL:

smb://workgroup;user:password@server/share/folder/file.txt

The JCifsMonitor can not test:
» file contains specific content
¢ aspecific number of files in a folder, for example folder should contain exactly / more or less than x files
» Age or modification time stamps of files or folders

* Permissions or other attributes of files or folders

49

https://en.wikipedia.org/wiki/Path_%28computing%29#Uniform_Naming_Convention
http://www.iana.org/assignments/uri-schemes/prov/smb

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

org.opennms.netmgt.poller.monitors.JCifsMonitor

false

Table 25. Monitor specific parameters for the JCifsMonitor

Parameter

retry

timeout

domain

username

password

path

mode

smbHost

folderIgnoreFiles

TIP It makes little sense to have retries higher than 1.

Description Required

Number of retries before the optional
service is marked as down.

Time in milliseconds to wait optional
for the SMB service.

Windows domain where the optional
user is located. You don’t

have to use the domain

parameter if you use

local user accounts.

Username to access the optional
resource over a network

Password for the user optional

Path to the resource you required
want to test

The test mode which has the optional
following options

path_exist: Service is up if
the resource is accessible

path_not_exist: Service is up
if the resource is not
accessible

folder_empty: Service is up if
the folder is empty (O files)

folder_not_empty: Service is
up if the folder has at least
one file

Override the IP address of optional
the SMB url to check shares
on different file servers.

Ignore specific files in folder optional
with regular expression. This
parameter will just be

applied on

folder_empty and

folder_not_empty, otherwise

it will be ignored.

Default value

0

3000

empty String

empty String

empty String

empty String

path_exist

empty String

It is a waste of resources during the monitoring.

50

Please consider, if you are accessing shares with Mac OSX you have some side effects with the hidden file
TIP "DS_Store.' It could give you false positives in monitoring, you can use then the folderIgnoreFiles

parameter.

Example test existence of a file

This example shows how to configure the JCifsMonitor to test if a file share is available over a network. For this example
we have access to a share for error logs and we want to get an outage if we have any error log files in our folder. The share
is named 'log'. The service should go back to normal if the error log file is deleted and the folder is empty.

JCifsMonitor configuration to test that a shared folder is empty

<service name="CIFS-ErrorLog" interval="30000" user-defined="true" status="on">
<parameter key="retry" value="1" />
<parameter key="timeout" value="3000" />
<parameter key="domain" value="contoso" /><1>
<parameter key="username" value="MonitoringUser" /><2>
<parameter key="password" value="MonitoringPassword" /><3>
<parameter key="path" value="/fileshare/log/" /><4>
<parameter key="mode" value="folder_empty" /><5>
</service>

<monitor service="CIFS-ErrorLog" class-name="org.opennms.netmgt.poller.monitors.JCifsMonitor" />
@ Name of the SMB or Microsoft Windows Domain
@ User for accessing the share
® Password for accessing the share

@ Path to the folder inside of the share as part of the SMB URL

® Mode is set to folder_empty

2.1.19. JDBCMonitor

The JDBCMonitor checks that it is able to connect to a database and checks if it is able to get the database catalog from that
database management system (DBMS). It is based on the JDBC technology to connect and communicate with the database.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCMonitor

Remote Enabled true

Configuration and Usage

Table 26. Monitor specific parameters for the JDBCMonitor

Parameter Description Required Default value

driver JDBC driver class to use required \clce)r:.sybase .jdbc2. jdbe. SybDri

url JDBC Url to connect to. required jdbe:sybase:Tds:OPENNMS_JDBC
_HOSTNAME/tempdb

user Database user required sa

password Database password required empty string

51

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Parameter Description Required Default value

timeout Timeout in ms for the optional 3000
database connection

retries How many retries should be optional 0
performed before failing the
test

The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter the IP or resolved hostname of the

interface the monitored service is assigned to.

NOTE

Provide the database driver

The JDBCMonitor is based on JDBC and requires a JDBC driver to communicate with any database. Due to the fact that
OpenNMS itself uses a PostgreSQL database, the PostgreSQL JDBC driver is available out of the box. For all other database
systems a compatible JDBC driver has to be provided to OpenNMS as a jar-file. To provide a JDBC driver place the driver-jar
in the opennms/1ib folder of your OpenNMS. To use the JDBCMonitor from a remote poller, the driver-jar has to be provided
to the Remote Poller too. This may be tricky or impossible when using the Java Webstart Remote Poller, because of code

signing requirements.

Examples

The following example checks if the PostgreSQL database used by OpenNMS is available.

<service name="0OpenNMS-DBMS" interval="30000" user-defined="true" status="on">
<parameter key="driver" value="org.postgresql.Driver"/>
<parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
<parameter key="user" value="opennms"/>
<parameter key="password" value="opennms"/>

</service>

<monitor service="OpenNMS-DBMS" class-name="org.opennms.netmgt.poller.monitors.JDBCMonitor" />

2.1.20. J]DBCStoredProcedureMonitor

The JDBCStoredProcedureMonitor checks the result of a stored procedure in a remote database. The result of the stored
procedure has to be a boolean value (representing true or false). The service associated with this monitor is marked as up
if the stored procedure returns true and it is marked as down in all other cases. It is based on the JDBC technology to

connect and communicate with the database.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCStoredProcedureMon
itor
Remote Enabled false

Configuration and Usage

Table 27. Monitor specific parameters for the JDBCStoredProcedureMonitor

Parameter Description Required Default value
driver IDBC driver class to use required com.sybase.jdch.jdbc.Sberi
ver

52

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Parameter Description Required Default value

url JDBC Url to connect to. required jdbc:sybase:Tds:OPENNMS_JDBC
_HOSTNAME/tempdb

user Database user required Sa

password Database password required empty string

timeout Timeout in ms for the optional 3000

database connection

retries How many retries should be optional 0
performed before failing the
test

stored-procedure Name of the database stored required -

procedure to call

schema Name of the database optional test
schema in which the stored
procedure is

The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter the IP or resolved hostname of the

interface the monitored service is assigned to.

NOTE

Provide the database driver

The JDBCStoredProcedureMonitor is based on JDBC and requires a JDBC driver to communicate with any database. Due to
the fact that OpenNMS itself uses a PostgreSQL database, the PostgreSQL JDBC driver is available out of the box. For all
other database systems a compatible JDBC driver has to be provided to OpenNMS as a jar-file. To provide a JDBC driver
place the driver-jar in the opennms/1ib folder of your OpenNMS. To use the JDBCStoredProcedureMonitor from a remote
poller, the driver-jar has to be provided to the Remote Poller too. This may be tricky or impossible when using the Java

Webstart Remote Poller, because of code signing requirements.

Examples

The following example checks a stored procedure added to the PostgreSQL database used by OpenNMS. The stored

procedure returns true as long as less than 250000 events are in the events table of OpenNMS.

Stored procedure

CREATE OR REPLACE FUNCTION eventlimit_sp() RETURNS boolean AS
$BODY$DECLARE

num_events integer;

BEGIN

SELECT COUNT(*) into num_events from events;

RETURN num_events > 250000;

END; $BODY$

LANGUAGE plpgsql VOLATILE NOT LEAKPROOF

COST 100;

53

<service name="0OpenNMS-DB-SP-Event-Limit" interval="300000" user-defined="true" status="on">

<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
</service>

key="driver" value="org.postgresql.Driver"/>
key="ur1" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
key="user" value="opennms"/>

key="password" value="opennms"/>
key="stored-procedure" value="eventlimit_sp"/>
key="schema" value="public"/>

<monitor service="0penNMS-DB-SP-Event-Limit" class-name=

"org.opennms.netmgt.poller.monitors.JDBCStoredProcedureMonitor”/>

2.1.21. JDBCQueryMonitor

The JDBCQueryMonitor runs an SQL query against a database and is able to verify the result of the query. A read-only

connection is used to run the SQL query, so the data in the database is not altered. It is based on the JDBC technology to

connect and communicate with the database.

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

org.opennms.netmgt.poller.monitors.JDBCQueryMonitor

false

Table 28. Monitor specific parameters for the JDBCQueryMonitor

Parameter

driver

url

user
password

query

action

column

operator

operand

message

timeout

Description

JDBC driver class to use

JDBC URL to connect to.

Database user
Database password
The SQL query to run

What evaluation action to
perform

The result column to
evaluate against

Operator to use for the
evaluation

The operand to compare
against the SQL query result

The message to use if the
service is down.

Both operands and the
operator are added to the
message too.

Timeout in ms for the
database connection

Required

required

required

required
required
required

required

optional

required

required

optional

optional

Default value

com.sybase.jdbc2.jdbe.SybDri
ver

jdbe:sybase:Tds:OPENNMS_JDBC
_HOSTNAME/tempdb

Sa

empty string

row_count

depends on the action

generic message depending
on the action

3000

54

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Parameter Description Required Default value

retries How many retries should be optional 0
performed before failing the
test

The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or resolved hostname of
the interface the monitored service is assigned to.

NOTE

Table 29. Available action parameters and their default operand

Parameter Description Default operand
row_count The number of returned rows is 1

compared, not a value of the resulting

rows
compare_string Strings are always checked for equality -

with the operand

compare_int An integer from a column of the first 1
result row is compared

Table 30. Available operand parameters

Parameter XML entity to use in XML configs
< <
> >
I= I=
<=
>= =

Evaluating the action - operator - operand

Only the first result row returned by the SQL query is evaluated. The evaluation can be against the value of one column or
the number of rows returned by the SQL query.

Provide the database driver

The JDBCQueryMonitor is based on JDBC and requires a JDBC driver to communicate with any database. Due to the fact
that OpenNMS itself uses a PostgreSQL database, the PostgreSQL JDBC driver is available out of the box. For all other
database systems a compatible JDBC driver has to be provided to OpenNMS as a jar-file. To provide a JDBC driver place the
driver-jar in the opennms/1ib folder of your OpenNMS. To use the JDBCQueryMonitor from a remote poller, the driver-jar has
to be provided to the Remote Poller too. This may be tricky or impossible when using the Java Webstart Remote Poller,
because of code signing requirements.

Examples

The following example checks if the number of events in the OpenNMS database is fewer than 250000.

55

<service name="OpenNMS-DB-Event-Limit" interval="30000" user-defined="true" status="on">
key="driver" value="org.postgresql.Driver"/>
key="ur1" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>

<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
</service>

<monitor service="0OpenNMS-DB-Event-Limit" class-name="org.opennms.netmgt.poller.monitors.JDBCQueryMonitor"

/>

key="user" value="opennms"/>
key="password" value="opennms"/>

key="query" value="select eventid from events" />

key="action" value="row_count" />
key="operand" value="250000" />

key="operator" value="<" />

key="message" value="too many events in OpenNMS database" />

2.1.22. JolokiaBeanMonitor

The JolokiaBeanMonitor is a JMX monitor specialized for the use with the Jolokia framework. If it is required to execute a

method via JMX or poll an attribute via JMX, the JolokiaBeanMonitor can be used. It requires a fully installed and

configured Jolokia agent to be deployed in the JVM container. If required it allows attribute names, paths, and method

parameters to be provided additional arguments to the call. To determine the status of the service the JolokiaBeanMonitor

relies on the output to be matched against a banner. If the banner is part of the output the status is interpreted as up. If the

banner is not available in the output the status is determined as down. Banner matching supports regular expression and

substring match.

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

org.opennms.netmgt.poller.monitors.JolokiaBeanMonitor

false

Table 31. Monitor specific parameters for the JolokiaBeanMonitor

Parameter

beanname

attrname

attrpath

auth-username

auth-password

banner

Description

The bean name to query
against.

The name of the JMX
attribute to scrape.

The attribute path.

The username to use for
HTTP BASIC auth.

The password to use for
HTTP BASIC auth.

A string that is match against
the output of the system-call.
If the output contains the
banner,

the service is determined as
up. Specify a regex by
starting with ~.

Required

required

optional (attrname or
methodname must be set)
optional

optional

optional

optional

Default value

56

http://www.jolokia.org

Parameter Description Required Default value

input1 Method input optional -
input2 Method input optional =
methodname The name of the bean optional (attrname or -

method to execute, output methodname must be set)
will be compared to banner.

port The port of the jolokia agent. optional 8080
url The jolokia agent url. optional -
Defaults to
"http://<ipaddr>:<port>/joloki
Q"

Table 32. Variables which can be used in the configuration

Variable Description

${ipaddr} IP-address of the interface the service is bound to.
${port} Port the service it bound to.
Examples

Some example configuration how to configure the monitor in the poller-configuration.xml

<parameter key="url" value="http://${ipaddr}:${port}/jolokia"/>
<parameter key="url" value="https://${ipaddr}:${port}/jolokia"/>

AttrName vs MethodName

The JolokiaBeanMonitor has two modes of operation. It can either scrape an attribute from a bean, or execute a method
and compare output to a banner. The method execute is useful when your application has it’s own test methods that you
would like to trigger via OpenNMS.

The args to execute a test method called "superTest" that take in a string as input would look like this:

<parameter key="beanname" value="MyBean" />
<parameter key="methodname" value="superTest" />
<parameter key="input1" value="someString"/>

The args to scrape an attribute from the same bean would look like this:

<parameter key="beanname" value="MyBean" />
<parameter key="attrname" value="upTime" />

2.1.23. LdapMonitor

The LDAP monitor tests for LDAP service availability. The LDAP monitor first tries to establish a TCP connection on the
specified port. Then, if it succeeds, it will attempt to establish an LDAP connection and do a simple search. If the search
returns a result within the specified timeout and attempts, the service will be considered available. The scope of the LDAP
search is limited to the immediate subordinates of the base object. The LDAP search is anonymous by default. The LDAP

monitor makes use of the com.novell.ldap.LDAPConnection class.

57

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.LdapMonitor

Remote Enabled true

Configuration and Usage

Table 33. Monitor specific parameters for the LdapMonitor

Parameter Description Required Default value
dn The distinguished name to optional -
use if authenticated search is
needed.
password The password to use if optional -
authenticated search is
needed.
port The destination port where optional 389
connection shall be
attempted.
retry Number of attempts to geta optional 1

search result.

searchbase The base distinguished name optional base
to search from.

searchfilter The LDAP search’s filter. optional (objectclass=*)

timeout Time in milliseconds to wait optional 3000
for a result from the search.

version The version of the LDAP optional 3
protocol to use, specified as
an integer.
Note: Only LDAPv3 is
supported at the moment.

Examples

<--! OpenNMS.org -->
<service name="LDAP" interval="300000" user-defined="false" status="on">
<parameter key="port" value="389"/>
<parameter key="version" value="3"/>
<parameter key="searchbase" value="dc=opennms,dc=org"/>
<parameter key="searchfilter" value="uid=ulf"/>
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="1dap"/>
<parameter key="ds-name" value="1dap"/>
</service>
<monitor service="LDAP" class-name="org.opennms.netmgt.poller.monitors.LdapMonitor"/>

2.1.24. LdapsMonitor

The LDAPS monitor tests the response of an SSL-enabled LDAP server. The LDAPS monitor is an SSL-enabled extension of
the LDAP monitor with a default TCP port value of 636. All LdapMonitor parameters apply, so please refer to LdapMonitor’s

documentation for more information.

58

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.LdapsMonitor

Remote Enabled true

Configuration and Usage

Table 34. Monitor specific parameters for the LdapsMonitor

Parameter Description Required Default value
port The destination port where optional 636
connections shall be
attempted.
Examples

<!-- LDAPS service at OpenNMS.org is on port 6636 -->
<service name="LDAPS" interval="300000" user-defined="false" status="on">
<parameter key="port" value="6636"/>
<parameter key="version" value="3"/>
<parameter key="searchbase" value="dc=opennms,dc=org"/>
<parameter key="searchfilter" value="uid=ulf"/>
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="1dap"/>
<parameter key="ds-name" value="1dap"/>
</service>

<monitor service="LDAPS" class-name="org.opennms.netmgt.poller.monitors.LdapsMonitor" />

2.1.25. MemcachedMonitor

This monitor allows to monitor Memcached, a distributed memory object caching system. To monitor the service
availability the monitor tests if the Memcached statistics can be requested. The statistics are processed and stored in RRD
files. The following metrics are collected:

Table 35. Collected metrics using the MemcachedMonitor

Metric Description

uptime Seconds the Memcached server has been running since last
restart.

rusageuser User time seconds for the server process.

rusagesystem System time seconds for the server process.

curritems Number of items in this servers cache.

totalitems Number of items stored on this server.

bytes Number of bytes currently used for caching items.

limitmaxbytes Maximum configured cache size.

currconnections Number of open connections to this Memcached.

totalconnections Number of successful connect attempts to this server since
start.

59

http://memcached.org

Metric

connectionstructure

cmdget
cmdset

gethits

getmisses

evictions

bytesread
byteswritten

threads

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

Description

Number of internal connection handles currently held by
the server.

Number of GET commands received since server startup.
Number of SET commands received since server startup.

Number of successful GET commands (cache hits) since
startup.

Number of failed GET requests, because nothing was
cached.

Number of objects removed from the cache to free up
memory.

Number of bytes received from the network.
Number of bytes send to the network.

Number of threads used by this server.

org.opennms.netmgt.poller.monitors.MemcachedMonitor

true

Table 36. Monitor specific parameters for the MemcachedMonitor

Parameter

timeout

retry

port

Examples

Description Required

Timeout in milliseconds for optional
Memcached connection
establishment.

Number of attempts to optional
establish the Memcached
connnection.

TCP port connecting to optional
Memcached.

Default value

3000

1121

The following example shows a configuration in the "poller-configuration.xml".

<service name="Memcached" interval="300000" user-defined="false" status="on">

<parameter key="port" value="11211" />
<parameter key="retry" value="2" />
<parameter key="timeout" value="3000" />

<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />

<parameter key="ds-name" value="memcached" />
<parameter key="rrd-base-name" value="memcached" />

</service>

<monitor service="Memcached" class-name="org.opennms.netmgt.poller.monitors.MemcachedMonitor" />

60

2.1.26. NetScalerGroupHealthMonitor

This monitor is designed for Citrix® NetScaler® loadbalancing checks. It checks if more than x percent of the servers
assigned to a specific group on a loadbalanced service are active. The required data is gathered via SNMP from the
NetScaler®. The status of the servers is determined by the NetScaler®. The provided service it self is not part of the check.
The basis of this monitor is the SnmpMonitorStrategy. A valid SNMP configuration in OpenNMS for the NetScaler® is
required.

NOTE A NetScaler® can manage several groups of servers per application. This monitor just covers one group

at a time. If there are multiple groups to check, define one monitor per group.
CAUTION This monitor is not checking the loadbalanced service it self.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NetScalerGroupHealthMo
nitor
Remote Enabled false

Configuration and Usage

Table 37. Monitor specific parameters for the NetScalerGroupHealthMonitor
Parameter Description Required Default value

group-name The name of the server required -
group to check

group-health The percentage of active optional 60
servers vs total server of the
group as an integer

Examples

The following example checks a server group called central webfront_http. If at least 70% of the servers are active, the
service is up. If less then 70% of the servers are active the service is down. A configuration like the following can be used

for the example in the 'poller-configuration.xml'.

<service name="NetScaler_Health" interval="300000" user-defined="false" status="on">
<parameter key="group-name" value="central_webfront_http" />
<parameter key="group-health" value="70" />

</service>

<monitor service="NetScaler_Health" class-name=
"org.opennms.netmgt.poller.monitors.NetScalerGroupHealthMonitor />

Details about the used SNMP checks

The monitor checks the status of the server group based on the NS-ROOT-MIB using the svcGrpMemberState.
svcGrpMemberState is part of the serviceGroupMemberTable. The serviceGroupMemberTable is indexed by
svcGrpMemberGroupName and svcGrpMemberName. A initial lookup for the group-name is performed. Based on the lookup
the serviceGroupMemberTable is walked with the numeric representation of the server group. The monitor interprets just

the server status code 7-up as active server. Other status codes like 2-unknown or 3-busy are counted for total amount of
servers.

61

2.1.27. NtpMonitor

The NTP monitor tests for NTP service availability. During the poll an NTP request query packet is generated. If a response

is received, it is parsed and validated. If the response is a valid NTP response, the service is considered available.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NtpMonitor

Remote Enabled true

Configuration and Usage

Table 38. Monitor specific parameters for the NtpMonitor
Parameter Description Required Default value

port The destination port where optional 123
the NTP request shall be sent.

retry Number of attempts to geta optional 0
response.
timeout Time in milliseconds to wait optional 5000

for a response.
Examples

<--1 Fast NTP server -->
<service name="NTP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="1000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="ntp"/>
<parameter key="ds-name" value="ntp"/>
</service>
<monitor service="NTP" class-name="org.opennms.netmgt.poller.monitors.NtpMonitor"/>

2.1.28. OmsaStorageMonitor

With OmsaStorageMonitor you are able to monitor your Dell OpenManaged servers RAID array status. The following OIDS
from the STORAGEMANAGEMENT-MIB are supported by this monitor:

virtualDiskRollUpStatus .1.3.6.1.4.1.674.10893.1.20.140.1.1.19
arrayDiskLogicalConnectionVirtualDiskNumber .1.3.6.1.4.1.674.10893.1.20.140.3.1.5
arrayDiskNexusID .1.3.6.1.4.1.674.10893.1.20.130.4.1.26
arrayDiskLogicalConnectionArrayDiskNumber .1.3.6.1.4.1.674.10893.1.20.140.3.1.3
arrayDiskState .1.3.6.1.4.1.674.10893.1.20.130.4.1.4

To test the status of the disk array the virtualDiskRollUpStatus is used. If the result of the virtualDiskRollUpStatus is not 3
the monitors is marked as down.

Table 39. Possible result of virtual disk rollup status
Result State description Monitor state in OpenNMS

1 other DOWN

62

http://de.community.dell.com/techcenter/systems-management/w/wiki/438.dell-openmanage-server-administrator-omsa.aspx
http://support.dell.com/support/systemsinfo/document.aspx?~file=/software/svradmin/2.2/en/snmp/snmpc22.htm

Result

2

3

IMPORTANT

State description
unknown

ok

non-critical
critical

non-recoverable

Monitor state in OpenNMS
DOWN

up

DOWN

DOWN

DOWN

Youll need to know the maximum number of possible logical disks you have in your environment.

For example: If you have 3 RAID arrays, you need for each logical disk array a service poller.

To give more detailed information in case of an disk array error, the monitor tries to identify the problem using the other

OIDs. This values are used to enrich the error reason in the service down event. The disk array state is resolved to a human

readable value by the following status table.

Table 40. Possible array disk state errors

Value

1

2

"
15
24
25
26
28

35

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

Monitor specific parameters for the OmsaStorageMonitor

Parameter

virtualDiskNumber

63

Description

The disk index of your RAID

array

Status
Ready
Failed
Online
Offline

Degraded

Recovering

Removed

Resynching

Rebuilding

noMedia

Formating

Running Diagnostics

Initializing

org.opennms.netmgt.poller.monitors.OmsaStorageMonitor

false

Required

optional

Default value

1

Parameter Description Required Default value

retry Amount of attempts opening optional from snmp-config.xml
a connection and try to get
the greeting banner before
the service
goes down.

timeout Time in milliseconds to wait optional from snmp-config.xml
before receiving the
SNMP response.

port The TCP port OpenManage is optional from snmp-config.xml
listening

Examples

Some example configuration how to configure the monitor in the "poller-configuration.xml'.

The RAID array monitor for your first array is configured with virtualDiskNumber = 1 and can look like this:

<service name="OMSA-Disk-Array-1" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>

<parameter key="timeout" value="6000"/>

<parameter key="virtualDiskNumber" value="1"/>

</service>

<monitor service="OMSA-Disk-Array-1" class-name="org.opennms.netmgt.poller.monitors.0OmsaStorageMonitor"/>

If there is more than one RAID array to monitor you need an additional configuration. In this case virtualDiskNumber = 2.

And so on...

<service name="OMSA-Disk-Array-2" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>

<parameter key="timeout" value="6000"/>

<parameter key="virtualDiskNumber" value="2"/>

</service>

<monitor service="OMSA-Disk-Array-2" class-name="org.opennms.netmgt.poller.monitors.OmsaStorageMonitor"/>

2.1.29. OpenManageChassisMonitor

The OpenManageChassis monitor tests the status of a Dell chassis by querying its SNMP agent. The monitor polls the value
of the node’s SNMP OID .1.3.6.1.4.1.674.10892.1.300.10.1.4.1 (MIB-Dell-10892::chassisStatus). If the value is OK (3), the service

is considered available.

As this monitor uses SNMP, the queried nodes must have proper SNMP configuration in snmp-config.xml.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.0OpenManageChassisMonit
or
Remote Enabled false

64

Configuration and Usage

Table 41. Monitor specific parameters for the OpenManageChassisMonitor

Parameter Description Required

port The port to which connection optional
shall be tried.

retry Number of polls to attempt. optional

timeout Time (in milliseconds) to optional
wait before receiving the
SNMP response.

Examples

<!-- Overriding default SNMP config -->

<service name="OMA-Chassis" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>
<parameter key="timeout" value="5000"/>

</service>

<monitor service="OMA-Chassis" class-name="org.opennms.netmgt.poller.monitors.OpenManageChassisMonitor" />

Dell MIBs

Dell MIBs can be found here. Download the DCMIB<version>.zip or DCMIB<version>.exe file corresponding to the version

Default value

from snmp-config.xml

from snmp-config.xml

from snmp-config.xml

of your OpenManage agents. The latest one should be good enough for all previous version though.

2.1.30. Pop3Monitor

The POP3 monitor tests for POP3 service availability on a node. The monitor first tries to establish a TCP connection on the
specified port. If a connection is established, a service banner should have been received. The monitor makes sure the
service banner is a valid POP3 banner (ie: starts with "+OK"). If the banner is valid, the monitor sends a QUIT POP3

command and makes sure the service answers with a valid response (ie: a response that starts with "+OK"). The service is

considered available if the service’s answer to the QUIT command is valid.

The behaviour can be simulated with telnet:

$ telnet mail.opennms.org 110

Trying 192.168.0.100

Connected to mail.opennms.org.

Escape character is 'A]'.

+0K <21860.1076718699@mail.opennms.org>
quit

+0K

Connection closed by foreign host.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.Pop3Monitor

Remote Enabled true

65

ftp://ftp.us.dell.com/sysman

Configuration and Usage

Table 42. Monitor specific parameters for the Pop3Monitor

Parameter Description Required Default value
port TCP port to connect to. optional 110
retry Number of attempts to find optional 0

the service available.

strict-timeout Boolean Optional false
If set to true, makes sure that
at least timeout milliseconds
are elapsed between
attempts.

timeout Timeout in milliseconds for optional 3000
the underlying socket’s
connect and read operations.

Examples

<service name="POP3" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="pop3"/>
<parameter key="ds-name" value="pop3"/>
</service>
<monitor service="POP3" class-name="org.opennms.netmgt.poller.monitors.Pop3Monitor"/>

2.1.31. PrTableMonitor

The PrTableMonitor monitor tests the prTable of a net-snmp SNMP agent.

A table containing information on running programs/daemons configured for monitoring
in the snmpd.conf file of the agent. Processes violating the number of running processes

required by the agent’s configuration file are flagged with numerical and textual errors.

— UCD-SNMP-MIB

The monitor looks up the prErrorFlag entries of this table. If the value of a prErrorFlag entry in this table is set to "1" the
service is considered unavailable.

A Error flag to indicate trouble with a process. It goes to 1 if there is an error, 0 if no error.

— UCD-SNMP-MIB

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.PrTableMonitor

Remote Enabled false

66

http://www.net-snmp.org/docs/mibs/ucdavis.html#prTable

Configuration and Usage

Table 43. Monitor specific parameters for the PrTableMonitor

Parameter Description Required Default value

port The port to which connection optional from 'snmp-config.xml’'
shall be tried.

retry Number of polls to attempt. optional from 'snmp-config.xml'

retries Deprecated. optional from 'snmp-config.xml’

Same as retry.
Parameter retry takes
precedence if both are set.

timeout Time in milliseconds to wait optional from 'snmp-config.xml’
before receiving the SNMP
response.
Examples

<!-- Overriding default SNMP config -->

<service name="Process-Table" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>
<parameter key="timeout" value="5000"/>

</service>

<monitor service="Process-Table" class-name="org.opennms.netmgt.poller.monitors.PrTableMonitor" />

UCD-SNMP-MIB

The UCD-SNMP-MIB may be found here.

2.1.32. SmbMonitor

This monitor is used to test the NetBIOS over TCP/IP name resolution in Microsoft Windows environments. The monitor
tries to retrieve a NetBIOS name for the IP address of the interface. Name services for NetBIOS in Microsoft Windows are
provided on port 137/UDP or 137/TCP.

The service uses the IP address of the interface, where the monitor is assigned to. The service is up if for the given IP

address a NetBIOS name is registered and can be resolved.
For troubleshooting see the usage of the Microsoft Windows command line tool nbtstat or on Linux nmblookup.

Microsoft deprecated the usage of NetBIOS. Since Windows Server 2000 DNS is used as the
WARNING
default name resolution.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SmbMonitor

Remote Enabled false

Configuration and Usage

Table 44. Monitor specific parameters for the SmbMonitor

67

http://www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt

Parameter Description

retry Number of attempts to get a
valid response

timeout Timeout in milliseconds for
TCP connection
establishment
do-node-status Try to get the NetBIOS node
status type for the given
address
Examples

Required

required

required

optional

Default value

true

Some example configuration how to configure the monitor in the "poller-configuration.xml'.

<service name="SMB" interval="300000" user-defined="false" status="on">

<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>
</service>

<monitor service="SMB" class-name="org.opennms.netmgt.poller.monitors.SmbMonitor"/>

2.1.33. SnmpMonitor

The SNMP monitor gives a generic possibility to monitor states and results from SNMP agents. This monitor has two basic

operation modes:

 Test the response value of one specific OID (scalar object identifier);

» Test multiple values in a whole table.

To decide which mode should be used, the walk and match-all parameters are used.

See the Operating mode selection'' and Monitor specific parameters for the SnmpMonitor" tables below for more

information about these operation modes.

Table 45. Operating mode selection

walk match-all

true true
false

count

false true
false

count

Operating mode
tabular, all values must match
tabular, any value must match

specifies that the value of at least
minimum and at most
maximum objects encountered in

scalar
scalar

tabular, between minimum and maximum
values must match

This monitor can’t be used on the OpenNMS Remote Poller. It is currently not possible for the

WARNING

Remote Poller to have access to the SNMP configuration of a central OpenNMS.

68

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

org.opennms.netmgt.poller.monitors.SnmpMonitor

false

Table 46. Monitor specific parameters for the SnmpMonitor

Parameter

hex

match-all

maximum

69

Description Required

Specifies that the value optional
monitored should be

compared against its

hexadecimal representation.

Useful when the monitored

value is a string containing
non-printable characters.

Can be set to: optional

count: specifies that the value
of at least minimum and at
most maximum objects
encountered in

the walk must match the
criteria specified by operand
and operator.

true and walk is set to true:
specifies that the value of
every object encountered in
the walk must match the
criteria specified by the
operand and operator
parameters.

false and walk is set to true:
specifies that the value of
any object encountered in
the walk must match the
criteria specified by the
operand and operator
parameters.

Valid only when match-allis optional
set to count, otherwise
ignored. Should be used in
conjunction

with the minimum parameter.
Specifies that the value of at
most maximum objects
encountered in the walk
must meet the criteria
specified by the operand and
operator

parameters.

Default value

false

true

Parameter

minimum

oid

operand

Description

Valid only when match-all is
set to count, otherwise
ignored. Should be used in
conjunction

with the maximum parameter.
Specifies that the value of at
least minimum objects
encountered in the walk
must meet the criteria
specified by the operand and
operator

parameters.

The object identifier of the
MIB object to monitor.

If no other parameters are
present, the monitor asserts
that the agent’s response for
this

object must include a valid
value (as opposed to an
error, no-such-name, or end-
of-view

condition) that is non-null.

The value to be compared

against the observed value of

the monitored object.

Note: Comparison will
always succeed if either the
operand or operator
parameter isn’t set

and the monitored value is
non-null.

Default value

0

.1.3.6.1.2.1.1.2.0 (SNMPv2-
MIB::SysObjectID)

70

Parameter Description Required Default value

operator The operator to be used for optional -
comparing the monitored
object against the operand
parameter.
Must be one of the following
symbolic operators:

< (<): Less than. Both operand
and observed object value
must be numeric.

> (>): Greater than. Both
operand and observed object
value must be numeric.

<=():Less than or equal to.
Both operand and observed
object value must be
numeric.

>= (>=): Greater than or equal
to. Both operand and
observed object value must
be numeric.

=: Equal to. Applied in
numeric context if both
operand and observed object
value are numeric,

otherwise in string context as
a case-sensitive exact match.

I=: Not equal to. Applied in
numeric context if both
operand and observed object
value are

numeric, otherwise in string
context as a case-sensitive
exact match.

~: Regular expression match.
Always applied in string
context.

Note: Comparison will
always succeed if either the
operand or operator
parameter isn’t set

and the monitored value is
non-null.

Keep in mind that you need
to escape all < and >
characters as XML entities (<
and >

respectively)

port Destination port where the optional from 'snmp-config.xml'
SNMP requests shall be sent.

71

Parameter

reason-template

retry

retries

timeout

walk

Description

A user-provided template

used for the monitor’s reason

code if the service is
unvailable.

Defaults to a reasonable
value if unset.

See below for an explanation
of the possible template
parameters.

Number of polls to attempt.

Deprecated Same as retry.
Parameter retry takes
precedence if both are set.

Timeout in milliseconds for
retrieving the object’s value.

false: Sets the monitor to
poll for a scalar object unless
if the match-all parameter is
set

to count, in which case the
match-all parameter takes
precedence.

true: Sets the monitor to poll
for a tabular object where
the match-all parameter
defines how

the tabular object’s values
must match the criteria
defined by the operator and
operand

parameters. See also the
match-all, minimum, and
maximum parameters.

Required Default value

optional depends on operation mode
optional from 'snmp-config.xml’
optional from 'snmp-config.xml'
optional from 'snmp-config.xml'
optional false

Table 47. Variables which can be used in the reason-template parameter

Variable
${hex}
${ipaddr}
${matchAll}

${matchCount}

${maximum}
${minimum}
${observedValue}
${oid}
${operand}
${operantor}

${port}

Description

Value of the hex parameter.

IP address polled.

Value of the match-all parameter.

When match-all is set to count, contains the number of
matching instances encountered.

Value of the maximum parameter.

Value of the minimum paramater.

Polled value that made the monitor succeed or fail.
Value of the oid parameter.

Value of the operand parameter.

Value of the operator parameter.

Value of the port parameter.

72

Variable Description

${retry} Value of the retry parameter.
${timeout} Value of the timeout parameter.
${walk} Value of the walk parameter.

Example for monitoring scalar object

As a working example we want to monitor the thermal system fan status which is provided as a scalar object ID.

cpgHeThermalSystemFanStatus .1.3.6.1.4.1.232.6.2.6.4.0

The manufacturer MIB gives the following information:
Description of the cpqHeThermalSystemFanStatus from CPQHLTH-MIB

SYNTAX INTEGER {

other (1),
ok (2),
degraded (3),
failed (4)
}
ACCESS read-only
DESCRIPTION

"The status of the fan(s) in the system.

This value will be one of the following:
other(1)
Fan status detection is not supported by this system or driver.

ok(2)
A1l fans are operating properly.

degraded(3)
A non-required fan is not operating properly.

failed(4)
A required fan is not operating properly.

If the cpqHeThermalDegradedAction is set to shutdown(3) the
system will be shutdown if the failed(4) condition occurs."

The SnmpMonitor is configured to test if the fan status returns ok(2). If so, the service is marked as up. Any other value

indicates a problem with the thermal fan status and marks the service down.

73

http://h18013.www1.hp.com/products/servers/management/hpsim/mibkit.html

Example SnmpMonitor as HP InsightManager fan monitor in poller-configuration.xml

<service name="HP-Insight-Fan-System" interval="300000" user-defined="false" status="on">
<parameter key="o0id" value=".1.3.6.1.4.1.232.6.2.6.4.0"/><1>

<parameter key="operator" value="="/><2>

<parameter key="operand" value="2"/><3>

<parameter key="reason-template" value="System fan status is not ok. The state should be
ok(${operand}) the observed value is ${observedValue}. Please check your HP Insight Manager. Syntax:
other(1), ok(2), degraded(3), failed(4)"/><4>
</service>

<monitor service="HP-Insight-Fan-System" class-name="org.opennms.netmgt.poller.monitors.SnmpMonitor" />

@ Scalar object ID to test
@ Operator for testing the response value
® Integer 2 as operand for the test

@ Encode MIB status in the reason code to give more detailed information if the service goes down

Example test SNMP table with all matching values

The second mode shows how to monitor values of a whole SNMP table. As a practical use case the status of a set of physical

drives is monitored. This example configuration shows the status monitoring from the CPQIDA-MIB.

We use as a scalar object id the physical drive status given by the following tabular OID:

cpgDaPhyDrvStatus .1.3.6.1.4.1.232.3.2.5.1.1.6

Description of the cpqgDaPhyDrvStatus object id from CPQIDA-MIB

SYNTAX INTEGER {

other (M,
ok (2),
failed 3),
predictiveFailure (4)
3
ACCESS read-only
DESCRIPTION

Physical Drive Status.
This shows the status of the physical drive.
The following values are valid for the physical drive status:

other (1)
Indicates that the instrument agent does not recognize
the drive. You may need to upgrade your instrument agent
and/or driver software.

ok (2)
Indicates the drive is functioning properly.

failed (3)
Indicates that the drive is no longer operating and
should be replaced.

predictiveFailure(4)

Indicates that the drive has a predictive failure error and
should be replaced.

74

http://h18013.www1.hp.com/products/servers/management/hpsim/mibkit.html

The configuration in our monitor will test all physical drives for status ok(2).

Example SnmpMonitor as HP Insight physical drive monitor in poller-configuration.xml

<service name="HP-Insight-Drive-Physical" interval="300000" user-defined="false" status="on">

<parameter key="o0id" value=".1.3.6.1.4.1.232.3.2.5.1.1.6"/><1>

<parameter key="walk" value="true"/><2>

<parameter key="operator" value="="/><3>

<parameter key="operand" value="2"/><4>

<parameter key="match-all" value="true"/><5>

<parameter key="reason-template" value="One or more physical drives are not ok. The state should be
ok(${operand}) the observed value is ${observedValue}. Please check your HP Insight Manager. Syntax:
other(1), ok(2), failed(3), predictiveFailure(4), erasing(5), eraseDone(6), eraseQueued(7)"/><6>
</service>

<monitor service="HP-Insight-Drive-Physical" class-name="org.opennms.netmgt.poller.monitors.SnmpMonitor'
/>

@ OID for SNMP table with all physical drive states

@ Enable walk mode to test every entry in the table against the test criteria
® Test operator for integer

@ Integer 2 as operand for the test

® Test in walk mode has to be passed for every entry in the table

® Encode MIB status in the reason code to give more detailed information if the service goes down

Example test SNMP table with all matching values

This example shows how to use the SnmpMonitor to test if the number of static routes are within a given boundary. The
service is marked as up if at least 3 and at maxium 10 static routes are set on a network device. This status can be
monitored by polling the table ipRouteProto from the RFC1213-MIB2.

ipRouteProto 1.3.6.1.2.1.4.21.1.9

The MIB description gives us the following information:

75

http://www.ietf.org/rfc/rfc1213.txt

SYNTAX INTEGER {
other(1),
local(2),
netmgmt(3),
icmp(4),
egp(5),
g99p(6),
hello(7),
rip(8),
is-is(9),
es-is(10),
ciscolgrp(11),
bbnSpfIgp(12),
ospf(13),
bgp(14)}
}
ACCESS read-only
DESCRIPTION
"The routing mechanism via which this route was learned.
Inclusion of values for gateway routing protocols is not
intended to imply that hosts should support those protocols."

To monitor only local routes, the test should be applied only on entries in the ipRouteProto table with value 2. The number

of entries in the whole ipRouteProto table has to be counted and the boundaries on the number has to be applied.
Example SnmpMonitor used to test if the number of local static route entries are between 3 or 10.

<service name="All-Static-Routes" interval="300000" user-defined="false" status="on">
<parameter key="o0id" value=".1.3.6.1.2.1.4.21.1.9" /><1>

<parameter key="walk" value="true" /><2>

<parameter key="operator" value="=" /><3>

<parameter key="operand" value="2" /><4>

<parameter key="match-all" value="count" /><5>

<parameter key="minimum" value="3" /><6>

<parameter key="maximum" value="10" /><7>

</service>

<monitor service="All-Static-Routes" class-name="org.opennms.netmgt.poller.monitors.SnmpMonitor" />

OID for SNMP table ipRouteProto

Enable walk mode to test every entry in the table against the test criteria

Test operator for integer

Integer 2 as operand for testing local route entries

Test in walk mode has is set to count to get the number of entries in the table regarding operator and operand

Lower count boundary set to 3

Q ® © ® © ® ©

High count boundary is set to 10

2.1.34. SshMonitor

The SSH monitor tests the availability of a SSH service. During the poll an attempt is made to connect on the specified port.
If the connection request is successful, then the service is considered up. Optionaly, the banner line generated by the

service may be parsed and compared against a pattern before the service is considered up.

76

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SshMonitor

Remote Enabled true

Configuration and Usage

Table 48. Monitor specific parameters for the SshMonitor

Parameter Description Required Default value
banner Regular expression to be optional -

matched against the service’s

banner.
client-banner The client banner that Optional SSH-1. 99-0penNMS_1 .5

OpenNMS will use to identify
itself on the service.

match Regular expression to be optional -
matched against the service’s
banner.

Deprecated, please use the
banner parameter instead.

Note that this parameter
takes precedence over the
banner parameter, though.

port TCP port to which SSH optional 22
connection shall be tried.

retry Number of attempts to optional 0
establish the SSH
connnection.

timeout Timeout in milliseconds for optional 3000
SSH connection
establishment.

Examples

<service name="SSH" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="banner" value="SSH"/>
<parameter key="client-banner" value="OpenNMS poller"/>
<parameter key="timeout" value="5000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="ssh"/>
<parameter key="ds-name" value="ssh"/>
</service>
<monitor service="SSH" class-name="org.opennms.netmgt.poller.monitors.SshMonitor"/>

2.1.35. SSLCertMonitor

This monitor is used to test if a SSL certificate presented by a remote network server are valid. A certificate is invalid if its
initial time is prior to the current time, or if the current time is prior to 7 days (configurable) before the expiration time.
The monitor only supports SSL on the socket and does not support a higher level protocol above it. Additionally, it does not

support Server Name Indication (SNI) and so is unable to validate different certificates if they would be presented on the

77

same connection.

You can simulate the behavior by running a command like this:

echo | openssl s_client -connect <site>:<port> 2>/dev/null | openssl x509 -noout -dates

The output shows you the time range a certificate is valid:

notBefore=Dec 24 14:11:34 2013 GMT
notAfter=Dec 25 10:37:40 2014 GMT

You can configure a threshold in days applied on the notAfter date.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SSLCertMonitor

Remote Enabled true

Configuration and Usage

Table 49. Monitor specific parameters for the SSLCertMonitor
Parameter Description Required Default value

port TCP port for the service with required -1
SSL certificate.

retry Number of attempts to get optional 0
the certificate state

timeout Time in milliseconds to wait optional 3000
before next attempt.

days Number of days before the optional 7
certificate expires that we
mark the service as failed.

The monitor has no support for communicating on other protocol layers above the SSL session layer.
WARNING It is not able to send a Host header for HTTPS, or issue a STARTTLS command for IMAP, POP3, SMTP,
FTP, XMPP, LDAP, or NNTP.

Examples

The following example shows how to monitor SSL certificates on services like IMAPS, SMTPS and HTTPS. If the certificates
expire within 30 days the service goes down and indicates this issue in the reason of the monitor. In this example the
monitoring interval is reduced to test the certificate every 2 hours (7,200,000 ms). Configuration in poller-

configuration.xml is as the following:

78

2.

<service name="SSL-Cert-IMAPS-993" interval="7200000"

<parameter key="retry" value="2"/>

<parameter key="timeout" value="2000"/>

<parameter key="port" value="993"/>

<parameter key="days" value="30"/>
</service>

<service name="SSL-Cert-SMTPS-465" interval="7200000"

<parameter key="retry" value="2"/>

<parameter key="timeout" value="2000"/>

<parameter key="port" value="465"/>

<parameter key="days" value="30"/>
</service>

<service name="SSL-Cert-HTTPS-443" interval="7200000"

<parameter key="retry" value="2"/>

<parameter key="timeout" value="3000"/>

<parameter key="port" value="443"/>

<parameter key="days" value="30"/>
</service>

<monitor service="SSL-Cert-IMAPS-993" class-name="org
<monitor service="SSL-Cert-SMTPS-465" class-name="org

1.36. StrafePingMonitor

user-defined="false" status="on">

user-defined="false" status="on">

user-defined="false" status="on">

.opennms.netmgt.poller.monitors.SSLCertMonitor" />
.opennms.netmgt.poller.monitors.SSLCertMonitor" />
<monitor service="SSL-Cert-HTTPS-443" class-name="org.

opennms.netmgt.poller.monitors.SSLCertMonitor" />

This monitor is used to monitor packet delay variation to a specific endpoint using ICMP. The main use case is to monitor a

WAN end point and visualize packet loss and ICMP packet round trip time deviation. The StrafePingMonitor performs

multiple ICMP echo requests (ping) and stores the response-time of each as well as the packet loss, in a RRD file. Credit is

due to Tobias Oetiker, as this graphing feature is an adaptation of the SmokePing tool that he developed.

Seconds

StrafePing Response Time

Shade represents the
Color means response time deviation
a0 m packet loss from the 20 ICMP probes

Week 26) Week 27 g Week 28 Week 29

Median RTT (3.0ms avg) @0 @ 1/20 W 2/20 O3/20 W4/20 m10/20 m 19/20
Packet Loss: 0,00 % average 0,00 % maximum 0,00 % current

Week 30

Figure 8. Visualization of a graph from the StrafePingMonitor

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

Monitor specific parameters for the StrafePingMonitor

Parameter Description

timeout

79

Time in milliseconds to wait
before assuming that a
packet has not responded

org.opennms.netmgt.poller.monitors.StrafePingMonitor

false
Required Default value
optional 800

http://en.wikipedia.org/wiki/Packet_delay_variation
http://oss.oetiker.ch/smokeping/

Parameter Description Required Default value

retry The number of retries to optional 2
attempt when a packet fails
to respond in the given
timeout

ping-count The number of pings to required 20
attempt each interval

failure-ping-count The number of pings that required 20
need to fail for the service to
be considered down

wait-interval Time in milliseconds to wait required 50
between each ICMP echo-
request packet

rrd-repository The location to write RRD required $OPENNMS_HOME/share/rrd/resp
data. Generally, you will not onse
want to change this from
default

rrd-base-name The name of the RRD fileto required strafeping
write (minus the extension,
.rrd or .jrb)

Examples

The StrafePingMonitor is typically used on WAN connections and not activated for every ICMP enabled device in your
network. Further this monitor is much I/O heavier than just a simple RRD graph with a single ICMP response time
measurement. By default you can find a separate poller package in the 'poller-configuration.xml' called strafer. Configure

the include-range or a filter to enable monitoring for devices with the service StrafePing.
TIP Don’t forget to assign the service StrafePing on the IP interface to be activated.

The following example enables the monitoring for the service StrafePing on IP interfaces in the range 10.0.0.1 until

10.0.0.20. Additionally the Nodes have to be in a surveillance category named Latency.

80

<package name="strafer" >
<filter>categoryName == 'Latency'</filter>
<include-range begin="10.0.0.1" end="10.0.0.20"/>
<rrd step="300">
<rra>RRA:AVERAGE:0.5:1:2016</rra>
<rra>RRA:AVERAGE:0.5:12:1488</rra>
<rra>RRA:AVERAGE:0.5:288:366</rra>
<rra>RRA:MAX:0.5:288:366</rra>
<rra>RRA:MIN:0.5:288:366</rra>
</rrd>
<service name="StrafePing" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="0"/>
<parameter key="timeout" value="3000"/>
<parameter key="ping-count" value="20"/>
<parameter key="failure-ping-count" value="20"/>
<parameter key="wait-interval" value="50"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="strafeping"/>
</service>
<downtime interval="30000" begin="0" end="300000"/>
<downtime interval="300000" begin="300000" end="43200000"/>
<downtime interval="600000" begqin="43200000" end="432000000"/>
<downtime begin="432000000" delete="true"/>
</package>
<monitor service="StrafePing" class-name="org.opennms.netmgt.poller.monitors.StrafePingMonitor"/>

2.1.37. SystemExecuteMonitor

If it is required to execute a system call or run a script to determine a service status, the SystemExecuteMonitor can be
used. It is calling a script or system command, if required it provides additional arguments to the call. To determine the
status of the service the SystemExecuteMonitor can rely on 0 or a non-0 exit code of system call. As an alternative, the
output of the system call can be matched against a banner. If the banner is part of the output the status is interpreted as up.

If the banner is not available in the output the status is determined as down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SystemExecuteMonitor

Remote Enabled true

Configuration and Usage

Table 50. Monitor specific parameters for the SystemExecuteMonitor

Parameter Description Required Default value
script The system-call to execute. required -
args The arguments to hand over optional -

to the system-call.

It supports variable
replacement, see below.

81

Parameter Description Required Default value

banner A string that is match against optional -
the output of

the system-call. If the output
contains the

banner, the service is
determined as UP.

The parameter args supports variable replacement for the following set of variables.

Table 51. Variables which can be used in the configuration

Variable Description
${timeout} Timeout in milliseconds, based on config of the service.
${timeoutsec} Timeout in seconds, based on config of the service.
${retry} Amount of retries based on config of the service.
${svcname} Service name based on the config of the service.
${ipaddr} IP-address of the interface the service is bound to.
${nodeid} Nodeid of the node the monitor is associated to.
${nodelabel} Nodelabel of the node the monitor is associated to.
Examples

<parameter key="args" value="-i ${ipaddr} -t ${timeout}"/>
<parameter key="args" value="http://${nodelabel}/${svcname}/static"/>

SystemExecuteMonitor vs GpMonitor

The SystemExecuteMonitor is the successor of the GpMonitor. The main differences are:
» Variable replacement for the parameter args
* There are no fixed arguments handed to the system-call
» The SystemExecuteMonitor supports RemotePoller deployment

To migrate services from the GpMonitor to the SystemExecuteMonitor it is required to alter the parameter args. To match
the arguments called hoption for the hostAddress and toption for the timeoutInSeconds. The args string that matches the
GpMonitor call looks like this:

<parameter key="args" value="--hostname ${ipaddr} --timeout ${timeoutsec}" />

To migrate the GpMonitor parameters hoption and toption just replace the --hostname and --timeout directly in the args key.

2.1.38. Win32ServiceMonitor

The Win32ServiceMonitor enables OpenNMS to monitor the running state of any Windows service. The service status is
monitored using the Microsoft Windows® provided SNMP agent providing the LAN Manager MIB-II. For this reason it is

82

http://technet.microsoft.com/en-us/library/cc977581.aspx

required the SNMP agent and OpenNMS is correctly configured to allow queries against part of the MIB tree. The status of
the service is monitored by polling the

svSvcOperatingState = 1.3.6.1.4.1.77.1.2.3.1.3

of a given service by the display name.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.Win32ServiceMonitor

Remote Enabled false

Configuration and Usage

Table 52. Monitor specific parameters for the Win32ServiceMonitor

Parameter Description Required Default value

retry Number of attempts to get required From snmp-config.xml
the service state from SNMP
agent

timeout Time in milliseconds to wait required From snmp-config.xml

for the SNMP result before
next attempt.

service-name The name of the service, this required Server
should be the exact name of
the Windows service to
monitor as it
appears in the Services MSC
snap-in. Short names such as
you might use with net start
will not
work here.

Non-English Windows The service-name is sometime encoded in languages other than English. Like in
NOTE French, the Task Scheduler service is Planificateur de tache. Because of the "a" (non-English character), the
OID value is encoded in hexa (0x50 6C 61 6E 69 66 69 63 61 74 65 75 72 20 64 65 20 74 C3 A2 63 68 65 73).

Troubleshooting

If you’ve created a Win32ServiceMonitor poller and are having difficulties with it not being monitored properly on your

hosts, chances are there is a difference in the name of the service you’ve created, and the actual name in the registry.

For example, I need to monitor a process called Example Service on one of our production servers. I retrieve the Display
name from looking at the service in service manager, and create an entry in the poller-configuration.xml files using the

exact name in the Display name field.

However, what I don’t see is the errant space at the end of the service display name that is revealed when doing the

following:

snmpwalk -v 2c -c <communitystring> <hostname> .1.3.6.1.4.1.77.1.2.3.1.1

This provides the critical piece of information I am missing:

83

i50.3.6.1.4.1.77.1.2.3.1.1.31.83.116.97.102.102.119.97.114.101.32.83.84.65.70.70.86.73.69.87.32.66.97.99.1
07.103.114.111.117.110.100.32 = STRING: "Example Service "

NOTE Note the extra space before the close quote.

The extra space at the end of the name was difficult to notice in the service manager GUI, but is easily visible in the
snmpwalk output. The right way to fix this would be to correct the service Display name field on the server, however, the
intent of this procedure is to recommend verifying the true name using snmpwalk as opposed to relying on the service

manager GUI

Examples

Monitoring the service running state of the Task Scheduler on an English local Microsoft Windows® Server requires at

minimum the following entry in the poller-configuration.xml.

<service name="Windows-Task-Scheduler" interval="300000" user-defined="false" status="on">
<parameter key="service-name" value="Task Scheduler"/>
</service>

<monitor service="Windows-Task-Scheduler" class-name=
"org.opennms.netmgt.poller.monitors.Win32ServiceMonitor"/>

2.1.39. XmpMonitor

The XMP monitor tests for XMP service/agent availability by establishing an XMP session and querying the target agent’s
sysObjectID variable contained in the Core MIB. The service is considered available when the session attempt succeeds and

the agent returns its sysObjectID without error.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.XmpMonitor

Remote Enabled false

Configuration and Usage

These parameters can be set in the XMP service entry in collectd-configuration.xml and will override settings from xmp-

config.xml. Also, don’t forget to add an entry in response-graph.properties so that response values will be graphed.
Table 53. Monitor specific parameters for the XmpMonitor

Parameter Description Required Default value

timeout Time in milliseconds to wait optional 5000
for a successful session.

authenUser The authenUser parameter optional xmpUser
for use with the XMP session.

port TCP port to connect to for optional 5270
XMP session establishment
mib Name of MIB to query optional core
object Name of MIB object to query optional sysObjectID

84

http://www.opennms.org/wiki/XMP

Examples

Adding entry in collectd-configuration.xml

<service name="XMP" interval="300000" user-defined="false" status="on">
<parameter key="timeout" value="3000"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="xmp"/>
<parameter key="ds-name" value="xmp"/>
</service>
<monitor service="XMP" class-name="org.opennms.netmgt.poller.monitors.XmpMonitor"/>

Add entry in response-graph.properties

reports=icmp, \
xmp, \

report.xmp.name=XMP

report.xmp.columns=xmp
report.xmp.type=responseTime
report.xmp.command=--title="XMP Response Time" \
--vertical-label="Seconds" \
DEF:rtMills={rrd1}:xmp:AVERAGE \
DEF:minRtMills={rrd1}:xmp:MIN \

DEF :maxRtMills={rrd1}:xmp:MAX \
CDEF:rt=rtMills, 1000,/ \
CDEF:minRt=minRtMills, 1000,/ \
CDEF:maxRt=maxRtMills, 1000,/ \
LINE1:rt#0000ff: "Response Time" \
GPRINT:rt:AVERAGE:" Avg \\: %8.21f %s" \
GPRINT:rt:MIN:"Min \\: %8.21f %s" \
GPRINT:rt:MAX:"Max \\: %8.21f %s\\n"

85

Chapter 3. Events in OpenNMS

3.1. Events
Events are central to the operation of the OpenNMS platform, so it’s critical to have a firm grasp of this topic.

Whenever something in OpenNMS appears to work by magic, it’s probably events working behind
IMPORTANT th ai
e curtain.

3.1.1. Anatomy of an Event

Events are structured historical records of things that happen in OpenNMS and the nodes, interfaces, and services it

manages. Every event has a number of fixed fields and zero or more parameters.

UEI (Universal Event Identifier)

A string uniquely identifying the event’s type. UEIs are typically formatted in the style of a URI, but the only

requirement is that they start with the string vei..

Event Label

A short, static label summarizing the gist of all instances of this event.

Description

Along-form description describing all instances of this event.

Log Message

A long-form log message describing this event, optionally including expansions of fields and parameters so that the

value is tailored to the event at hand.

Severity

A severity for this event type. Possible values range from (leared to Critical.

Event ID

A numeric identifier used to look up a specific event in the OpenNMS system.

Operator Instruction

A set of instructions for an operator to respond appropriately to an event of this type.

Alarm Data

If this field is provided for an event, OpenNMS will create, update, or clear alarms for events of that type according to

the alarm-data specifics. For more about alarms and how they relate to events, see [alarms-introduction].

3.1.2. Sources of Events

Events may originate within OpenNMS itself or from outside.

Internally-generated events can be the result of the platform’s monitoring and management functions (e.g. a monitored
node becoming totally unavailable results in an event with the UEI uei.opennms.org/nodes/nodeDown) or they may act as

inputs or outputs of housekeeping processes.

Externally-created events can arrive by a variety of mechanisms, including:

86

SNMP Traps

If SNMP-capable devices in the network are configured to send traps to OpenNMS, these traps are transformed into
events according to pre-configured rules. Event definitions are included with OpenNMS for traps from many vendors'

equipment.

Syslog Messages

Syslog messages sent over the network to OpenNMS can be transformed into events according to pre-configured rules.

TL1 Autonomous Messages

Autonomous messages can be retrieved from certain TL1-enabled equipment and transformed into events.

XML-TCP

Any application or script can create custom events in OpenNMS by sending properly-formatted XML data over a TCP
socket.

3.1.3. The Event Bus

At the heart of OpenNMS lies an event bus. Any OpenNMS component can publish events to the bus, and any component
can subscribe to receive events of interest that have been published on the bus. This publish-subscribe model enables
components to use events as a mechanism to send messages to each other. For example, the provisioning subsystem of
OpenNMS publishes a node-added event whenever a new node is added to the system. Other subsystems with an interest in
new nodes subscribe to the node-added event and automatically receive these events, so they know to start monitoring and
managing the new node if their configuration dictates. The publisher and subscriber components do not need to have any
knowledge of each other, allowing for a clean division of labor and lessening the programming burden to add entirely new

OpenNMS subsystems or modify the behavior of existing ones.

3.1.4. Events in Action

87

Chapter 4. OpenNMS Provisioning

4.1. Provisioning

4.1.1. Summary

The introduction of OpenNMS version 1.8 empowers enterprises and services providers like never before with a new
service daemon for maintaining the managed entity inventory in OpenNMS. This new daemon, Provisiond, unifies all
previous entity control mechanisms available in 1.6 (Capsd and the Importer), into a new and improved, massively parallel,
policy based provisioning system. System integrators should note, Provisiond comes complete with a RESTFul Web Service
API for easy integration with external systems such as CRM or external inventory systems as well as an adapter API for

interfacing with other management systems such as configuration management.

OpenNMS 1.0, introduced almost a decade ago now, provided a capabilities scanning daemon, Capsd, as the mechanism for
provisioning managed entities. Capsd, deprecated with the release of 1.8.0, provided a rich automatic provisioning
mechanism that simply required an IP address to seed its algorithm for creating and maintaining the managed entities
(nodes, interfaces, and IP based services). Version 1.2 added and XML-RPC API as a more controlled (directed) strategy for
provisioning services that was mainly used by non telco based service providers (i.e. managed hosting companies). Version
1.6 followed this up with yet another and more advanced mechanism called the Importer service daemon. The Importer
provided large service providers with the ability to strictly control the OpenNMS entity provisioning with an XML based

API for completely defining and controlling the entities where no discovery and service scanning scanning was feasible.

The Importer service improved OpenNMS' scalability for maintaining managed entity databases by an order of magnitude.
This daemon, while very simple in concept and yet extremely powerful and flexible provisioning improvement, has blazed
the trail for Provisiond. The Importer service has been in production for 3 years in service provider networks maintaining

entity counts of more than 50,000 node level entities on a single instances of OpenNMS. It is a rock solid provisioning tool.

Provisiond begins a new era of managed entity provisioning in OpenNMS.

4.1.2. Concepts

Provisioning is a term that is familiar to service providers (a.k.a. operators, a.k.a. telephone companies) and OSS systems

but not so much in the non OSS enterprises.

Provisiond receives "requests" for adding managed entities via 2 basic mechanisms, the OpenNMS traditional "New
Suspect" event, typically via the Discovery daemon, and the import requisition (XML definition of node entities) typically
via the Provisioning Groups UL If you are familiar with all previous releases of OpenNMS, you will recognize the New
Suspect Event based Discovery to be what was previously the Capsd component of the auto discovery behavior. You will
also recognize the import requisition to be of the Model Importer component of OpenNMS. Provisiond now unifies these

two separate components into a massively parallel advanced policy based provisioning service.

OpenNMS Provisioning Terminology

The following terms are used with respect to OpenNMS’ provisioning system and are essential for understanding the

material presented in this guide.

Entity

Entities are managed objects in OpenNMS such as Nodes, IP interfaces, SNMP Interfaces, and Services.

88

Foreign Source and Foreign ID

The Importer service from 1.6 introduced the idea of foreign sources and foreign IDs. The Foreign Source uniquely
identifies a provisioning source and is still a basic attribute of importing node entities into OpenNMS. The concept is to
provide an external (foreign) system with a way to uniquely identify itself and any node entities that it is requesting (via a

requisition) to be provisioned into OpenNMS.

The Foreign ID is the unique node ID maintained in foreign system and the foreign source uniquely identifies the external

system in OpenNMS.

OpenNMS uses the combination of the foreign source and foreign ID become the unique foreign key when synchronizing
the set of nodes from each source with the nodes in the OpenNMS DB. This way the foreign system doesn’t have to keep
track of the OpenNMS node IDs that are assigned when a node is first created. This is how Provisiond can decided if a node

entity from an import requisition is new, has been changed, or needs to be deleted.

Foreign Source Definition

Additionally, the foreign source has been extended to also contain specifications for how entities should be discovered and
managed on the nodes from each foreign source. The name of the foreign source has become pervasive within the

provisioning system and is used to simply some of the complexities by weaving this name into:

* the name of the provisioning group in the Web-UI

* the name of the file containing the persisted requisition (as well as the pending requisition if it is in this state)

* the foreign-source attribute value inside the requisition (obviously, but, this is pointed out to indicate that the file name

doesn’t necessarily have to equal the value of this attribute but is highly recommended as an OpenNMS best practice)

* the building attribute of the node defined in the requisition (this value is called “site” in the Web-UI and is assigned to
the building column of the node’s asset record by Provisiond and is the default value used in the Site Status View

feature)

Import Requisition

Import requisition is the terminology OpenNMS uses to represent the set of nodes, specified in XML, to be provisioned from
a foreign source into OpenNMS. The requisition schema (XSD) can be found at the following location.

http://xmlns.opennms.org/xsd/config/model-import

Auto Discovery

Auto discovery is the term used by OpenNMS to characterize the automatic provisioning of nodes entities. Currently,
OpenNMS uses an ICMP ping sweep to find IP address on the network. For the IPs that respond and that are not currently
in the DB, OpenNMS generates a new suspect event. When this event is received by Provisiond, it creates a node and it

begins a node scan based on the default foreign source definition.

Directed Discovery

Provisiond takes over for the Model Importer found in version 1.6 which implemented a unique, first of its kind, controlled
mechanism for specifying managed entities directly into OpenNMS from one or more data sources. These data sources
often were in the form of an in-housed developed inventory or stand-alone provisioning system or even a set of element
management systems. Using this mechanism, OpenNMS is directed to add, update, or delete a node entity exactly as

defined by the external source. No discovery process is used for finding more interfaces or services.

89

http://xmlns.opennms.org/xsd/config/model-import

Enhanced Directed Discovery

Directed discovery is enhanced with the capability to scan nodes that have been directed nodes for entities (interfaces.

Policy Based Discovery

The phrase, Policy based Directed Discovery, is a term that represents the latest step in OpenNMS’ provisioning evolution
and best describes the new provisioning architecture now in OpenNMS for maintaining its inventory of managed entities.
This term describes the control that is given over the Provisioning system to OpenNMS users for managing the behavior of
the NMS with respect to the new entities that are being discovered. Current behaviors include persistence, data collection,

service monitoring, and categorization policies.

Addressing Scalability

The explosive growth and density of the IT systems being deployed today to support not traditional IP services is impacting
management systems like never before and is demanding from them tremendous amounts of scalability. The scalability of
a management system is defined by its capacity for maintaining large numbers of managing entities coupled with its

efficiency of managing the entities.

Today, It is not uncommon for OpenNMS deployments to find node entities with tens of thousands of physical interfaces
being reported by SNMP agents due to virtualization (virtual hosts, interfaces, as well as networks). An NMS must be
capable of using the full capacity every resource of its computing platform (hardware and OS) as effectively as possible in
order to manage these environments. The days of writing scripts or single threaded applications will just no longer be able
to do the work required an NMS when dealing with the scalability challenges facing systems and systems administrators

working in this domain.

Parallelization and Non-Blocking I/O

Squeezing out every ounce of power from a management system’s platform (hardware and OS) is absolutely required to
complete all the work of a fully functional NMS such as OpenNMS. Fortunately, the hardware and CPU architecture of a
modern computing platform provides multiple CPUs with multiple cores having instruction sets that include support for
atomic operations. While these very powerful resources are being provided by commodity systems, it makes the
complexity of developing applications to use them vs. not using them, orders of magnitude more complex. However,
because of scalability demands of our complex IT environments, multi-threaded NMS applications are now essential and

this has fully exposed the complex issues of concurrency in software development.

OpenNMS has stepped up to this challenge with its new concurrency strategy. This strategy is based on a technique that
combines the efficiency of parallel (asynchronous) operations (traditionally used by most effectively by single threaded
applications) with the power of a fully current, non-blocking, multi-threaded design. The non-blocking component of this

new concurrency strategy added greater complexity but OpenNMS gained orders of magnitude in increased scalability.

NOTE Java Runtimes, based on the Sun JVM, have provided implementations for processor based atomic
operations and is the basis for OpenNMS’ non-blocking concurrency algorithms.

Provisioning Policies

Just because you can, doesn’t mean you should! Because the massively parallel operations being created for Provisiond
allows tremendous numbers of nodes, interfaces, and services to be very rapidly discovered and persisted, doesn’t mean it
should. A policy API was created for Provisiond that allows implementations to be developed that can be applied to control
the behavior of Provisiond. The 1.8 release includes a set of flexible provisioning policies that control the persistence of

entities and their attributes constrain monitoring behavior.

When nodes are imported or re-scanned, there is, potentially, a set of zero or more provisioning policies that are applied.

The policies are defined in the foreign source’s definition. The policies for an auto-discovered node or nodes from

90

provisioning groups that don’t have a foreign source definition, are the policies defined in the default foreign source
definition.

The Default Foreign Source Definition

Contained in the libraries of the Provisioning service is the "template" or default foreign source. The template stored in the
library is used until the OpenNMS admin user alters the default from the Provisioning Groups WebUI Upon edit, this
template is exported to the OpenNMS 'etc/' directory with the file name: 'default-foreign-source.xml'.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<foreign-source date-stamp="2009-10-16T718:04:12.844-05:00"
name="default"
xmlns="http://xmlns.opennms.org/[http://xmlns.opennms.org/xsd/config/foreign-source">
<scan-interval>1d</scan-interval>
<detectors>
<detector class="org.opennms.netmgt.provision.detector.datagram.DnsDetector" name="DNS"/>
<detector class="org.opennms.netmgt.provision.detector.simple.FtpDetector" name="FTP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.HttpDetector" name="HTTP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.HttpsDetector" name="HTTPS"/>
<detector class="org.opennms.netmgt.provision.detector.icmp.IcmpDetector" name="ICMP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.ImapDetector" name="IMAP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.LdapDetector" name="LDAP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.NrpeDetector" name="NRPE"/>
<detector class="org.opennms.netmgt.provision.detector.simple.Pop3Detector" name="POP3"/>
<detector class="org.opennms.netmgt.provision.detector.radius.RadiusAuthDetector" name="Radius"/>
<detector class="org.opennms.netmgt.provision.detector.simple.SmtpDetector" name="SMTP"/>
<detector class="org.opennms.netmgt.provision.detector.snmp.SnmpDetector" name="SNMP"/>
<detector class="org.opennms.netmgt.provision.detector.ssh.SshDetector" name="SSH"/>
</detectors>
<policies/>
</foreign-source>

Default Foreign Source

4.2. Getting Started

An NMS is of no use until it is setup for monitoring and entities are added to the system. OpenNMS installs with a base
configuration with a configuration that is sufficient get service level monitoring and performance management quickly up
and running. As soon as managed entities are provisioned, the base configuration will automatically begin monitoring and
reporting.

Generally speaking, there are two methods of provisioning in OpenNMS: Auto Discovery and Directed Discovery. We’ll start
with Auto Discovery, but first, we should quickly review the configuration of SNMP so that newly discovered devices can be

immediately scanned for entities as well as have reporting and thresholding available.

4.2.1. Provisioning the SNMP Configuration

OpenNMS requires that the SNMP configuration to be properly setup for your network in order to properly understand
Network and Node topology as well as to automatically enabled performance data collection. Network topology is updated
as nodes (a.k.a. devices or hosts) are provisioned. Navigate to the Admin/Configure SNMP Community Names as shown

below.

91

Provisiond includes an option to add community information in the Single Node provisioning interface.
NOTE This, is equivalent of entering a single IP address in the screen with the convenience of setting the
community string at the same time a node is provisioned. See the Quick Node Add feature below for more

details about this capability.

This screen sets up SNMP within OpenNMS for agents listening on IP addresses 10.1.1.1 through 10.254.254.254. These
settings are optimized into the 'snmp-configuration.xml' file. Optimization means that the minimal configuration possible
will be written. Any IP addresses already configured that are eclipsed by this range will be removed. Here is the resulting

configuration.

Sample snmp-config.xml
<?xml version="1.0" encoding="UTF-8"?>

<snmp-config
xmlns="http://xmlns.opennms.org/xsd/config/snmp[http://xmlns.opennms.org/xsd/config/snmp]"
port="161" retry="3" timeout="800" read-community="public"

version="v1" max-vars-per-pdu="10">
<definition retry="1" timeout="2000"
read-community="public" version="v2c">
<specific>10.12.23.32</specific>
</definition>

</snmp-config>

However, If an IP address is then configured that is within the range, the range will be split into two separate ranges and a
specific entry is added. For example, if a configuration was added through the same UI for the IP: 10.12.23.32 having the

community name public, then the resulting configuration will be:

<?xml version="1.0" encoding="UTF-8"?>
<snmp-config xmlns="http://xmlns.opennms.org/xsd/config/snmp"
port="161"
retry="3"
timeout="800"
read-community="public"
version="v1"
max-vars-per-pdu="10">

<definition retry="1" timeout="2000" read-community="YrusoNoz" version="v2c">
<range begin="10.1.1.1" end="10.12.23.31"/>
<range begin="10.12.23.33" end="10.254.254.254"/>

</definition>

<definition retry="1" timeout="2000" read-community="public" version="v2c">
<specific>10.12.23.32</specific>
</definition>
</snmp-config>

NOTE the bold IP addresses show where the range was split and the specific with community name "public”
was added.

Now, with SNMP configuration provisioned for our 10 network, we are ready to begin adding nodes. Our first example will

92

be to automatically discovery and add all managed entities (nodes, IP interfaces, SNMP Interfaces, and Monitored IP based
Services). We will then give an example of how to be more directed and deliberate about your discovery by using

Provisioning Groups.

Automatically discovered entities are analyzed, persisted to the relational data store, and then managed based on the
policies defined in the default foreign source definition. This is very similar to the way that entities were handled by Capsd

by with finer grained sense of control.

Automatic Discovery

Currently in OpenNMS, the ICMP is used to automatically provision node entities into OpenNMS. This functionality has
been in OpenNMS since is 1.0 release, however, in 1.8, a few of the use cases have been updated with Provisiond’s

replacement of Capsd.

Separation of Concerns

Version 1.8 Provisiond separates what was called Capsd scanning in to 3 distinct phases: entity scanning, service detection,
and node merging. These phases are now managed separately by Provisiond. Immediately following the import of a node
entity, tasks are created for scanning a node to discover the node entity’s interfaces (SNMP and IP). As interfaces are found,

they are persisted and tasks are scheduled for service detection of each IP interface.

For auto discovered nodes, a node merging phase is scheduled. Nodes that have been directly provisioned will not be
included in the node process. Only in the case the 2 where nodes that have been automatically discovered that appear to be

the same node with the node merging phase be activated.

NOTE the use case and redesign of node merging is still an outstanding issue with the 1.8.0 release

Enhanced Directed Discovery

This new form of provisioning first appears in OpenNMS with version 1.8 and the new Provisiond service. It combines the
benefits of the Importer’s strictly controlled methodology of directed provisioning (from version 1.6) with OpenNMS’
robustly flexible auto discovery. Enhanced Directed discovery begins with an enhanced version of the same import
requisition used in directed provisioning and completes with a policy influenced persistence phase that sorts though the

details of all the entities and services found during the entity and service scanning phase.

If you are planning to use this form of provisioning, it important to understand the conceptual details of how Provisiond
manages entities it is directed to provision. This knowledge will enable administrators and systems integrators to better

plan, implement, and resolve any issues involved with this provisioning strategy.

Understanding the Process

There are 3 phases involved with directing entities to be discovered: import, node scan, and service scan. The import phase

also has sub phases: marshal, audit, limited SNMP scan, and re-parent.

======= Marshal and Audit Phases

It is important to understand that the nodes requisitioned from each foreign source are managed as a complete set. Nodes
defined in a requisition from the foreign source CRM and CMDB, for example, will be managed separately from each other
even if they should contain exactly the same node definitions. To OpenNMS, these are individual entities and they are

managed as a set.

Requisitions are referenced via a URL. Currently, the URL can be specified as one of the following protocols: FILE, HTTP,
HTTPS, and DNS. Each protocol has a protocol handler that is used to stream the XML from a foreign source, i.e.

http://inv.corp.org/import.cgi?customer=acme or file:/opt/opennms/etc/imports/acme.xml. The DNS protocol is a special

93

http://inv.corp.org/import.cgi?customer=acme

handler developed for Provisioning sets of nodes as a foreign-source from a corporate DNS server. See DNS Protocol
Handler for details.

Upon the import request (either on schedule or on demand via an Event) the requisition is marshaled into Java objects for
processing. The nodes defined in the requisition represent what OpenNMS should have as the current set of managed
entities from that foreign source. The audit phase determines for each node defined (or not defined) in the requisition
which are to be processed as an Add, Update, or Delete operation during the Import Phase. This determination is made by
comparing the set foreign IDs of each node in the requisition set with the set of foreign IDs of currently managed entities in
OpenNMS.

The intersection of the IDs from each set will become the Update operations, the extra set of foreign IDs that are in the
requisition become the Add operations, and the extra set of foreign IDs from the managed entities become the Delete

operations. This implies that the foreign IDs from each foreign source must be unique.

Naturally, the first time an import request is processed from a foreign source there will be zero (0) node entities from the
set of nodes currently being managed and each node defined in the requisition will become an Add Operation. If a
requisition is processed with zero (0) node definitions, all the currently managed nodes from that foreign source will

become Delete operations (all the nodes, interfaces, outages, alarms, etc. will be removed from OpenNMS).

When nodes are provisioned using the Provisioning Groups Web-UI, the requisitions are stored on the local file system and
the file protocol handler is used to reference the requisition. Each Provisioning Group is a separate foreign source and
unique foreign IDs are generated by the Web-UL. An MSP might use Provisioning Groups to define the set of nodes to be

managed by customer name where each customer’s set of nodes are maintained in a separate Provisioning Group.

======= Import Phase

The import phase begins when Provisiond receives a request to import a requisition from a URL. The first step in this phase

is to load the requisition and marshal all the node entities defined in the requisition into Java objects.

If any syntactical or XML structural problems occur in the requisition, the entire import is abandoned and no import

operations are completed.

Once the requisition is marshaled, the requisition nodes are audited against the persisted node entities. The set of
requisitioned nodes are compared with a subset of persisted nodes and this subset is generated from a database query
using the foreign source defined in the requisition. The audit generates one of three operations for each requisition node:
insert, update, delete based on each requisitioned node’s foreign ID. Delete operations are created for any nodes that are
not in the requisition but are in the DB subset, update operations are created for requisition nodes that match a persisted
node from the subset (the intersection), and insert operations are created from the remaining requisition nodes (nodes in

the requisition that are not in the DB subset).

If a requisition node has an interface defined as the Primary SNMP interface, then during the update and insert operations
the node will be scanned for minimal SNMP attribute information. This scan find the required node and SNMP interface

details required for complete SNMP support of the node and only the IP interfaces defined in the requisition.

NOTE this not the same as Provisiond SNMP discovery scan phases: node scan and interface scan.

======= Node Scan Phase

Where directed discovery leaves off and enhanced directed discovery begins is that after all the operations have
completed, directed discovery is finished and enhanced directed discovery takes off. The requisitioned nodes are
scheduled for node scans where details about the node are discovered and interfaces that were not directly provisioned

are also discovered. All physical (SNMP) and logical (IP) interfaces are discovered and persisted based on any Provisioning

94

Policies that may have defined for the foreign source associated with the import requisition.
======= Service Scan (detection) Phase

Additionally, the new Provisiond enhanced directed discovery mechanism follows interface discovery with service
detection on each IP interface entity. This is very similar to the Capsd plugin scanning found in all former releases of
OpenNMS accept that the foreign source definition is used to define what services should be detected on these interfaces

found for nodes in the import requisition.

4.3. Import Handlers
4.3.1. File Handler
4.3.2. HTTP Handler

4.3.3. DNS Handler

The new Provisioning service in OpenNMS is continuously improving and adapting to the needs of the community.

One of the most recent enhancements to the system is built upon the very flexible and extensible API of referencing an
import requisition’s location via a URL. Most commonly, these URLs are files on the file system (.e.
file:/opt/opennms/etc/imports/<my-provisioning-group.xml>) as requisitions created by the Provisioning Groups UL
However, these same requisitions for adding, updating, and deleting nodes (based on the original model importer) can also

come from URLs specifying the HTTP protocol: http://myinventory.server.org/nodes.cgi

Now, using Java’s extensible protocol handling specification, a new protocol handler was created so that a URL can be
specified for requesting a Zone Transfer (AXFR) request from a DNS server. The A records are recorded and used to build an
import requisition. This is handy for organizations that use DNS (possibly coupled with an IP management tool) as the data
base of record for nodes in the network. So, rather than ping sweeping the network or entering the nodes manually into

OpenNMS Provisioning Ul, nodes can be managed via 1 or more DNS servers.

The format of the URL for this new protocol handler 1is: dns://<host>[:port]/<zone>[/<foreign-

source>/][?expression=<regex>]
DNS Import Examples:
Simple

dns://my-dns-server/myzone.com

This URL will import all A records from the host my-dns-server on port 53 (default port) from zone "myzone.com" and since

the foreign source (a.k.a. the provisioning group) is not specified it will default to the specified zone.
Using a Regular Expression Filter

dns://my-dns-server/myzone.com/portland/?expression="por-.*

This URL will import all nodes from the same server and zone but will only manage the nodes in the zone matching the
regular expression *port-.* and will and they will be assigned a unique foreign source (provisioning group) for managing

these nodes as a subset of nodes from within the specified zone.

If your expression requires URL encoding (for example you need to use a ? in the expression) it must be properly encoded.

95

http://myinventory.server.org/nodes.cgi

dns://my-dns-server/myzone.com/portland/?expression="por[0-9]%3F

Currently, the DNS server requires to be setup to allow a zone transfer from the OpenNMS server. It is recommended that a
secondary DNS server is running on OpenNMS and that the OpenNMS server be allowed to request a zone transfer. A quick

way to test if zone transfers are working is:

dig -t AXFR @<dnsServer> <zone>

The configuration of the Provisoning system has moved from a properties file (‘'model-importer.properties’) to an XML
based configuration container. The configuration is now extensible to allow the definition of 0 or more import requisitions
each with their own cron based schedule for automatic importing from various sources (intended for integration with

external URL such as http and this new dns protocol handler.

A default configuration is provided in the OpenNMS 'etc/' directory and is called: 'provisiond-configuration.xml'. This
default configuration has an example for scheduling an import from a DNS server running on the localhost requesting
nodes from the zone, localhost and will be imported once per day at the stroke of midnight. Not very practical but is a good

example.

<?xml version="1.0" encoding="UTF-8"?>
<provisiond-configuration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=

"http://xmlns.opennms.org/xsd/config/provisiond-configuration”
foreign-source-dir="/opt/opennms/etc/foreign-sources"
requistion-dir="/opt/opennms/etc/imports"
importThreads="8"
scanThreads="10"
rescanThreads="10"
writeThreads="8" >

<!--http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html
Field Name Allowed Values Allowed Special Characters
Seconds 0-59 , - * / Minutes 0-59 , - * / Hours 0-23 , - * /
Day-of-month1-31, - * ? / L W C Month1-12 or JAN-DEC, - * /
Day-of-Week1-7 or SUN-SAT, - * ? / L C # Year (Opt)empty, 1970-2099, - * /
-->

<requisition-def import-name="localhost"
import-url-resource="dns://localhost/localhost">

<cron-schedule>@ @ @ * * ? *</cron-schedule> <!-- daily, at midnight -->
</requisition-def>
</provisiond-configuration>

Like many of the daemon configuration in the 1.7 branch, the configurations are reloadable without having to restart

OpenNMS, using the reloadDaemonConfig uei:

/opt/opennms/bin/send-event.pl
uei.opennms.org/internal/reloadDaemonConfig --parm 'daemonName Provisiond'

This means that you don’t have to restart OpenNMS every time you update the configuration.

96

4.4. Provisioning Examples

Here are a few practical examples of enhanced directed discovery to help with your understanding of this feature.

4.4.1. Basic Provisioning

This example adds three nodes and requires no OpenNMS configuration other than specifying the node entities to be

provisioned and managed in OpenNMS.

Defining the Nodes via the Web-UI

Using the Provisioning Groups Web-UI, three nodes are created given a single IP address. Navigate to the Admin Menu and

click Provisioning Groups Menu from the list of Admin options and create the group Bronze.

Clicking the Add New Group button will create the group and will redisplay the page including this new group among the

list of any group(s) that have already been created.

At this point, the XML structure for holding the new provisioning group (a.k.a. an import requisition) has
been persisted to the '$OPENNMS_ETC/imports/pending' directory.

NOTE

Clicking the Edit link will bring you to the screen where you can begin the process of defining node entities that will be
imported into OpenNMS. Click the Add Node button will begin the node entity creation process fill in the node label and
click the Save button.

At this point, the provisioning group contains the basic structure of a node entity but it is not complete until the interface(s)
and interface service(s) have been defined. After having clicked the Save button, as we did above presents, in the Web-UI,
the options Add Interface, Add Node Category, and Add Node Asset. Click the Add Interface link to add an interface entity to
the node.

Enter the IP address for this interface entity, a description, and specify the Primary attribute as P (Primary), S (Secondary),
N (Not collected), or C (Collected) and click the save button. Now the node entity has an interface for which services can be
defined for which the Web-UI now presents the Add Service link. Add two services (ICMP, SNMP) via this link.

Now the node entity definition contains all the required elements necessary for importing this requisition into OpenNMS.
At this point, all the interfaces that are required for the node should be added. For example, NAT interfaces should be

specified there are services that they provide because they will not be discovered during the Scan Phase.

Two more node definitions will be added for the benefit of this example.

This set of nodes represents an import requisition for the Bronze provisioning group. As this requisition is being edited via
the WebUI, changes are being persisted into the OpenNMS configuration directory '$§OPENNMS_etc/imports/' pending as an

XML file having the name 'bronze.xml'.

The name of the XML file containing the import requisition is the same as the provisioning group name.
NOTE Therefore naming your provisioning group without the use of spaces makes them easier to manage on

the file system.

97

Click the Done button to return to the Provisioning Groups list screen. The details of the “Bronze” group now indicates that
there are 3 nodes in the requisition and that there are no nodes in the DB from this group (a.k.a. foreign source).
Additionally, you can see that time the requisition was last modified and the time it last imported are given (the time
stamps are stored as attributes inside the requisition and are not the file system time stamps). These details are indicative

of how well the DB represents what is in the requisition.

NOTE You can tell that this is a pending requisition for 2 reasons: 1) there are 3 nodes defined and 0 nodes in
the DB, 2) the requisition has been modified since the last import (in this case never).

Import the Nodes

In this example, you see that there are 3 nodes in the pending requisition and 0 in the DB. Click the Import button to submit
the requisition to the provisioning system (what actually happens is that the Web-UI sends an event to the Provisioner

telling it to begin the Import Phase for this group).

NOTE Do not refresh this page to check the values of these details. To refresh the details to verify the import,
click the Provisioning Groups bread crumb item.

You should be able to immediately verify the importation of this provisioning group because the import happens very

quickly. Provisiond has several threads ready for processing the import operations of the nodes defined in this requisition.

A few SNMP packets are sent and received to get the SNMP details of the node and the interfaces defined in the requisition.

Upon receipt of these packets (or not) each node is inserted as a DB transaction.

Following the import of a node with thousands of interfaces, you will be able to refresh the Interface table browser on the
Node page and see that interfaces and services are being discovered and added in the background. This is the discovery

component of directed discovery.

To direct that another node be added from a foreign source (in this example the Bronze Provisioning Group) simply add a
new node definition and re-import. It is important to remember that all the node definitions will be re-imported and the

existing managed nodes will be updated, if necessary.

Changing a Node

To direct changes to an existing node, simply add, change, or delete elements or attributes of the node definition and re-
import. This is a great feature of having directed specific elements of a node in the requisition because that attributes will
simply be changed. For example, to change the IP address of the Primary SNMP interface for the node,

barbrady.opennms.org, just change the requisition and re-import.

Each element in the Web-UI has an associated Edit icon Click this icon to change the IP address for barbrady.opennms.org,

click save, and then Click the Done button.

The Web-UI will return you to the Provisioning Groups screen where you will see that there are the time stamp showing

that the requisition’s last modification is more recent that the last import time.

This provides an indication that the group must be re-imported for the changes made to the requisition to take effect. The
IP Interface will be simply updated and all the required events (messages) will be sent to communicate this change within
OpenNMS.

98

Deleting a Node

Barbrady has not been behaving, as one might expect, so it is time to remove him from the system. Edit the provisioning

group, click the delete button next to the node barbrady.opennms.org, click the Done button.

Click the Import button for the Bronze group and the Barbrady node and its interfaces, services, and any other related data
will be immediately deleted from the OpenNMS system. All the required Events (messages) will be sent by Provisiond to

provide indication to the OpenNMS system that the node Barbrady has been deleted.

Deleting all the Nodes

There is a convenient way to delete all the nodes that have been provided from a specific foreign source. From the main
Admin/Provisioning Groups screen in the Web-UI, click the Delete Nodes button. This button deletes all the nodes defined in
the Bronze requisition. It is very important to note that once this is done, it cannot be undone! Well it can’t be undone from
the Web-UI and can only be undone if you've been good about keeping a backup copy of your '$SOPENMS_ETC/' directory
tree. If you’ve made a mistake, before you re-import the requisition, restore the 'Bronze.xml' requisition from your backup
copy to the '$OPENNMS_ETC/imports' directory.

Clicking the Import button will cause the Audit Phase of Provisiond to determine that all the nodes from the Bronze group
(foreign source) should be deleted from the DB and will create Delete operations. At this point, if you are satisfied that the
nodes have been deleted and that you will no longer require nodes to be defined in this Group, you will see that the Delete
Nodes button has now changed to the Delete Group button. The Delete Group button is displayed when there are no nodes

entities from that group (foreign source) in OpenNMS.

When no node entities from the group exist in OpenNMS, then the Delete Group button is displayed.

4.4.2. Advanced Provisioning Example

In the previous example, we provisioned 3 nodes and let Provisiond complete all of its import phases using a default

foreign source definition. Each Provisioning Group can have a separate foreign source definition that controls:
* The rescan interval
» The services to be detected
* The policies to be applied

This example will demonstrate how to create a foreign source definition and how it is used to control the behavior of

Provisiond when importing a Provisioning Group/foreign source requisition.

First let’s simply provision the node and let the default foreign source definition apply.

Following the import, All the IP and SNMP interfaces, in addition to the interface specified in the requisition, have been
discovered and added to the node entity. The default foreign source definition has no polices for controlling which

interfaces that are discovered either get persisted or managed by OpenNMS.

99

Service Detection

As IP interfaces are found during the node scan process, service detection tasks are scheduled for each IP interface. The
service detections defined in the foreign source determines which services are to be detected and how (i.e. the values of the

parameters that parameters control how the service is detected, port, timeout, etc.).

Applying a New Foreign Source Definition

This example node has been provisioned using the Default foreign source definition. By navigating to the Provisioning
Groups screen in the OpenNMS Web-UI and clicking the Edit Foreign Source link of a group, you can create a new foreign
source definition that defines service detection and policies. The policies determine entity persistence and/or set attributes

on the discovered entities that control OpenNMS’ management behaviors.

In this UL, new Detectors can be added, changed, and removed. For this example, we will remove detection of all services
accept ICMP and DNS, change the timeout of ICMP detection, and a new Service detection for OpenNMS Web-UI.

Click the Done button and re-import the NMS Provisioning Group. During this and any subsequent re-imports or re- scans,
the OpenNMS detector will be active, and the detectors that have been removed will no longer test for the related services
for the interfaces on nodes managed in the provisioning group (requisition), however, the currently detected services will

not be removed. There are 2 ways to delete the previously detected services:
1. Delete the node in the provisioning group, re-import, define it again, and finally re-import again

2. Use the ReST API to delete unwanted services. Use this command to remove each unwanted service from each

interface, iteratively:

curl -X DELETE -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/nodes/6/ipinterfaces/172.16.1.1/services/DNS

There is a sneaky way to do #1. Edit the provisioning group and just change the foreign ID. That will make
TIP Provisiond think that a node was deleted and a new node was added in the same requisition! Use this hint

with caution and an full understanding of the impact of deleting an existing node.

Provisioning with Policies

The Policy API in Provisiond allow you to control the persistence of discovered IP and SNMP Interface entities and Node

Categories during the Scan phase.

The Matching IP Interface policy controls whether discovered I interfaces are to be persisted and if they are to be persisted,

whether or not they will be forced to be Managed or Unmanaged.

Continuing with this example Provisioning Group, we are going to define a few policies that:
a. Prevent discovered 10 network addresses from being persisted
b. Force 192.168 network addresses to be unmanaged

From the foreign source definition screen, click the Add Policy button and you the definition of a new policy will begin
with a field for naming the policy and a drop down list of the currently installed policies. Name the policy no10s, make sure
that the Match IP Interface policy is specified in the class list and click the Save button. This action will automatically add all

the parameters required for the policy.

100

The two required parameters for this policy are action and matchBehavior.

The DO_NOT _PERSIST action does just what it indicates, it prevents discovered IP interface entities from being added to
OpenNMS when the matchBehavior is satisfied. The Manage and UnManage values for this action allow the IP interface

entity to be persisted by control whether or not that interface should be managed by OpenNMS.

The matchBehavior action is a boolean control that determines how the optional parameters will be evaluated. Setting this
parameter’s value to ALL_PARAMETERS causes Provisiond to evaluate each optional parameter with boolean AND logic
and the value ANY_ PARAMETERS will cause OR logic to be applied.

Now we will add one of the optional parameters to filter the 10 network addresses. The Matching IP Interface policy
supports two additional parameters, hostName and ipAddress. Click the Add Parameter link and choose ipAddress as the
key. The value for either of the optional parameters can be an exact or regular expression match. As in most configurations

in OpenNMS where regular expression matching can be optionally applied, prefix the value with the ~ character.

Any subsequent scan of the node or re-imports of NMS provisioning group will force this policy to be applied. IP Interface
entities that already exist that match this policy will not be deleted. Existing interfaces can be deleted by recreating the

node in the Provisioning Groups screen (simply change the foreign ID and re-import the group) or by using the ReST API:

curl -X DELETE -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/nodes/6/ipinterfaces/10.1.1.1

The next step in this example is to define a policy that sets discovered 192.168 network addresses to be unmanaged (not
managed) in OpenNMS. Again, click the Add Policy button and let’s call this policy noMgt192168s. Again, choose the Mach
IP Interface policy and this time set the action to UNMANAGE.

NOTE The UNMANAGE behavior will be applied to existing interfaces.

Like the Matching IP Interface Policy, this policy controls the whether discovered SNMP interface entities are to be
persisted and whether or not OpenNMS should collect performance metrics from the SNMP agent for Interface’s index
(MIB2 IfIndex).

In this example, we are going to create a policy that doesn’t persist interfaces that are AAL5 over ATM or type 49 (ifType).
Following the same steps as when creating an IP Management Policy, edit the foreign source definition and create a new
policy. Let’s call it: noAAL5s. We’ll use Match SNMP Interface class for each policy and add a parameter with ifType as the
key and 49 as the value.

At the appropriate time during the scanning phase, Provisiond will evaluate the policies in the foreign
NOTE source definition and take appropriate action. If during the policy evaluation process any policy matches
for a “DO_NOT_PERSIST” action, no further policy evaluations will happen for that particular entity (IP

Interface, SNMP Interface).

With this policy, nodes entities will automatically be assigned categories. The policy is defined in the same manner as the IP
and SNMP interface polices. Click the Add Policy button and give the policy name, cisco and choose the Set Node Category
class. Edit the required category key and set the value to Cisco. Add a policy parameter and choose the sysObjectld key with
a value ~M\ LT\ 3NL6N TN LAV LTV L%,

101

New Import Capabilities

Several new XML entities have been added to the import requisition since the introduction of the OpenNMS Importer
service in version 1.6. So, in addition to provisioning the basic node, interface, service, and node categories, you can now

also provision asset data.

Provisiond Configuration

The configuration of the Provisioning system has moved from a properties file (‘'model-importer.properties’) to an XML
based configuration container. The configuration is now extensible to allow the definition of 0 or more import requisitions
each with their own Cron based schedule for automatic importing from various sources (intended for integration with
external URL such as HTTP and this new DNS protocol handler.

A default configuration is provided in the OpenNMS 'etc/' directory and is called: 'provisiond-configuration.xml'. This
default configuration has an example for scheduling an import from a DNS server running on the localhost requesting
nodes from the zone, localhost and will be imported once per day at the stroke of midnight. Not very practical but is a good

example.

<?xml version="1.0" encoding="UTF-8"?>
<provisiond-configuration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://xmlns.opennms.org/xsd/config/provisiond-configuration"
foreign-source-dir="/opt/opennms/etc/foreign-sources"
requistion-dir="/opt/opennms/etc/imports"
importThreads="8"
scanThreads="10"
rescanThreads="10"
writeThreads="8" >
Qll==
http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html[http://quartz.sourceforge.net/ja
vadoc/org/quartz/CronTrigger.html]
Field Name Allowed Values Allowed Special Characters
Seconds 0-59 , - * / Minutes ©0-59 , - * / Hours 0-23 , - * /
Day-of-month1-31, - * 2 / L W C Month1-12 or JAN-DEC, - * /
Day-of-Week1-7 or SUN-SAT, - * 2 / L C # Year (Opt)empty, 1970-2099, - * /
-->

<requisition-def import-name="NMS"
import-url-resource="file://opt/opennms/etc/imports/NMS.xm1">
<cron-schedule>@ @ @ * * ? *</cron-schedule> <!-- daily, at midnight -->
</requisition-def>
</provisiond-configuration>

Like many of the daemon configurations in the 1.7 branch, Provisiond’s configuration is re-loadable without having to
restart OpenNMS. Use the reloadDaemonConfig uei:

/opt/opennms/bin/send-event.pl uei.opennms.org/internal/reloadDaemonConfig --parm 'daemonName Provisiond'

This means that you don’t have to restart OpenNMS every time you update the configuration!

Provisioning Asset Data

The Provisioning Groups Web-UI had been updated to expose the ability to add Node Asset data in an import requisition.
Click the Add Node Asset link and you can select from a drop down list all the possible node asset attributes that can be
defined.

102

After an import, you can navigate to the Node Page and click the Asset Info link and see the asset data that was just

provided in the requisition.

External Requisition Sources

Because Provisiond takes a URL as the location service for import requisitions, OpenNMS can be easily extended to support
sources in addition to the native URL handling provided by Java: file:;/, http:/, and https://. When you configure Provisiond
to import requisitions on a schedule you specify using a URL Resource. For requisitions created by the Provisioning Groups

WebUI, you can specify a file based URL.
CAUTION <need further documentation>

Provisioning Nodes from DNS

The new Provisioning service in OpenNMS is continuously improving and adapting to the needs of the community. One of
the most recent enhancements to the system is built upon the very flexible and extensible API of referencing an import
requisition’s location via a URL. Most commmonly, these URLs are files on the file system (i.e. 'file:/opt/opennms/etc/'
'imports/<my-provisioning-group.xml>') as requisitions created by the Provisioning Groups UIl. However, these same
requistions for adding, updating, and deleting nodes (based on the original model importer) can also come from URLs

specifying the HTTP protocol: http://myinventory.server.org/nodes.cgi)

Now, using Java’s extensible protocol handling specification, a new protocol handler was created so that a URL can be
specified for requesting a Zone Transfer (AXFR) request from a DNS server. The A records are recorded and used to build
an import requisition. This is handy for organizations that use DNS (possibly coupled with an IP management tool) as the
data base of record for nodes in the network. So, rather than ping sweeping the network or entering the nodes manually
into OpenNMS Provisioning UI, nodes can be managed via 1 or more DNS servers. The format of the URL for this new

protocol handler is:

dns://<host>[:port]/<zone>[/<foreign-source>/][?expression=<regex>]

Simple Example

dns://my-dns-server/myzone.com

This will import all A records from the host my-dns-server on port 53 (default port) from zone myzone.com and since the

foreign source (a.k.a. the provisioning group) is not specified it will default to the specified zone.

You can also specify a subset of the A records from the zone transfer using a regular expression:

dns://my-dns-server/myzone.com/portland/?expression="por-.*

This will import all nodes from the same server and zone but will only manage the nodes in the zone matching the regular
expression "port-.* and will and they will be assigned a unique foreign source (provisioning group) for managing these

nodes as a subset of nodes from within the specified zone.

If your expression requires URL encoding (for example you need to use a ? in the expression) it must be properly encoded.

dns://my-dns-server/myzone.com/portland/?expression="por[0-9]%3F

103

http://myinventory.server.org/nodes.cgi

Currently, the DNS server requires to be setup to allow a zone transfer from the OpenNMS server. It is recommended that a
secondary DNS server is running on OpenNMS and that the OpenNMS server be allowed to request a zone transfer. A quick

way to test if zone transfers are working is:

dig -t AXFR @<dn5Server> <zone>

4.5. Adapters

The OpenNMS Provisiond API also supports Provisioning Adapters (plugins) for integration with external systems during
the provisioning Import phase. When node entities are added, updated, deleted, or receive a configuration management

change event, OpenNMS will call the adapter for the provisioning activities with integrated systems.
Currently, OpenNMS supports the following adapters:

4.5.1. DDNS Adapter

The Opposite end of Provisiond integration from the DNS Requisition Import, is the DDNS adapter. This adapter uses the
dynamic DNS protocol to update a DNS system as nodes are provisioned into OpenNMS. To configure this adapter, edit the

'opennms.properties' file and set the importer.adapter.dns.server property:

importer.adapter.dns.server=192.168.1.1

4.5.2. RANCID Adapter

Integration has been integrated with RANCID though this new API.
CAUTION <More documentation needed>
CAUTION Maps (soon to be moved to Mapd) <documentation required>

CAUTION WiMax-Link (soon to be moved to Linkd) <documentation required>

4.6. Integrating with Provisiond

The ReST API should be used for integration from other provisioning systems with OpenNMS. The ReST API provides an

interface for defining foreign sources and requisitions.

4.6.1. Provisioning Groups of Nodes

Just as with the WebUI, groups of nodes can be managed via the ReST API from an external system. The steps are:
1. Create a Foreign Source (if not using the default) for the group
2. Update the SNMP configuration for each node in the group

3. Create/Update the group of nodes

4.6.2. Example

104

Step 1 - Create a Foreign Source

If policies for this group of nodes are going to be specified differently than the default policy, then a foreign source should

be created for the group. Using the ReST API, a foreign source can be provided. Here is an example:

NOTE The XML can be imbedded in the curl command option -d or be referenced from a file if the @ prefix is
used with the file name as in this case.

The XML file: 'customer-a.foreign-source.xml'":

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<foreign-source date-stamp="2009-10-12717:26:11.616-04:00" name="customer-a" xmlns=
"http://xmlns.opennms.org/xsd/config/foreign-source">
<scan-interval>1d</scan-interval>
<detectors>
<detector class="org.opennms.netmgt.provision.detector.icmp.IcmpDetector" name="ICMP"/>
<detector class="org.opennms.netmgt.provision.detector.snmp.SnmpDetector" name="SNMP"/>
</detectors>
<policies>
<policy class="org.opennms.netmgt.provision.persist.policies.MatchingIpInterfacePolicy" name="no-
192-168">
<parameter value="UNMANAGE" key="action"/>
<parameter value="ALL_PARAMETERS" key="matchBehavior"/>
<parameter value="~"192\.168\..*" key="ipAddress"/>
</policy>
</policies>
</foreign-source>

Here is an example curl command used to create the foreign source with the above foreign source specification above:

curl -v -u admin:admin -X POST -H 'Content-type: application/xml' -d '@customer-a.foreign-source.xml’
http://localhost:8980/opennms/rest/foreignSources

Now that you've created the foreign source, it needs to be deployed by Provisiond. Here an the example using the curl

command to deploy the foreign source:

curl -v -u admin:admin http://localhost:8980/opennms/rest/foreignSources/pending/customer-a/deploy -X PUT

NOTE The current API doesn’t strictly follow the ReST design guidelines and will be updated in a later release.

Step 2 - Update the SNMP configuration

The implementation only supports a PUT request because it is an implied "Update" of the configuration since it requires an
IP address and all IPs have a default configuration. This request is is passed to the SNMP configuration factory in OpenNMS
for optimization of the configuration store 'snmp-config.xml'. This example changes the community string for the IP
address 10.1.1.1 to yRuSonoZ.

NOTE Community string is the only required element

curl -v -X PUT -H "Content-Type: application/xml" -H "Accept: application/xml" -d <snmp-
info><community>yRuSonoZ</community><port>161</port><retries>1</retries><timeout>2000</timeout><version>v2
c</version></snmp-info>" -u admin:admin http://localhost:898@/opennms/rest/snmpConfig/10.1.1.1

105

Step 3 - Create/Update the Requisition

This example adds 2 nodes to the Provisioning Group, customer-a. Note that the foreign-source attribute typically has a 1 to
1 relationship to the name of the Provisioning Group requisition. There is a direct relationship between the foreign- source
attribute in the requisition and the foreign source policy specification. Also, typically, the name of the provisioning group
will also be the same. In the following example, the ReST API will automatically create a provisioning group based on the
value foreign-source attribute specified in the XML requisition.

curl -X POST -H "Content-Type: application/xml" -d "<?xml version="1.0" encoding="UTF-8"?><model-import
xmlns="http://xmlns.opennms.org/xsd/config/model-import" date-stamp="2009-03-07T17:56:53.123-05:00" last-
import="2009-03-07717:56:53.117-05:00" foreign-source="customer-a"><node node-label="p-brane" foreign-
id="1" ><interface ip-addr="10.0.1.3" descr="en1" status="1" snmp-primary="P"><monitored-service service-
name="ICMP"/><monitored-service service-name="SNMP"/></interface><category name="Production"/><category
name="Routers"/></node><node node-label="m-brane" foreign-id="1" ><interface ip-addr="10.0.1.4"
descr="en1" status="1" snmp-primary="P"><monitored-service service-name="ICMP"/><monitored-service
service-name="SNMP"/></interface><category name="Production"/><category name="Routers"/></node></model-
import>" -u admin:admin http://localhost:8980/opennms/rest/requisitions

A provisioning group file called 'etc/imports/customer-a.xml' will be found on the OpenNMS system following the

successful completion of this curl command and will also be visible via the WebUI.

NOTE Add, Update, Delete operations are handled via the ReST API in the same manner as described in detailed
specification.

4.7. Provisioning Single Nodes (Quick Add Node)

Often, it is requested that a single node add/update be completed for an already defined provisioning group. There is a
ReST API for the Add Node implementation found in the OpenNMS Web-UL For this to work, the provisioning group must

already exist in the system even if there are no nodes defined in the group.
1. Create a foreign source (if required)
2. Specify SNMP configuration

3. Provide a single node with the following specification

4.8. Fine Grained Provisioning Using provision.pl

We have created a Perl script to help your team with this provisioning. It is in the '/opt/opennms/bin/' directory when you
install from our SNAPSHOT builds. The script has most all the operations you need for interfacing from WAVE and you
should be able to use it or duplicate the code in WAVE. The options that are not available can be added to the script if you
need them but everything is fully available in the REST interface. The script provides an easy interface to the REST API and
should help a lot but making the examples easier to read and having code to inspect sometimes makes understanding the

API much easier, as well.
The script '/opt/opennms/bin/provision.pl’, has many options but the first 3 optional parameters are described here:

NOTE You can use --help to the script to see all the available options.

--username (default: admin)
--password (default: admin)
--url (default: http://localhost:8980/opennms/rest)

106

We stand-by to help with any questions they may have. Additionally, we should get the latest software installed so that they
can start testing. It would be good to have installs from the nightly SNAPSHOT builds so that we can keep it easily and

quickly updated if there are any changes we have to make for you.

4.8.1. First, Create a new Provisioning Group

Provisioning Groups are created with import requisitions. The script provides an easy access to the REST API using the

requisition option:

/opt/opennms/bin/provision.pl requisition customer1

This command will create a new requisition (provisioning group) in the '/opt/opennms/etc/imports/pending/' directory. It

will be an empty requisition (provisioning group). Empty meaning there will be the import definition only with no nodes.

Notice that the group is in the 'pending’ directory. This allows you to iteratively create the group

and then later actually import/provide the nodes in the group into OpenNMS. This hands all

adds/changes/deletes at once. So, you could be making changes all day and then at night either
IMPORTANT . ,]

have a schedule in OpenNMS that imports the group automatically or you can send a command

through the REST service from WAVE to have the pending group imported/reimported. This is

defined in the docs.

$ cat /opt/opennms/etc/imports/pending/customer1.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<model-import foreign-source="customer1"
date-stamp="2010-01-12709:29:23.104-05:00"
xmlns="http://xmlns.opennms.org/xsd/config/model-import">

</model-import>

You can also get a list of all existing provisioning groups (import requisitions) with the list option of the provision.pl

script:

/opt/opennms/bin/provision.pl list

4.8.2. Add a Node to an Existing Provisioning Group

Okay, the script we provided helps one to managed provisioning group elements at a very fine grained level. This example
shows you how tohandle adding a node and all the node elements with fine grained requests. Note, that you could create
the resulting XML in WAVE and send the entire group as an XML document to the REST API as I’'ve attempted to document

in the docs. I will be including this example in a updated version of the docs, ASAP.

Create the Node Element

/opt/opennms/bin/provision.pl node add customer1 1 node-a

This command creates a node element in the provisioning group (a.k.a requisition) customerl called node-a using the

scripts node option. Note it has no interfaces or services, yet.

107

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<model-import foreign-source="customer1"

date-stamp="2010-01-12709:29:23.104-05:00" xmlns="http://xmlns.opennms.org/xsd/config/model-
import">

<node node-label="node-a" foreign-id="1"/>
</model-import>

Add a Interface Element to that Node

/opt/opennms/bin/provision.pl interface add customer1 1 127.0.0.1

This command adds an interface element to the node element using the interface option to the 'provision.pl' command and
it can now be seen in the pending requisition:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<model-import foreign-source="customer1"

date-stamp="2010-01-12709:31:21.029-05:00" xmlns="http://xmlns.opennms.org/xsd/config/model-
import">

<node node-label="node-a" foreign-id="1">
<interface ip-addr="127.0.0.1"/>
</node>
</model-import>

Add a Couple of Services to that Interface

/opt/opennms/bin/provision.pl service add customer1 1 127.0.0.1
27.0.0.1

/opt/opennms/bin/provision.pl service add customer1 1 127.0.0.

This adds the 2 services to the specified 127.0.0.1 interface and is now in the pending XML document.

NOTE These Services must already be defined in the foreign-source definition for this group. There is a default
foreign source definition, btw. This is covered in the docs we provided.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<model-import foreign-source="customer1"

date-stamp="2010-01-12709:32:14.885-05:00" xmlns="http://xmlns.opennms.org/xsd/config/model-
import">

<node node-label="node-a" foreign-id="1">
<interface ip-addr="127.0.0.1">
<monitored-service service-name="ICMP"/>
<monitored-service service-name="SNMP"/>
</interface>
</node>
</model-import>

Set the Primary SNMP Interface
/opt/opennms/bin/provision.pl interface set customer1 1 127.0.0.1 snmp-primary P

This sets the 127.0.0.1 interface to be the Primary SNMP interface:

108

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<model-import last-import="2010-01-12T09:37:27.373-05:00"
foreign-source="customer1" date- stamp="2010-01-12T11:12:23.738-05:00" xmlns=
"http://xmlns.opennms.org/xsd/config/model-import">
<node node-label="node-a" foreign-id="1">
<interface snmp-primary="P" ip-addr="127.0.0.1">
<monitored-service service-name="ICMP"/>
<monitored-service service-name="SNMP"/>
</interface>
</node>
</model-import>

Add a couple Node Categories

/opt/opennms/bin/provision.pl category add customer1 1 Routers
/opt/opennms/bin/provision.pl category add customer1 1 Production

This adds the 2 categories to the node and is now in the pending XML document.

NOTE These categories are: a) case sensitive and b) do not have to already be defined in OpenNMS. They will be
created on the fly during the import if they do not already exist.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<model-import foreign-source="customer1"

date-stamp="2010-01-12709:33:57.740-05:00" xmlns="http://xmlns.opennms.org/xsd/config/model-
import">

<node node-label="node-a" foreign-id="1">
<interface ip-addr="127.0.0.1">
<monitored-service service-name="ICMP"/>

<monitored-service service-name="SNMP"/>
</interface>

<category name="Servers"/>

<category name="Production"/>
</node>

</model-import>

Setting Asset Fields on a Node
/opt/opennms/bin/provision.pl asset add customer1 1 serialnumber 9999

This will add value of 9999 to the asset field: serialnumber:

109

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<model-import foreign-source="customer1"
date-stamp="2010-01-12709:35:48.343-05:00" xmlns="http://xmlns.opennms.org/xsd/config/model-
import">
<node node-label="node-a" foreign-id="1">
<interface ip-addr="127.0.0.1">
<monitored-service service-name="ICMP"/>
<monitored-service service-name="SNMP"/>
</interface>
<category name="Servers"/>
<category name="Production"/>
<asset value="9999" name="serialnumber"/>
</node>
</model-import>

Deploy the Import Requisition (Creating the Group)

/opt/opennms/bin/provision.pl requisition import customer

This will cause OpenNMS Provisiond to import the pending requisition. The XML document will moved from the '/opt/
'opennms/imports/pending' directory to the '/opt/opennms/imports' directory. The philosophy is that the XML document in
the 'imports/' directory should be reflective of what is actually supposed to be in the DB.

CAUTION The behavior changed. Mixing ReST and Ul is dangerous.

Very much the same as the add, accept, a single delete command and a re-import is required. What happens is that the
audit phase is run by Provisiond (this is detailed in the docs we sent) and it will be determined that a node has been
removed from the group (requisition) and the node will be deleted from the DB and all services will stop activities related
to it.

/opt/opennms/bin/provision.pl node delete customer1 1 node-a
/opt/opennms/bin/provision.pl requisition import customer

This, also, will create a copy of the currently deployed requisition, remove the node-a node element, and place it in the

pending directory, so it too must be deployed so that the node is removed from the provisioning group.
/opt/opennms/bin/provision.pl requisition import customer

This completes the life cycle of managing a node element, iteratively, in a import requisition.

4.9. Yet Other API Examples

The 'provision.pl' script doesn’t supply this feature but you can get it via the REST APIL Here is an example using curl:

#!/bin/bash

REQ=$1

curl -X GET -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/requisitions/$REQ 2>/dev/null | xmllint --format -

110

Chapter 5. OpenNMS Operation

111

Chapter 6. JMX Configuration Generator

OpenNMS implements the JMX protocol to collect long term performance data for Java applications. There are a huge
variety of metrics available and administrators have to select which information should be collected. The JMX
Configuration Generator Tools is build to help generating valid complex JMX data collection configuration and RRD graph
definitions for OpenNMS.

This tool is available as CLI and a web based version.

6.1. Web based utility

Complex JMX data collection configurations can be generated from a web based tool. It collects all available MBean

Attributes or Composite Data Attributes from a JMX enabled Java application.
The workflow of the tool is:

1. Connect with JMX or JMXMP against a MBean Server provided of a Java application

2. Retrieve all MBean and Composite Data from the application

3. Select specific MBeans and Composite Data objects which should be collected by OpenNMS

4. Generate JMX Collectd configuration file and RRD graph definitions for OpenNMS as downloadable archive
The following connection settings are supported:

» Ability to connect to MBean Server with RMI based JMX

» Authentication credentials for JMX connection

* Optional: JMXMP connection

The web based configuration tool can be used in the OpenNMS Web Application in administration section Admin JMX

Configuration Generator.

6.1.1. Configure JMX Connection

At the beginning the connection to an MBean Server of a Java application has to be configured.

7 1. Service Configuration / 2. MBeans Configuration / 3. OpenNMS Configuration

Service name* | OpenNMS-JVM
Host* | localhost
Port* | 18960
| Authentication
Skip JVM MBeans

~| Run writable MBeans
~| JMXMP

Figure 9. JMX connection configuration window

» Service name: The name of the service to bind the JMX data collection for Collectd

112

* Host: IP address or FQDN connecting to the MBean Server to load MBeans and Composite Data into the generation tool
 Port: Port to connect to the MBean Server

» Authentication: Enable / Disable authentication for JMX connection with username and password

Skip JVM MBeans: Enable / Disable retrieving generic Java JVM MBeans

* Run writable MBeans: Enable / Disable retrieving writable MBean Attributes

JMXMP: Enable / Disable JMX Messaging Protocol instead of using JMX over RMI

NOTE By default writable MBeans are not included, even if they are readable. Enable to exclude/include
writable MBeans as well.

By clicking the arrow (>) the MBeans and Composite Data will be retrieved with the given connection settings. The data is

loaded into the MBeans Configuration screen which allows to select metrics for the data collection configuration.

6.1.2. Select MBeans and Composite

The MBeans Configuration section is used to assign the MBean and Composite Data attributes to RRD domain specific data
types and data source names.

csedomalfll ¢
s
H

Figure 10. Select MBeans or Composite Data for OpenNMS data collection

The left sidebar shows the tree with the JMX Domain, MBeans and Composite Data hierarchy retrieved from the MBean

Server. To select or deselect all attributes use Mouse right click select/deselect.

The right panel shows the MBean Attributes with the RRD specific mapping and allows to select or deselect specific MBean

Attriubtes or Composite Data Attributes for the data collection configuration.

Objoctname java ang:ype=MemoryPoolname=Code Cache.

WBoan Attrbutes.

Figure 12. Configure Composite attributes for data collection configuration

113

* MBean Name or Composite Alias: Identifies the MBean or the Composite Data object

» Selected: Enable/Disable the MBean attribute or Composite Member to be included in the data collection configuration
* Name: Name of the MBean attribute or Composite Member

* Alias: the data source name for persisting measurements in RRD or JRobin file

» Type: Gauge or Counter data type for persisting measurements in RRD or JRobin file

The MBean Name, Composite Alias and Name are validated against special characters. For the Alias inputs are validated to

be not longer then 19 characters and have to be unique in the data collection configuration.

6.1.3. Download and include configuration

The last step is generating the following configuration files for OpenNMS:
o collectd-configuration.xml: Generated sample configuration assigned to a service with a matching data collection group

* jmx-datacollection-config.xml: Generated JMX data collection configuration with the selected MBeans and Composite
Data

» snmp-graph.properties: Generated default RRD graph definition files for all selected metrics
The content of the configuration files can be copy & pasted or can be downloaded as ZIP archive.

NOTE If the content of the configuration file exceeds 2,500 lines, the files can only be downloaded as ZIP
archive.

6.2. CLI based utility

The command line (CLI) based tool is not installed by default. It is available as Debian and RPM package in the official

repositories.

6.2.1. Installation
RHEL based installation with Yum

yum install opennms-jmx-config-generator

Debian based installation with apt

apt-get install opennms-jmx-config-generator

6.2.2. Usage

The installed package provides the ${OPENNMS_HOME}/bin/jmx-config-generator executable. It is necessary to run the tool in

two steps:

The following example runs the tool with minimal arguments and generates a JMX data collection configuration.

114

Generate JMX data collection for Java JVM and OpenNMS

./jmx-config-generator -jmx -host localhost -port 18980 -out myjmx-datacollection-config.xml

Check the file and see if there are alias names with more than 19 characters.

IMPORTANT

This errors are

marked with NAME_CRASH_AS_19_CHAR_VALUE

Based on the myjmx-datacollection-config.xml the RRD graph definitions can be generated using the following command.

Generate RRD graph definitions for a given JMX data collection configuration

./jmx-config-generator -graph -input myjmx-datacollection-config.xml -out myjmx-graph.properties

The JMX data collection configuration has to be manually included in the existing OpenNMS

NOTE configuration.

If a unique file name for the RRD graph definition is chosen, the file can be dropped in

${OPENNMS_HOME}/etc/snmp-graph.properties.d directory.

The command line tool can be started with the following arguments:

Argument

-dictionary

-graph

-host

-input

-jmx

- jmxmp

-out

-username
-password

-port
-runWritableMBeans
-service
-skipDefaultVM

-template

115

Description

Path to a dictionary file for replacing attribute names and
part of MBean attributes.

The file should have for each line a replacement, e.g.
Auxillary:Auxil.

Mode to generate RRD graph definition file from a given
JMX data collection configuration.
You can’t mix -graph with -jmx/-jmxmp

Hostname or IP Adress of JMX-RMI host

JMX data collection configuration file as input for the RRD
graph definition.

Generate JMX data collection connecting to MBean Server
via JMX over RMI

Generate JMX data collection connecting to MBean Server
via JMXMP

Path to a file to write generated RRD graph definition
Username to authenticate connection

Password to authenticate connection

Port for connection

Include MBeans that are read- and writable.

The Service Name used as JMX data collection name.

If this option is set, defaul Java JVM MBeans are removed.

Custom template file for RRD graph definitions

-url Custom connection URL:
<hostname>:<port>
service:jmx:<protocol>:<sap>

service:jmx:remoting-jmx://<hostname>:<port>

6.2.3. Graph Templates

It is possible to use a user-defined RRD graph template. The option -template followed by a file uses an external template
file

./jmx-config-generator -graph -input myjmx-datacollection-config.xml -out myjmx-graph.properties -template
myTemplate.vm

The template file has to be an Apache Velocity template. The sample represents the template that is used by default:
Example custom RRD graph template

reports=#foreach($report in $reportsList)
${report.id}tif($foreach.hasNext), \
ffend

#end

f#tforeach($report in $reportsBody)

ST L] 1 8
#I[##]11# $report.id
B[[R R] 18
report.${report.id}.name=${report.name}
report.${report.id}.columns=${report.graphResources}
report.${report.id}.type=interfaceSnmp
report.${report.id}.command=--title="${report.title}" \
--vertical-label="${report.verticallabel}" \
#iforeach($graph in $report.graphs)
DEF:${graph.id}={rrd${foreach.count}}:${graph.resourceName}:AVERAGE \
AREA:${graph.id}#${graph.coloreB} \
LINE2:${graph.id}#${graph.coloreA}:"${graph.description}" \
GPRINT:${graph.id}:AVERAGE:" Avg \\: %8.21f %s" \
GPRINT:${graph.id}:MIN:" Min \\: %8.21f %s" \
GPRINT:${graph.id}:MAX:" Max \\: %8.21f %s\\n" \
#end

#end

116

http://velocity.apache.org/

Chapter 7. Special Cases and Workarounds

7.1. Overriding SNMP Client Behavior

By default, the SNMP subsystem in {opennms-product-name} does not treat any RFC 3416 error-status as fatal. Instead, it
will attempt to continue the request, if possible. However, only a subset of errors will cause {opennms-product-name}'s

SNMP client to attempt retries. The default SNMP error-status handling behavior is as follows:

Table 54. Default SNMP Error Status Behavior

error-status Fatal? Retry?
noError(0) false false
tooBig(1) false true
noSuchName(2) false true
badValue(3) false false
readOnly(4) false false
genErr(5) false true
noAccess(6) false true
wrongType(7) false false
wrongLength(8) false false
wrongEncoding(9) false false
wrongValue(10) false false
noCreation(11) false false
inconsistentValue(12) false false
resourceUnavailable(13) false false
commitFailed(14) false false
undoFailed(15) false false
authorizationError(16) false true
notWritable(17) false false
inconsistentName(18) false false

You can override this behavior by setting a property inside ${OPENNMS_HOME}/etc/opennms.properties in the form:
org.opennms.netmgt.snmp.errorStatus.[statusCode].[type]

For example, to make authorizationError(16) abort and not retry, you would set:

org.opennms.netmgt.snmp.errorStatus.16.fatal=true
org.opennms.netmgt.snmp.errorStatus.16.retry=false

117

https://tools.ietf.org/html/rfc3416

	Administrators Guide
	Table of Contents
	Administrative Webinterface
	Chapter 1. Operator Board
	1.1. Introduction
	1.2. Configuration
	1.3. Dashlets
	1.3.1. Alarm Details
	1.3.2. Alarms
	1.3.3. Charts
	1.3.4. Image
	1.3.5. KSC
	1.3.6. Map
	1.3.7. RRD
	1.3.8. RTC
	1.3.9. Summary
	1.3.10. Surveillance
	1.3.11. Topology
	1.3.12. URL

	1.4. Boosting Dashlet
	1.5. Criteria Builder

	Chapter 2. Service Assurance
	2.1. Service monitors
	2.1.1. AvailabilityMonitor
	2.1.2. BgpSessionMonitor
	2.1.3. BSFMonitor
	2.1.4. CiscoIpSlaMonitor
	2.1.5. CiscoPingMibMonitor
	2.1.6. CitrixMonitor
	2.1.7. DhcpMonitor
	2.1.8. DiskUsageMonitor
	2.1.9. DnsMonitor
	2.1.10. DNSResolutionMonitor
	2.1.11. FtpMonitor
	2.1.12. HostResourceSwRunMonitor
	2.1.13. HttpMonitor
	2.1.14. HttpPostMonitor
	2.1.15. HttpsMonitor
	2.1.16. IcmpMonitor
	2.1.17. ImapMonitor
	2.1.18. JCifsMonitor
	2.1.19. JDBCMonitor
	2.1.20. JDBCStoredProcedureMonitor
	2.1.21. JDBCQueryMonitor
	2.1.22. JolokiaBeanMonitor
	2.1.23. LdapMonitor
	2.1.24. LdapsMonitor
	2.1.25. MemcachedMonitor
	2.1.26. NetScalerGroupHealthMonitor
	2.1.27. NtpMonitor
	2.1.28. OmsaStorageMonitor
	2.1.29. OpenManageChassisMonitor
	2.1.30. Pop3Monitor
	2.1.31. PrTableMonitor
	2.1.32. SmbMonitor
	2.1.33. SnmpMonitor
	2.1.34. SshMonitor
	2.1.35. SSLCertMonitor
	2.1.36. StrafePingMonitor
	2.1.37. SystemExecuteMonitor
	2.1.38. Win32ServiceMonitor
	2.1.39. XmpMonitor

	Chapter 3. Events in OpenNMS
	3.1. Events
	3.1.1. Anatomy of an Event
	3.1.2. Sources of Events
	3.1.3. The Event Bus
	3.1.4. Events in Action

	Chapter 4. OpenNMS Provisioning
	4.1. Provisioning
	4.1.1. Summary
	4.1.2. Concepts

	4.2. Getting Started
	4.2.1. Provisioning the SNMP Configuration

	4.3. Import Handlers
	4.3.1. File Handler
	4.3.2. HTTP Handler
	4.3.3. DNS Handler

	4.4. Provisioning Examples
	4.4.1. Basic Provisioning
	4.4.2. Advanced Provisioning Example

	4.5. Adapters
	4.5.1. DDNS Adapter
	4.5.2. RANCID Adapter

	4.6. Integrating with Provisiond
	4.6.1. Provisioning Groups of Nodes
	4.6.2. Example

	4.7. Provisioning Single Nodes (Quick Add Node)
	4.8. Fine Grained Provisioning Using provision.pl
	4.8.1. First, Create a new Provisioning Group
	4.8.2. Add a Node to an Existing Provisioning Group

	4.9. Yet Other API Examples

	Chapter 5. OpenNMS Operation
	Chapter 6. JMX Configuration Generator
	6.1. Web based utility
	6.1.1. Configure JMX Connection
	6.1.2. Select MBeans and Composite
	6.1.3. Download and include configuration

	6.2. CLI based utility
	6.2.1. Installation
	6.2.2. Usage
	6.2.3. Graph Templates

	Chapter 7. Special Cases and Workarounds
	7.1. Overriding SNMP Client Behavior

